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Cryptocurrency mining in Proof of Work (PoW) blockchains is notorious for its expansive environ-

mental footprint. Environment-friendly alternatives such as Proof of Stake (PoS) protocols have

been developed, however, adoption is hindered by entrenched economic interests and network

effects. To make matters worse, the committed decentralized nature of these ecosystems is contrary

to standard mechanism design approaches that rely on strong persistent centralized authorities

with abundant resources that e.g., by using preferential subsidies can effectively dictate system

outcomes. What other type of mechanisms are feasible?

We develop and analyze a mechanism to induce a transition from PoW to PoS with several

desirable properties. The mechanism is transient and does not exogenously favor one technology

over another. Instead the phase transition from PoW to PoS emerges endogenously by analyzing a

standard evolutionary learning model, Q-learning, where agents trade off exploration and exploita-

tion. Introducing short-term taxation, common for both technologies, encourages exploration and

results in irreversible phase transitions and long-lasting stabilization of PoS. At the technical level,

our work is based on bifurcation and catastrophe theory, a branch of mathematics that deals with

changes in the number and stability properties of equilibria. Critically, our analysis is shown to be

structurally robust to significant and even adversarially chosen pertubations of the parameters of

both our game and our behavioral model.

CCS Concepts: • Theory of computation� Algorithmic game theory and mechanism de-
sign; Cryptographic protocols.

1 INTRODUCTION
Since the launch of Bitcoin (BTC) by the pseudonymous Satoshi Nakamoto, [Nakamoto,

2008], Proof of Work (PoW) blockchains and their applications – most notably cryptocur-

rencies – have taken the world by storm. Widely considered as a revolutionary technology,

blockchains have attracted the attention of institutions, technology-corporations, investors

and academics. However, among other concerns, blockchains face a major hurdle in their

expansion and broad public adoption: the bottleneck of immense energy waste. Currently,

one BTC transaction wastes as much energy – in terms of carbon footprint – as 775.818

VISA transactions [Digiconomist, 2020]. Evenmore alarming than its current levels – which

rank the BTC network above Finland and Pakistan – is the consumption’s increasing trend:

the electricity used by the BTC network approximately doubles every year [University

of Cambridge, Judge Business School, 2020]. The total picture can only get worse, if one

takes into account all other PoW blockchains – such as Ethereum [Buterin et al., 2019].
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These alarming figures call for mechanisms to accelerate the development and, more

crucially, the adoption of alternative protocols – or virtual mining, [Bentov et al., 2016]

– technologies such as Proof of Stake, see e.g., [Brown-Cohen et al., 2019, Hazari and

Mahmoud, 2019]. With this in mind, academic research is focusing on the understanding

of miners’ behavior and potential strategies, [Fiat et al., 2019a, Goren and Spiegelman,

2019]. Yet, an important barrier is that the value of a cruptocurrency – or in general the

reliability of its applications – depends on the size of its mining network (with larger

network implying higher safety). More mining power implies that it is more costly for

a potential attacker to gather the required resources and compromise the functionality

of the blockchain, [Brown-Cohen et al., 2019, Kiayias et al., 2016]. Hence, when the rest

of the population mines a specific PoW cryptocurrency, then it is individually rational

(preferable) for any single miner to also mine that cryptocurrency.

Using game theoretic terminology, the population state (or equilibrium) in which the PoW

technology is used by everyone is evolutionary stable and small perturbations – adopters

of alternative technologies – are doomed to fail. This creates a deadlock: a situation –

among many known in social and economic sciences – in which selfish behavior stands at

odds with the social good. On the other hand, the state in which everyone adapts the new

technology is also a stable equilibrium. How can we facilitate the transition from one to

the other?

This challenge is primarily not technological
1
but game-theoretical in nature. This

tension between individual incentives (miners) and social welfare indicates that this is a

setting where mechanism design should be applied, however, the inherently decentralized

nature of blockchains raises new challenges that severely lessen the applicability of off-

the-self solutions.

First, miners form loosely-organized, decentralized pseudonymous networks that are

not governed by central authorities [Eyal and Sirer, 2018]. Even if we assume that a

centralized scheme could provide some control over the network, any mechanism that

consistently subsidizes socially beneficial behavior by offsetting potential losses would not

be economically feasible and would be subject to gaming. Even more of a show-stopper is

the fact that any top-down policy that treats differentially one technology versus another

would be rather hard, if not outright impossible, to enforce in practice as disgruntled

network users can easily splinter off forming new networks. Lastly, standard expected

utility models, the bedrock of classic mechanism design, are arguably too simplistic to

model miners behavior in practice for several reasons (volatility, risk attitudes, hedging,

collusion, politics/governance, e.t.c.). It would be thus important to develop solutions that

are robust to more complex behavioral assumptions [Bissias et al., 2019, Chen et al., 2019,

Fiat et al., 2019b]. Due to the aforementioned complexities and despite the pressing nature

of this problem, to our knowledge, no mechanism has been proposed to address it.

Our model: We introduce an evolutionary game theoretic model to capture miner

behavior. The advantage of having both a game theoretic model (Section 2) as well as

learning theoretic model (Section 3) is that it allows us to formally argue about the stability

1
Both from theoretical as well as practical perspective PoS technologies have shown to offer strong guarantees

analogous to those of PoW [Buterin et al., 2019, Garay et al., 2015, Kiayias et al., 2017].
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Fig. 1. Phase Transition from Proof of Work (PoW) to Proof of Stake (Pos). The wasteful but
currently adopted technology (PoW) is destabilized by a controlled catastrophe and the population
moves to a new equilibrium (PoS). At timepoint 1, the system starts with 100% PoWminers and the
control parameter is at 0 (upper right datatip). As the control parameter increases, the population
state (percentage of PoW miners) moves along the red line on the QRE surface. At timepoint 2
(time is indicative), the control parameter reaches the critical value or tipping point (upper middle
datatip). At the next timepoint, 3, at which the parameter 𝑇 is increased slightly beyond the
critical level, the system undergoes an abrupt transition (bottom middle datatip). Between these
two successive time points, the population state changes from 69% PoW miners right before the
catastrophe to only 15% immediately after. After this point, the control parameter can be reset to 0

(here this is done gradually but since the population is now in the attracting region of the new
equilibrium this is not necessary) and the system will converge to the new equilibrium in which
everyone has adopted the new technology (red line to bottom right datatip at time 4.).

of the equilibria of the game. For example, in the simplest possible game theoretic model

of PoW/PoS competition we have that the utility of using the PoW (resp. PoS strategy)

increases linearly in the number of other agents that are using the same technology. This

results in three type of fixed points, everyone using PoW, everyone using PoS, and a “mixed"

population case at the exact split where both technologies are equally desirable/profitable.

Intuitively, this mixed state is an unstable equilibrium as a slight increase of the fraction of

PoW (resp. PoS) miners is enough to break ties and encourage convergence to a monomor-

phic state. However, to make this discussion concrete we need to formally describe how a

mixed population state (i.e., the PoW/PoS split) evolves over time.

To model the adaptive behavior of the agents, we use one of the most well known

models of evolutionary reinforcement learning, the Boltzmann Q-learning dynamics, [Tan,

1997, Watkins and Dayan, 1992]. The decision of each miner, or equivalently of each unit

investment, is whether to adopt the PoWor the PoS technology given that 𝑥 ∈ [0, 1] fraction
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of the population adopts the PoW technology. According to the Q-learing behavioral model,

the miners update their actions by keeping track of the collective past performance – in

particular, of a properly defined Q-score – of their available strategies (PoW or PoS).

However, in a far-reaching twist, each miner’s utility function is enhanced by an entropy

term, that is weighted by a parameter 𝑇 – termed temperature or rationality. Informally,

low temperatures capture cool-headed agents that focus primarily on strategies with good

historical performance, whereas high temperatures favor hedging and exploration. Roughly,

(see Section 2 for the formal specifications and notation), if we denote with 𝑢 (𝑊,𝑥) and
𝑢 (𝑆, 𝑥) the utility of an investment unit from either of the two technologies PoW and PoS,

when the state of the population is (𝑥, 1 − 𝑥) with 𝑥 ∈ [0, 1] denoting the fraction of PoW

miners, then the Q-learning dynamics are given by the following scheme

¤𝑥 = 𝑥 [𝑢 (𝑊,𝑥) − 𝑢 (𝑆, 𝑥)︸                 ︷︷                 ︸
Replicator Dynamics

−𝑇 · (𝑥 ln𝑥 + (1 − 𝑥) ln (1 − 𝑥))︸                              ︷︷                              ︸
Entropy

] (1)

When 𝑇 = 0, the dynamics are precisely the replicator dynamics [Sandholm, 2010]

and they recover the Nash equilibria of the game. Now, we can formally argue that the

equilibrium 𝑥 = 1 in which all miners use the PoW technology is evolutionary stable
(Proposition 2.1). How do we escape from it and converge to 𝑥 = 0, the PoS equilibrium?

Our solution: Catastrophe Design. Our approach is based on the combination of two

observations: First, the number and stability of equilibria of Q-learning, known as Quantal

Response Equilibria [McKelvey and Palfrey, 1995], is a function of 𝑇 , i.e., the tradeoff level

between exploration and exploitation. In Figure 1 for 𝑇 = 0 there exist three QRE, the

three Nash equilibria. For slightly larger 𝑇 > 0 we still have three QRE but now due to

the exploration term all three lie in the interior of the interval (0, 1). Finally, beyond some

critical temperature the number of QRE drops from three to one. Such phenomena are

known as catastrophes, bifurcations [Kuznetsov, 2004].

The second observation is that we can effectively control temperature 𝑇 (e.g., increase it

by a multiplicative scale 𝛼), since it is mathematically equivalent to scaling down the utility

of the agents by the same factor 𝛼 (up to time repamaterization in equation 1). In policy

terms, taxation of income (i.e. multiplicative decrease of payoffs for all actions) results in

agent behavior which is less stringent about maximizing earnings at all costs. Informally

and taking this idea to its logical extreme, a taxation level of 99% (i.e., a very large𝑇 ) would

effectively render the agents indifferent about payoffs and make them choose actions at

random. More discussion on this connection can be found here [Kianercy and Galstyan,

2012, Wolpert et al., 2012, Yang et al., 2017].

Putting these two observations together, by controlling 𝑇 , we can control the resulting

QRE and thus the resulting state of the system over time. More critically, when exceeding

critical temperatures (tipping point), a phase transition or catastrophe at which the state

behavior changes abruptly is possible (Figure 1 from time 2 to time 3). Finally, we could

(in principle at least) leverage these catastrophes to create irreversible phase transitions

such that even when the controlling parameter 𝑇 returns to its initial state 𝑇 = 0, the state
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of the systems is not the original undesirable stable state (𝑥 = 1), but the target PoS state

(𝑥 = 0) (Figure 1 from time 1 to time 4).
2

Our key contribution is to prove that there exists a simple, robust and transient catastrophe-

based mechanism to destablize the PoW equilibrium and enforce the PoS equilibrium. As a

first step in the process, we provide a complete characterization of both the number as well

as the stability of QREs given game theoretic models of PoW/PoS competition for all values

of 𝑇 (Theorem 4.4). This is a question of independent interest as it explores the question

of what are the possible limit system behaviors in the lack of any controlling mechanism.

Secondly, we describe how by simply raising taxation/temperature up to (slightly beyond)

a critical value and then reducing it down to zero results into convergence to the socially

optimal PoS equilibrium (Theorem 4.6).

Robustness of findings. Critically, we stress-test our findings and establish that they

are robust to modelling uncertainty/misspecifications across different axes, cf. Section 5.

In Section 5.1, we allow (possibly adversarial) uncertainty/perturbations in the dynamics

and the population game theoretical model. In Section 5.2, we explore nonlinear utility

functions which can capture e.g., superadditive effects on network valuation but introduce

significant difficulties as these models lie outside the typical framework of evolutionary

game theory with multi-linear utility functions. While the number of equilibria – and the
stability properties – of the dynamics may change, the resulting control mechanism can be
applied without any significant changes. In short, our baseline modelling assumptions are

chosen with an eye towards simplicity primarily for expositional purposes. Our results,

however, can be directly extended for a wide range of modelling designs and approaches.

2 MODEL: BLOCKCHAIN POPULATION GAME
We consider a society or population 𝑝 of agents, investors or miners (physical or virtual)

3

who form a continuum of mass 𝐾 > 0. Here 𝐾 denotes the total available capital or

resources, e.g., money, hardware or electricity, all expressed in monetary terms, that the

agents are willing to invest. There are two available strategies or technologies: a costly

technology,𝑊 , and an innovative technology, 𝑆 . Here𝑊 and 𝑆 stand for Proof of Work and

Proof of Stake, respectively, but the model applies to any similar setting. Accordingly, the set
of strategies or available technologies is denoted by𝐴 = {𝑊,𝑆}. Investing one (infinitesimal)

unit of resource (e.g., one dollar $) in technology𝑊 incurs a cost of 𝛾 > 0 to the investor,

while an investment in technology 𝑆 incurs a cost of 0. This assumption implies that the

investors disregard any third potential alternative and will invest all available resources

on either of the two technologies (there is no loss from doing so for rational agents).

Accordingly, the set of population states is 𝑋 = {(𝑥, 1 − 𝑥) : 𝑥 ∈ [0, 1]}, where 𝑥 ∈ [0, 1]
denotes the fraction of agents (in terms of capital or resources) in population 𝑝 that are

choosing technology𝑊 .

The payoff function, 𝑢 : 𝑋 → R2
, assigns to each population state a vector of payoffs,

one for each strategy in 𝐴. In this context, we assume that the total value created by each

2
Such phenomena where the state of a system depends on its history (path dependent) are ubiquitous in

physical processes (e.g., the magnetization process used to record tapes) are known as hysteresis [Wolpert

et al., 2012, Yang et al., 2017].

3
The theory of population games and revision protocols that is presented here follows [Sandholm, 2010].
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technology {𝑊,𝑆} in 𝐴 depends on the fraction 𝑥 of capital that has been invested in that

technology via a parameter 𝛼 > 0 and that the total value is distributed evenly among all

invested units (fairness property of prevailing blockchain reward schemes, [Chen et al.,

2019, Fiat et al., 2019a]). We assume that both technologies can generate an aggregate

value 𝑉 > 𝐾 , if fully adopted by the population of investors. In particular, the value 𝑉𝑊
created by technology𝑊 depends on the population state 𝑥 via the relationship

𝑉𝑊 = 𝑉 · (𝑥𝐾)𝛼 (2)

and similarly, for the value 𝑉𝑆 created by technology 𝑆 , 𝑉𝑆 = 𝑉 · ((1 − 𝑥) 𝐾)𝛼 . Here 𝛼 > 0

is a parameter that expresses the relationship between the value created by a technology

and the degree of its adoption. Different values of 𝛼 give rise to different problems as

discussed in Remark 3. In particular, 𝛼 < 1 implies subadditive value (it is optimal for the

population to split), 𝛼 = 1 implies linear value and 𝛼 > 1 implies superadditive value, i.e.,

the population is better off if it fully adopts either of the two technologies. Accordingly,

the payoff of each strategy {𝑊,𝑆} ∈ 𝐴 is given by

𝑢 (𝑊,𝑥) = 𝑉𝑊 ·
1

𝑥𝐾
− 𝛾 = 𝑉 · (𝑥𝐾)

𝛼

𝑥𝐾
− 𝛾 = 𝑉𝐾𝛼−1𝑥𝛼−1 − 𝛾 (3a)

𝑢 (𝑆, 𝑥) = 𝑉𝑆 ·
1

(1 − 𝑥) 𝐾 = 𝑉 · [(1 − 𝑥) 𝐾]
𝛼

𝑥𝐾
= 𝑉𝐾𝛼−1 (1 − 𝑥)𝛼−1

(3b)

Hence, the average payoff obtained my the members of the mining population at population

state 𝑥 is equal to

𝑢 (𝑥) = 𝑥𝑢 (𝑊,𝑥) + (1 − 𝑥) 𝑢 (𝑆, 𝑥) = 𝑉𝐾𝛼−1

[
𝑥𝛼 − 𝛾𝑥

𝑉𝐾𝛼−1
+ (1 − 𝑥)𝛼

]
(4)

and the aggregate payoff that is achieved by the population as a whole is 𝑢𝐴 (𝑥) = 𝐾𝑢 (𝑥).
The cost𝛾𝑥 is paid by the population as a whole and hence, captures the negative externality

(or cost) of the undesirable technology.

2.1 Evolutionary Game and Nash Equilibria
To study instances in which a union is preferable than a split, our main focus will be the

case 𝛼 ≥ 1. For expositional purposes, we will restrict attention on the case 𝛼 = 2, but all

arguments essentially carry over to any 𝛼 > 1 (and to the trivial case, 𝛼 = 1) as we show

in Section 5.2. For 𝛼 = 2, eqs. (3) and (4) become linear in 𝑥 ,

𝑢 (𝑊,𝑥) = 𝑉𝐾𝑥 − 𝛾, 𝑢 (𝑆, 𝑥) = 𝑉𝐾 (1 − 𝑥) (5a)

This allows for an equivalent (yet more intuitive) interpretation of the agents’ interaction

as a single population evolutionary game, cf. [Hofbauer and Sigmund, 1998]. Hence, by

substituting 𝑥 = 0 and 𝑥 = 1, we can represent the game by the following matrix

𝑃 =

( 𝑊 𝑆

𝑊 𝑉𝐾 − 𝛾 −𝛾
𝑆 0 𝑉𝐾

)
(G1)
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Since 𝑉 ≫ 𝐾 ≫ 𝛾 > 0, we can normalize 𝑉𝐾 to 1 and write 𝛾 → 𝛾/𝑉𝐾 with 𝛾 ∈ (0, 1).
The equilibria of the resulting game are characterized next. The proof is standard and is

presented for completeness in the Appendix A.

Proposition 2.1. For 𝑉𝐾 = 1, the population game described by the payoff function in
(5) is a single population evolutionary game with three Nash equilibria: 𝑥1 = 0 with payoffs
𝑢 (𝑥1) = 1, 𝑥2 =

1+𝛾
2

with payoffs 𝑢 (𝑥2) =
(

1−𝛾
2

)
and 𝑥3 = 1 with payoffs 𝑢 (𝑥3) = 1 − 𝛾 .

The two pure equilibria, 𝑥1 = 0 and 𝑥3 = 1 are evolutionary stable, whereas the fully mixed
equilibrium, 𝑥2, is not. Equilibrium 𝑥1 – in which the desired technology is fully adopted – is
strictly payoff and risk dominant.

Accordingly, the undesirable (𝑊,𝑊 ) equilibrium in which everybody adopts the costly

technology, while payoff and risk dominated by the desirable environmental friendly

equilibrium (𝑆, 𝑆), is evolutionary stable. This is precisely the reason that the introduction

of the new, cost efficient technology may not succeed. In particular, evolutionary stability

implies that even if a small part of the population adopts the new technology, it is unlikely

that the system will be able to move away from the current equilibrium.

This motivates to look for an alternative approach to destabilize the system and obtain

the desired outcome. The solution that we pursue in this case is via the hysteresis and

optimal control design mechanisms that leverage the effects of bifurcations that emerge

in the population dynamics when the game is played repeatedly in a online setting (as is

the case in real applications), [Wolpert et al., 2012, Yang et al., 2017]. The framework to

develop these mechanisms is described next.

3 BEHAVIORAL MODEL
Predictions that are based on equilibration notions are difficult to justify in the context of

large number of agents, [Sandholm, 2010]. Moreover, the adoption of a new technology, is

a gradual process at which agents gradually learn their strategies via repeated interaction

with their environment. In particular, each agent’s payoff depends on the fractions 𝑥, 1 − 𝑥
of the population that adopt either of the two technologies, cf. equation (3), which is

constantly changing. Using the term revision protocols, [Sandholm, 2010] provides several

alternative microfoundations of the standard replicator dynamics in this context. However,

although successful in many ways, the best response dynamics characterize greedy and

myopic behavior with its own limitations, [Fiat et al., 2019b].

As argued in Section 1, a unified approach, termed 𝑄-learning dynamics, that combines

the most useful elements from the two approaches – exploitation of the best strategy by

the replicator dynamics and exploration of the strategy space in online learning – has been

recently developed [Tuyls et al., 2003, Wolpert et al., 2012] and [Kianercy and Galstyan,

2012]. In a more abstract setting, [Yang et al., 2017] among others, demonstrate how these

dynamics can be used to provide improved predictions of the agents’ behaviors in large

populations and more importanly, how the control parameter 𝑇 ≥ 0 can be utilized to

steer their behavior of the system from a mechanism design perspective. The 𝑄-learning

dynamics are based on the prinicple of Q-learning, [Watkins and Dayan, 1992], and the
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framework that is presented here closely follows the aforementioned works without further

reference.

3.1 Population States with Q-learning Dynamics
We consider a setting in which each agent of the population is adapting their strategy

according to repeated interaction with their environment. This allows us to focus on the

standpoint of a single agent and describe the system via the 𝑄-learning dynamics that are

derived as follows:

𝑄-values: At each time 𝑡 , the learning agent assigns a value 𝑄𝑡 ( 𝑗) to each strategy

𝑗 ∈ 𝐴 = {𝑊,𝑆} via the update rule

𝑄𝑡+1 ( 𝑗) = 𝑄𝑡 ( 𝑗) + 𝛿 [𝑢𝑡 ( 𝑗, 𝑥𝑡 ) −𝑄𝑡 ( 𝑗)] (6)

where 𝛿 > 0 is the learning rate and 𝑢𝑡 ( 𝑗, 𝑥𝑡 ) for 𝑗 =𝑊,𝑆 is the reward from selecting

strategy 𝑗 =𝑊,𝑆 (as given by eq. (3)) provided that the distribution of the population is

𝑥𝑡 ∈ [0, 1] at time point 𝑡 > 0.

Strategies & Population States: Using the 𝑄-values, the learning agent’s critical deci-

sion is the update of their strategy. To avoid suboptimal results derived by a greedy

updating, i.e., selecting the strategy with the highest 𝑄-value, the agents incorporate in

their maximization decision an entropy term to reward exploration of the whole strategy

space. In particular, the learning agent selects their strategy (𝑥𝑡 ) ∈ [0, 1], at time point

𝑡 ≥ 0 as the (unique) solution to the convex optimization problem
4

𝑥𝑡 = arg max

𝑥 ∈(0,1)
{𝑥𝑄𝑡 (𝑊 ) + (1 − 𝑥)𝑄𝑡 (𝑆) −𝑇 [𝑥 ln𝑥 + (1 − 𝑥) ln (1 − 𝑥)]} (S1)

The decision rule in (S1) results in the following mixed strategy (probability distribution)

𝑥𝑡 =
𝑒𝑄𝑡 (𝑊 )/𝑇

𝑒𝑄𝑡 (𝑊 )/𝑇 + 𝑒𝑄𝑡 (𝑆)/𝑇
(7)

which is known as the Boltzmann distribution. Here, we allow the agent to use a mixed

strategy 𝑥 ∈ (0, 1) with a slight abuse of notation, since 𝑥 or 𝑥𝑡 denotes both the learning

agents’ strategy and the distribution – state – of the population. Both these notations are

equivalent under the assumption that all agents are symmetric and that they are learning

concurrently.

Continuous time dynamics: If we take the time interval to be infinitely small, this

sequential joint learning process can be approximated as a continuous-time model, [Kian-

ercy and Galstyan, 2012, Tuyls et al., 2003]. After rescaling the time horizon to 𝛿𝑡/𝑇 , the
continuous-time dynamics of the population state are

¤𝑥 = 𝑥

[
𝑢 (𝑊,𝑥) − 𝑢 (𝑥) +𝑇

∑
𝑗=𝑊,𝑆

𝑥 𝑗 ln

(
𝑥 𝑗/𝑥

) ]
(8)

which is the desired expression of the dynamics in terms of strategies (rather than𝑄-values).

4
For an intuitive explanation of the objective function see Appendix A.
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Quantal Response Equilibria (QRE): The steady states of the system in (8) are the roots

the right side. In turn, as shown in [Kianercy and Galstyan, 2012], these are precisely the

solutions (if they exist) of the maximization problem

𝑥∗ ∈ arg max

𝑥

{
𝑢 (𝑊,𝑥) − 𝑢 (𝑥) −𝑇

∑
𝑗=𝑊,𝑆

𝑥 𝑗 ln𝑥 𝑗

}
for any given value of temperatures, 𝑇 > 0 (the case 𝑇 = 0 corresponds to the replicator

dynamics and is best treated separately). A direct calculation yields the solutions

𝑥∗ =
𝑒𝑢 (𝑊,𝑥∗)/𝑇

𝑒𝑢 (𝑊,𝑥∗)/𝑇 + 𝑒𝑢 (𝑆,𝑥∗)/𝑇
(9)

which is known as the Gibbs distribution. Points 𝑥 ∈ (0, 1) that satisfy equation (9) are

known as Quantal Response Equilbria (QRE), cf. [McKelvey and Palfrey, 1995, Yang et al.,

2017]. Starting from any interior point
5 𝑥 ∈ (0, 1), the 𝑄-learning dynamics are known to

converge to interior rest points for any 𝑇 > 0.

In the remaining part, our main task is to understand the behavior of the system that is

described via the dynamics in equation (8) and explain how a central designer can influence

this behavior through the control parameter 𝑇 ≥ 0.

4 ANALYSIS
We consider the Q-learning dynamics in a homogeneous population

6
. The critical parameter

that we need to track (and update) is the fraction 𝑥 ∈ [0, 1] of the population that invests

on the costly (and currently prevailing) technology𝑊 . By equations (3) and (8) and after

normalizing 𝑉𝐾 to 1, the population state, i.e., the fraction 𝑥 ∈ [0, 1] of the total available
investment capital, changes according to the following dynamics

¤𝑥 = 𝑥

[
𝑢 (𝑊,𝑥) − 𝑢 (𝑥) +𝑇

(
𝑥 ln

(𝑥
𝑥

)
+ (1 − 𝑥) ln

(
1 − 𝑥
𝑥

))]
(10)

= 𝑥

[
(1 − 𝑥) [𝑢 (𝑊,𝑥) − 𝑢 (𝑆, 𝑥)] +𝑇 (1 − 𝑥) ln

(
1 − 𝑥
𝑥

)]
= 𝑥 (1 − 𝑥)

[
𝑢 (𝑊,𝑥) − 𝑢 (𝑆, 𝑥) +𝑇 ln

(
1 − 𝑥
𝑥

)]
(11)

where 𝑇 ≥ 0 is the control parameter, 𝛾 ∈ (0, 1) is the cost per unit of investment for the

costly technology, here, Proof of Work (PoW). Using, the explicit payoffs in equation (3),

equation (10) becomes

¤𝑥 = 𝑥 (1 − 𝑥)
[
2𝑥 − (1 + 𝛾) −𝑇 ln

( 𝑥

1 − 𝑥

)]
(12)

Keeping in mind that 𝑇 can be leveraged as a control variable to influence the evolution

of the population, in the remaining part, we will study equation (12) and determine its

5
Note that the introduction of the exploitation term renders the choices 𝑥 = 0 and 𝑥 = 1 not admissible, since

they are not in the domain of ln (𝑥/(1 − 𝑥)) for any 𝑇 > 0. This is not a problem in any realistic application.

6
See, e.g., [Arnosti and Weinberg, 2018], who demonstrate that largely heterogeneous players are unlikely to

survive in the same competitive environment.
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steady states (QRE) and their stability properties for all 𝑇 ≥ 0. It is more intuitive to

treat the instance 𝑇 = 0 separately. In this case, the system reduces to the well known

replicator dynamics and its steady states are precisely the Nash equilibria of the respective

evolutionary game, cf. Section 2.1.

Lemma 4.1. For 𝑇 = 0, the steady states of the Q-learning dynamics, equation (12), are
𝑥1 = 0, 𝑥2 = 1

2
(1 + 𝛾), and 𝑥3 = 1. The steady states on the boundary, i.e., 𝑥1 and 𝑥3, are

stable, whereas 𝑥2 is unstable.

Proof. For 𝑇 = 0, the dynamics become ¤𝑥 = 𝑥 (1 − 𝑥) (2𝑥 − 1 − 𝛾) and the first claim

follows trivially. Concerning their stability, observe that ¤𝑥 < 0 for any 𝑥 ∈
(
0, 1

2
(1 + 𝛾)

)
and ¤𝑥 > 0 for 𝑥 ∈

(
1

2
(1 + 𝛾) , 1

)
. Hence, starting from any point other than 𝑥 = 1

2
(1 + 𝛾),

the system will converge to the boundary steady states, to 𝑥1 = 0 for any initial starting

point 𝑥 < 𝑥2 and to 𝑥3 = 1 for any initial starting point 𝑥 > 𝑥2, which completes the

proof. □

The steady states and their stability properties are illustrated in Figure 4. To treat the

case 𝑇 > 0, we restrict attention to 𝑥 ∈ (0, 1) (otherwise ln

(
𝑥

1−𝑥
)
is undefined). The key

intuition from the instance 𝑇 = 0 is that the stability of the steady states can be fully

determined by the sign of the dynamics ¤𝑥 , due to the fact that the dynamics described by

equation (12) are one-dimensional.

For 𝑥 ∈ (0, 1), the term 𝑥 (1 − 𝑥) is always strictly positive and hence, the sign and the

roots of ¤𝑥 in equation (12), i.e., the steady states or equivalently the Quantal Response

Equilibria (QRE) and the direction of movement of the dynamics, are fully determined by

the last term of the dynamics in equation (12). Hence, for a given cost parameter 𝛾 ∈ (0, 1),
and a temperature 𝑇 ≥ 0 it will be convenient to define 𝑓 (𝑥 ;𝑇,𝛾) for 𝑥 ∈ (0, 1) as follows.

Definition 4.2. Given parameters 𝑇 ≥ 0 and 𝛾 ∈ (0, 1), let

𝑓 (𝑥 ;𝑇,𝛾) := 2𝑥 − (1 + 𝛾) −𝑇 ln

( 𝑥

1 − 𝑥

)
, ∀𝑥 ∈ (0, 1) (13)

Whenever obvious from the context, we will simply write 𝑓 (𝑥).

The main result of this section is that for each 𝛾 ∈ (0, 1), there exists a unique critical
temperature, 𝑇𝑐 (𝛾) (or simply 𝑇𝑐 ), such that the number of steady states depends on the

whether 𝑇 is less than, equal to or larger than 𝑇𝑐 . This is illustrated in Figures 2 and 3

and formally proved in Theorem 4.4. In particular, for 𝑇 < 𝑇𝑐 (𝛾), there exist three QRE,
which for 𝑇 = 0 are precisely the Nash equilibria of the underlying evolutionary game.

At the transition point, i.e., when 𝑇 = 𝑇𝑐 (𝛾), the initial pure equilibrium, 𝑥 = 1, and the

unstable mixed equilibrium merge into an unstable equilibrium. For 𝑇 > 𝑇𝑐 (𝛾), there is
only one equilibrium, which is stable and which lies in the attracting region of desirable

new equilibrium, 𝑥 = 0. Additionally, as can be seen from Figure 2, the critical temperature

𝑇𝑐 is always between (0, 1/2) for the three depicted cases. In fact, for each 𝛾 ∈ (0, 1), the
critical temperature 𝑇𝑐 (𝛾) ∈ (0, 1/2) can be determined analytically. This is the statement

of Lemma 4.3.
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Fig. 2. The QRE correspondence for 𝛾 = 0.02 (blue line), 𝛾 = 0.2 (red line) and 𝛾 = 0.8 (green line).
For 𝑇 < 𝑇𝑐 (𝛾), and in particular for 𝑇 = 0, there are three steady states. Starting from the top-left
corner – population state 𝑥 = 1 at which PoW is fully adopted – and as 𝑇 increases, there is a
critical point,𝑇𝑐 (𝛾) at which the two upper states merge. After this point, i.e., as𝑇 increases above
𝑇𝑐 (𝛾), the system is subjected to an abrupt change: the two upper QRE disappear and the system
retains only one steady state (branches at bottom right). From QRE with 𝑥 > 1/2 when 𝑇 ≤ 𝑇𝑐 (𝛾),
the population equilibrates at states with 𝑥 < 1/2, for all 𝑇 > 𝑇𝐶 (𝛾). The transitional point at
which the critical mass is reached, is precisely 𝑇𝑐 (𝛾).

Lemma 4.3. Let 𝑇 ∈ (0, 1/2]. Then, for any 𝛾 ∈ (0, 1), the equation
√

1 − 2𝑇 − 𝛾 −𝑇 · ln
(

1 +
√

1 − 2𝑇

1 −
√

1 − 2𝑇

)
= 0 (14)

has a unique solution 𝑇𝑐 (𝛾) or simply 𝑇𝑐 ∈ (0, 1/2).
Proof. See Appendix A.1. □

Given𝑇𝑐 , we can now state and prove the main result of this section in Theorem 4.4. We

will also use the notation

𝑥𝑙,𝑢 (𝑇 ) :=
1

2

(
1 ±
√

1 − 2𝑇

)
, for 𝑇 ∈ (0, 1/2] . (15)

Also, whenever obvious from the context, we will omit the dependence of 𝑥𝑙,𝑢 (𝑇 ) and of

the steady states 𝑥 (𝑇 ) on 𝑇 and write 𝑥𝑙,𝑢 and 𝑥 , respectively

Theorem 4.4. Let 𝛾 ∈ (0, 1) and 𝑇 > 0 and let 𝑇𝑐 (𝛾) denote the critical temperature as
given by (14). Then, the steady states of the population or equivalently the Quantal Respnse
Equilibria (QRE) of the Q-learning dynamical system

¤𝑥 = 𝑥 (1 − 𝑥)
[
2𝑥 − (1 + 𝛾) −𝑇 ln

( 𝑥

1 − 𝑥

)]
are given as follows
• 𝑇 < 𝑇𝑐 (𝛾): 3 steady states 𝑥1, 𝑥2, 𝑥3, with 𝑥1 ∈ (0, 𝑥𝑙 ), 𝑥2 ∈ (1/2, 𝑥𝑢) and 𝑥3 ∈ (𝑥𝑢, 1).
• 𝑇 = 𝑇𝑐 (𝛾): 2 steady states 𝑥1, 𝑥2, with 𝑥1 ∈ (0, 𝑥𝑙 ) and 𝑥2 = 𝑥𝑢 .
• 𝑇 > 𝑇𝑐 (𝛾): 1 steady state 𝑥1, with 𝑥1 ∈ (0, 𝑥𝑙 ) when 𝑇 < 1/2 and 𝑥1 ∈ (0, 1/2) when
𝑇 ≥ 1/2.
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Fig. 3. The QRE correspondence for all possible values of 𝛾 ∈ (0, 1) (left panel) and its projection on
the (𝛾,𝑇 ) plane (right panel). To understand the left panel, the (𝑇, 𝑥∗)-slices at the 𝛾 = 0.02, 0.2 and
0.8 levels correspond precisely to the blue, red and green line, respectively, in Figure 2. In the right
panel, darker areas correspond to the locations of multiple QRE. Abrupt transitions (bifurcations)
occur at the middle boundary between the dark and light region.

where 𝑥𝑙,𝑢 are given by (15). In all cases, the steady state 𝑥1 ∈ (0, 𝑥𝑙 ) is stable. For 𝑇 < 𝑇𝑐 (𝛾),
steady states 𝑥1 ∈ (0, 𝑥𝑙 ) and 𝑥3 ∈ (𝑥𝑢, 1) are stable whereas 𝑥2 is not. In particular, for
𝑇 = 𝑇𝑐 (𝛾), steady state 𝑥2 = 𝑥𝑢 is unstable.

The proof of Theorem 4.4 is split into two steps that are presented next. Intuitively, as

mentioned above, the steady states of the Q-learning dynamics and their stability properties

are determined by the roots and the sign of function 𝑓 (𝑥 ;𝑇,𝛾) = 2𝑥 − (1 + 𝛾) −𝑇 ln

(
𝑥

1−𝑥
)

for any starting point 𝑥 ∈ (0, 1) that is given in (13). These are resolved next.

Lemma 4.5. Let 𝛾 ∈ (0, 1) and let 𝑇𝑐 (𝛾) ∈ (0, 1/2) as given by Lemma 4.3. Then, for
𝑥𝑙,𝑢 := 1

2

(
1 ±
√

1 − 2𝑇

)
, cf. equation (15), it holds that 0 < 𝑥𝑙 < 1/2 < 𝑥𝑢 < 1, and the

number of the solutions of the equation 𝑓 (𝑥 ;𝑇,𝛾) = 0 with

𝑓 (𝑥 ;𝑇,𝛾) = 2𝑥 − (1 + 𝛾) −𝑇 ln

( 𝑥

1 − 𝑥

)
depends on the value of 𝑇 > 0 as follows
• 0 < 𝑇 < 𝑇𝑐 (𝛾): 3 solutions 𝑥1, 𝑥2, 𝑥3, with 𝑥1 ∈ (0, 𝑥𝑙 ), 𝑥2 ∈ (𝑥𝑙 , 1/2) and 𝑥3 ∈ (𝑥𝑢, 1).
• 𝑇 = 𝑇𝑐 (𝛾): 2 solutions 𝑥1, 𝑥2, with 𝑥1 ∈ (0, 𝑥𝑙 ) and 𝑥2 = 𝑥𝑢 .
• 𝑇 > 𝑇𝑐 (𝛾): 1 solution 𝑥1, with 𝑥1 ∈ (0, 𝑥𝑙 ) when 𝑇 < 1/2 and 𝑥1 ∈ (0, 1/2) when
𝑇 ≥ 1/2.

Proof. See Appendix A.1. □

Using Lemma 4.5, it is now immediate to determine the convergence properties of the

Q-learning dynamical system ¤𝑥 and hence, prove Theorem 4.4.

Proof of Theorem 4.4. The existence of the steady states in the three cases has been

established in Lemma 4.5. Hence, it remains to prove the claims about their stability. The

dynamics defined by ¤𝑥 are 1-dimensional and hence their convergence properties and the
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stability of their steady states can be fully determined by the sign of ¤𝑥 . Since 𝑥 (1 − 𝑥) > 0

for any 𝑥 ∈ (0, 1), the sign of ¤𝑥 fully depends on 𝑓 (𝑥 ;𝑇,𝛾). In turn, the sign of 𝑓 (𝑥 ;𝑇,𝛾) for
any 𝑥 ∈ (0, 1) has already been determined by the calculations in the proof of Lemma 4.5

and in particular by equation (19). Formally, we have the following cases

• 𝑇 < 𝑇𝑐 (𝛾). In this case, the dynamics ¤𝑥 have three steady states 𝑥1, 𝑥2, 𝑥3 ∈ (0, 1) that
correspond to the respective roots of function 𝑓 (𝑥 ;𝑇,𝛾). In particular, it holds that

0 < 𝑥1 < 𝑥𝑙 < 0.5 < 𝑥2 < 𝑥𝑢 < 𝑥3 < 1 and the sign of ¤𝑥 starts positive and alternates

accordingly. This gives the stability results in Figure 5.

• 𝑇 = 𝑇𝑐 (𝛾). At this point, the two roots that are larger than 1/2, namely 𝑥2 and 𝑥3,

merge to one root precisely at 𝑥𝑢 . The critical observation is that this new steady state is

unstable, since the dynamics ¤𝑥 have a negative sign at both sides of the root 𝑥𝑢 . This is

shown in Figure 6.

• 𝑇 > 𝑇𝑐 (𝛾). In this case, 𝑓 ′ (𝑥 ;𝑇,𝛾) < 0 which implies that the dynamics ¤𝑥 are decreasing

for any 𝑥 (0, 1). Since 𝑓 (𝑥 ;𝑇,𝛾) starts positive and ends up negative, there remains only

one root (steady state), 𝑥1 of 𝑓 (𝑥 ;𝑇,𝛾), which is stricly less than 1/2. An illustration is

given in Figure 7.

□

Note that the case𝑇 = 0 which was separately treated in Lemma 4.1, can also be derived

as a special case of𝑇 < 𝑇𝑐 (𝛾) in Theorem 4.4 in which 𝑥1 = 0, 𝑥2 =
1

2
(1 + 𝛾) and 𝑥3 = 1. The

stability considerations remain the same, i.e., 𝑥1 and 𝑥3 are stable, whereas 𝑥2 is unstable.

Summing up, the statements of Theorem 4.4 and Lemma 4.1 are illustrated in Figure 8.

4.1 Catastrophe by Design and Hysteresis Effects
Theorem 4.4 implies that at the critical level or tipping point, 𝑇𝑐 (𝛾), the system undergoes

an abrupt change, also called a fold bifurcation, [Strogatz, 2000]. Starting from 𝑇 = 0 (no

control) and 𝑥 = 1 (at which PoW is adopted by all miners) and gradually increasing𝑇 , the

population of agents (miners) follows the stable path up to 𝑇𝑐 (𝛾), at which the stable and

unstable paths meet and cancel each other out. At this tipping point, the population of

miners makes a sudden transition from a stable state with 𝑥 > (1 + 𝛾) /2 to a new stable

state with 𝑥 < 1/2. This abrupt is also catastrophe, but in this case it can be leveraged to

design the destabilization of an undesirable state in favor of a desirable one. With 𝑇 still

in the control of the designer, it remains to explore what will happen to the population

dynamics when 𝑇 is reset gradually or even abruptly back to initial level, 𝑇 = 0.

The answer is that the population will now converge to the new equilibrium at 𝑥 = 0,

i.e., it will fully adopt the new technology and is formally stated in Theorem 4.6. This

is due to the hysteresis mechanism that is created due to the bifurcation: the dynamics

have a memory, the current state, and their convergence properties differ depending on

whether they start in the attracting region of 𝑥1 = 0 or 𝑥3 = 1, the two stable equilibria for

𝑇 = 0. As illustrated in Figure 8, starting at any point 𝑥 < 1/2, the dynamics will converge

to 𝑥1 = 0, as 𝑇 goes to 0. From the perspective of mechanism design, this implies that if

the designer can move the system to any such point, e.g., by temporarily increasing the

temperature above the critical level 𝑇𝑐 (𝛾) and allowing the dynamics to stabilize at the

unique remaining QRE, then they can directly (or gradually) reset the control back to 0
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Fig. 4. 𝑇 = 0.
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Fig. 5. 0 < 𝑇 < 𝑇𝑐 (𝛾).
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Fig. 6. 𝑇 = 𝑇𝑐 (𝛾).
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Fig. 7. 𝑇 > 𝑇𝑐 (𝛾)

Fig. 8. Stability properties of the Q-learning dynamics in the population for all values of 𝑇 ≥ 0.
The stability of a steady state (QRE) 𝑥 , (upper axis), is determined by the sign of ¤𝑥 , (lower axis).
The stability properties change before, at, and after the critical temperature 𝑇𝑐 (𝛾), at which the
bifurcation occurs. The case 𝑇 = 0 (upper left panel) can be also treated as a special case of
0 < 𝑇 < 𝑇𝑐 (𝛾) (upper right panel), for any 𝛾 ∈ (0, 1).

and still have theoretically provable guarantees that the population state will converge to

𝑥1 = 0.

Precisely this hysteresis effect that emerges in the aftermath of the fold bifurcation

is leveraged here to design a controlled mechanism – or a controlled catastrophe – that

will disrupt an undesirable (yet stable, and currently prevailing) equilibrium to a desired

outcome. It is immediate from the above, that the control needs to be only exercised

temporarily. Importantly, this limits the expenses – assuming that it is costly to control𝑇 –

to implement such a mechanism in practice. The above processes are intuitively illustrated

in Figure 9 and Figure 1.

Theorem 4.6. Let 𝛾 ∈ (0, 1) be fixed and for any 𝑇 ≥ 0, let 𝑥1 (𝑇 ) denote the stable steady
state of the Q-learning dynamics ¤𝑥 in [0, 1/2). Then, 𝑥1 (𝑇 ) is continuous and decreasing
in 𝑇 with lim𝑇→0

+ 𝑥1 (𝑇 ) = 0. In particular, starting from any initial point 𝑥0 < 1/2, and
letting 𝑇 → 0, the Q-learning dynamics ¤𝑥 will stabilize at the steady state 𝑥1 (0) = 0, which
corresponds to less costly and socially desirable technology.

Proof. See Appendix A.1. □

To conclude, note that the initial normalization of𝑉𝐾 to 1, cf. equation (12), is equivalent

to dividing equation (8) with 𝑉𝐾 . Hence, for practical purposes, the derived thresholds

for 𝛾 should be interpreted as thresholds for 𝛾/𝑉𝐾 and similarly, the thresholds for 𝑇 as

thresholds for𝑇 /𝑉𝐾 . For instance,𝑇𝑐 (𝛾) < 1/2 for any 𝛾 (0, 1) implies that in applications

with 𝑉𝐾 ≠ 1, typically 𝑉𝐾 ≫ 1, the tipping point satisfies 𝑇𝑐 < 𝑉𝐾/2. This provides an
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Fig. 9. The process of controlled heating a system then cooling it back to its initial temperature to
destabilize certain (undesired) equilibria via hysteresis mechanisms. The upper left panel shows
the evolution of the population state for 10 initial starting points and temperature 𝑇 = 0. The
QRE dynamics – in this case, equivalent to the replicator dynamics – converge to the two stable
equilibria of the system. There is a third equilibrium which is unstable: the only trajectory that
converges to it, is the one that precisely starts from it (horizontal line slightly above 0.5). In the
upper right panel, the system temperature has been increased (but remains below the critical level).
The starting points are the possible steady states for 𝑇 = 0 (upper left panel). There are two stable
equilibria, now in the interior of the admissible region, 𝑥 ∈ (0, 1). In the bottom left panel, the
temperature is further increased, above the critical level. Starting again from the endpoints of the
previous panel, the stability of the system changes abruptly: there is only remaining equilibrium
and the population coverges to it independently of the starting point. This lies in the attracting
region of the desired equilibrium, which can be recovered by cooling the system back to its initial
temperature, 𝑇 = 0.

upper bound on the extent of control that needs to be exercised to the system in monetary

terms. For instance, if 𝑇 is interpreted as taxation, this implies that the critical level of

taxation will never exceed – in fact, it will be much less than – half of the total investment

𝐾 times the generated from the investment, aggregate value 𝑉 .

5 STRUCTURAL ROBUSTNESS OF THE MODEL
The proposed mechanism is, critically, not tied to the current modelling and working

assumptions. Thus, even if we err about our understanding of the system – which is very

much likely in the particular blockchain setting that we examine or more generally in

systems with constantly changing characteristics – our results can still be appealing. The

goal of this section is to test and prove this claim in two directions.
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First, we show that the proposed catastrophe and hysteresis mechanism can absorb

state dependent perturbations in the Q-learning dynamics without significant impact in its

actual implementation, cf. Section 5.1. This holds for any reasonably – so that the model

parameters remain in their admissible regions – bounded perturbations.

Second, we study the robustness of the model for different values of the technology

parameter 𝛼 , cf. Equation (2). Different values of 𝛼 capture different relationships between

the degree of adoption of each technology and the total generated value for the population.

In this direction, we obtain a (conservative, yet tight for extreme values of the parameters)

bound on the control – critical value of 𝑇 – that needs to be exercised to the system to

trigger the desired disruption of its initial state. The mechanics of the proposed mechanism

essentially remain unaffected. In practical terms, as 𝛼 increases, a network split becomes

more damaging and the population reaches the tipping point for increasingly lower values

of 𝑇𝑐 . In this respect, the case 𝛼 = 2 that we treated in the previous part is the most costly

to destabilize.

5.1 State Dependent Perturbations
In general, amall perturbations in a dynamical system can have major effects in its outcome,

cf. [Puu, 1991, Strogatz, 2000] or [Palaiopanos et al., 2017] among many others. To study

the behavior of the current dynamical system in equation (8), we consider the dynamics in

(12), and add a noise term 𝜖 (𝑥) that can be state dependent

¤𝑥 = 𝑥 (1 − 𝑥)
[
𝑢 (𝑊,𝑥) − 𝑢 (𝑆, 𝑥) −𝑇 ln

( 𝑥

1 − 𝑥

)
+ 𝜖 (𝑥)

]
Accordingly, let 𝑓𝜖 (𝑥 ;𝑇,𝛾) := 2𝑥 − 1 − 𝛾 −𝑇 ln

(
𝑥

1−𝑥
)
+ 𝜖 (𝑥). Under the perturbation, the

number of the interior steady states of the dynamics, as expressed by the roots of 𝑓𝜖 (𝑥),
may change significantly in comparison to the unperturbed system. In particular, assume

that 𝑥∗ is a steady state of the unperturbed system for some 𝑇 > 0, then

𝑓𝜖 (𝑥∗;𝑇,𝛾) :=

[
2𝑥∗ − 1 − 𝛾 −𝑇 ln

(
𝑥∗

1 − 𝑥∗

)]
+ 𝜖 (𝑥∗) = 𝜖 (𝑥∗)

Accordingly, there exists a neighborhood around 𝑥∗ for which the system becomes unpre-

dictable. For 𝜖 (𝑥) arbitrary, it is impossible to argue about the exact state of the system

within this region. However, perturbations that should retain the value of 𝛾 + 𝜖 (𝑥) ∈ [0, 1]
(larger perturbations change the nature of the system in favor of the originally un-

desirable equilibrium and are hence irrelevant) impose the natural upper bound 𝜖0 ∈
(0,min {𝛾, 1 − 𝛾}) on |𝜖 (𝑥) |. The key intuition is that in this case, we can still argue about

the behavior of the system outside these regions. In fact, the stability analysis, cf. Theo-

rem 4.4 and Figure 8, carries through, with proper neighborhoods instead of the steady

states alone.

Theorem 5.1. Let 𝛾 ∈ (0, 1) and 𝑇 ≥ 0. Also let 𝑓 (𝑥 ;𝑇,𝛾) = 2𝑥 − 1 − 𝛾 − 𝑇 ln

(
𝑥

1−𝑥
)

and let 𝑓𝜖 (𝑥) := 𝑓 (𝑥 ;𝑇,𝛾) + 𝜖 (𝑥) for 𝑥 ∈ (0, 1) where |𝜖 (𝑥) | ≤ 𝜖0 for some constant
𝜖0 ∈ (0,min{𝛾, 1 − 𝛾}). Finally, let 𝑥∗(𝑇 ;𝛾) = min{𝑥 : 𝑓 (𝑥 ;𝑇,𝛾) = 0} denote the minimum
QRE of 𝑓 (𝑥 ;𝑇,𝛾). Then, it holds that
• If 𝑇 > 0, and 𝑥 ∈ (0, 𝑥∗(𝑇 ;𝛾 + 𝜖), then 𝑓 (𝑥 ;𝑇,𝛾) > 0.
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• If 𝑇 > 𝑇𝑐 (𝛾 − 𝜖0), and 𝑥 ∈ (𝑥∗(𝑇 ;𝛾 − 𝜖), 1), then 𝑓 (𝑥 ;𝑇,𝛾) < 0.
• If 𝑇 < 𝑇𝑐 (𝛾 − 𝜖0), and 𝑥 ∈ (𝑥∗(𝑇 ;𝛾 − 𝜖), 1

2
), then 𝑓 (𝑥 ;𝑇,𝛾) < 0.

Moreover, deviation between the QRE of the perturbed and the original system admits the
following bound

|𝑥∗(𝑇 ;𝛾 − 𝜖) − 𝑥∗(𝑇 ;𝛾 + 𝜖) | ≤ min

{
𝜖

|1 − 2𝑇 | ,
1

2

}
Remark 1. From the mechanism design perspective, it is also meaningful to study the

effects of the perturbation on the implementation of the proposed mechanism and in

particular, on the control that need to be exercised on 𝑇 . To quantify this change, we solve

equation 𝑓𝜖 (𝑥) = 0 for 𝑇 , and recover the temperature as a function of 𝑥 on the geometric

locus of all QRE of the unperturbed system

𝑇 (𝑥 ;𝛾) = (2𝑥 − 1 − 𝛾)
(
ln

( 𝑥

1 − 𝑥

))−1

Accordingly, let 𝑇𝜖 (𝑥) denote the temperature on the geometric locus of all QRE of the

perturbed system. Then,

𝑇𝑒 (𝑥 ;𝛾) = 2𝑥 − 1 − 𝛾 + 𝜖 (𝑥)
ln

(
𝑥

1−𝑥
) =

2𝑥 − 1 − 𝑐
ln

(
𝑥

1−𝑥
) + 𝜖 (𝑥)

ln

(
𝑥

1−𝑥
) = 𝑇 (𝑥 ;𝛾) + 𝜖 (𝑥)

ln

(
𝑥

1−𝑥
) (16)

which implies that if some 𝑥 ∈ (0, 1) is a QRE of both systems, then

|𝑇𝑒 (𝑥 ;𝛾) −𝑇 (𝑥 ;𝛾) | ≤ 𝜖0 ·
���ln ( 𝑥

1 − 𝑥

)���−1

(17)

This reduces the study of the hysteresis mechanism and the stability properties of the

dynamics in the perturbed system to the study of the worst case perturbation 𝜖0. Equation

(17) highlights an important property that comes from the inclusion of the entropy term

in the dynamics. Namely, as 𝑥 approaches the boundary, the effect of any bounded pertur-

bation vanishes, as this terms gets dominated by the entropy. An illustration is given in

Figure 10.

The main takeaway of this part is that the results of the unperturbed case, largely carry

over also to the perturbed case and, intuitively, this rests on two concurrent effects. First,

while the exact number of steady states in the perturbed system cannot be determined, all

new steady states are all located in some bounded neighborhood around the old steady

states. Outside these regions, the sign of ¤𝑥 remains the same as in the unperturbed case and

hence, the dynamics converge to these regions in the same fashion that they converged to

the exact steady states in the unperturbed case.

Second, and most important, since the perturbation term is divided by | ln
(
𝑥

1−𝑥
)
| (see

equation (16) above), the change in the QRE of the perturbed system becomes negligible

for values of 𝑥 close to 0 and close 1. This implies, when𝑇 is reduced back to its initial level

(after it has been raised above the critical level to cause the bifurcation in the dynamics),

the perturbed dynamics will converge exactly to the desired equilibrium. Two illustrations

are given in Figure 10.
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Fig. 10. QRE (blue dots) under state-dependent perturbations 𝜖 (𝑥) = −rand ∗ ln(𝑥 − 𝑥0.5) (left
panel) and 𝜖 (𝑥) = rand · 𝑥1/6 (1 − 𝑥) (right panel), where rand denotes a random number in
[0, 0.1]. In both cases, 𝛾 = 0.05. The perturbation in the left panel does not satisfy our working
assumptions. Even if 𝑇 is arbitrarily increased, the system may not equilibrate in the attracting
region of 𝑥 = 0. By contrast, in the right panel, the condition is satisfied. The largest deviations
occur for population states close to 1/2 whereas for values of 𝑥 close to the boundary, the perturbed
system reduces to the original system (red line). The memory encoding (or hysteresis mechanism)
can be implemented with the only difference that, now, the dynamics can converge to any blue dot
(instead of the red line) that lies in a neighborhood of the original QRE (in the unperturbed system).
However, starting in the attracting region of 𝑥 = 0, i.e., in (0, 1/2), the dynamics will converge to
the desired equilibrium as the perturbation gets increasingly dominated by the entropy term.

5.2 Technology Adoption and Generated Value
Parameter 𝛼 in Equation (2) captures the value that can be created by each technology as a

function of its adoption by the population of investors (miners). Values of 𝛼 < 1 indicate

subadditive value, i.e., that the population payoff is maximized when the network splits

between the two technologies. In this case, there exists an optimal split which is the unique

stable state at which the population will stabilize. Such cases fall out of the present scope.

Similarly, the case 𝛼 = 1 implies that the degree of adoption does not affect the generated

value. In this case, adoption of the less costly technology constitutes a dominant strategy

and the resolution of the game is trivial.

In the present context, we are interested in cases with superadditive value that are

expressed by values of 𝛼 > 1 (an illustration is provided in Remark 3). Thus far, we have

assumed that 𝛼 = 2 mainly for expositional purposes. In this part, we show that the

results generalize essentially unaltered to any 𝛼 ≥ 1 and hence, that the proposed control

mechanism of Section 4.1 can be applied regardless of the underlying relationship. It is

worth noting that 𝛼 = 2 corresponds in some sense to the most difficult case to treat from

a practical perspective. Larger values of 𝛼 capture networks for which splits are more

detrimental. Accordingly, in such cases, it suffices to cost a small split in the network –

i.e., an increase in 1 − 𝑥 – to achieve the catastrophe. In practice, this translates to smaller

values of the tipping point 𝑇 and hence, to a less costly implementation of the proposed

mechanism. These results are formalized next. Let 𝛼 ≥ 1 arbitrary. Then, using equation
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(3) with equation (10), we otain the relationship

¤𝑥 = 𝑥 (1 − 𝑥)
[
𝑉𝐾𝛼−1𝑥𝛼−1 − 𝛾 −𝑉𝐾𝛼−1 (1 − 𝑥)𝛼−1 −𝑇 ln

( 𝑥

1 − 𝑥

)]
After normalizing 𝑉𝐾𝛼−1

to 1 – or equivalently after dividing the equation with 𝑉𝐾𝛼−1

and setting 𝛾 → 𝛾/𝑉𝐾𝛼−1
and 𝑇 → 𝑇 /𝑉𝐾𝛼−1

— this yields the dynamics

¤𝑥 = 𝑥 (1 − 𝑥)
[
𝑥𝛼−1 − 𝛾 − (1 − 𝑥)𝛼−1 −𝑇 ln

( 𝑥

1 − 𝑥

)]
(18)

To proceed, let 𝑓𝛼 (𝑥 ;𝑇,𝛾) := 𝑥𝛼−1 − 𝛾 − (1 − 𝑥)𝛼−1 − 𝑇 ln

(
𝑥

1−𝑥
)
. To ease the proofs, we

restrict attention to integer 𝛼 ≥ 1, however the results apply for any 𝛼 ≥ 1. The continuous

case requires some more technical steps and since it does not add much intuition, it is

omitted.

The main result in this direction is that for any 𝛼 ≥ 1, there exists a unique QRE

𝑥∗ ∈ (0, 1/2), whenever 𝑇 ≥ 1/2. This implies that by increasing 𝑇 to at most 1/2, the
system can be stabilized in a state 𝑥∗ which lies in the attracting region of the desired

equilibrium 𝑥 = 0. Subsequently,𝑇 can be reset back to 0 and the population is theoretically

guaranteed to converge to 𝑥 = 0. This is formalized in Theorem 5.2

Theorem 5.2. Let 𝛾 ∈ (0, 1) and 𝛼 ≥ 1. Then, the Q-learning dynamics that describe the
fraction 𝑥 of the PoW miners in the population

¤𝑥 = 𝑥 (1 − 𝑥)
[
𝑥𝛼−1 − 𝛾 − (1 − 𝑥)𝛼−1 −𝑇 ln

( 𝑥

1 − 𝑥

)]
have a unique steady state (QRE), 𝑥∗ ∈ (0, 1/2) whenever 𝑇 ≥ 1/2. For 𝑇 = 0, and any
𝛼 > 1, there are 3 equlibria7, and [0, 1/2] lies in the attracting region of the socially beneficial
equilibrium 𝑥 = 0.

The statement of Theorem 5.2 is illustrated in Figure 11. Although uniform, the bound

𝑇 = 1/2 is extremely conservative, and essentially it is tight (or close to tight) only for

the absolutely extreme cases with 𝛾 close to 0 and 𝛼 = 1. As 𝛼 grows, i.e., as a network

split becomes more and more detrimental, the system becomes more sensitive to 𝑇 – a

small split is enough to cause a catastrophe – and the unique 𝑥∗ lies much closer to the

origin. This can be seen from the thinning upper part in Figure 11. However, as can been

seen from the lower stable part in the plots of Figure 11, the behavior of the dynamics

may change as 𝛼 increases for low values of 𝑇 and 𝑥 . For instance, when 𝛼 = 8 (red line),

there exists an unstable part (s-shaped part of the bottom red line) at which the population

may oscillate between three or marginally two QRE. However, the key is that all these

equilibria lie in the attracting region of 𝑥 = 0 and hence, if this instability will not imperil

the outcome of the proposed control mechanism. More importantly, this instability part

can be avoided by an abrupt change of 𝑇 back to 0.

In sum, the mechanism of increasing 𝑇 above the critical temperature (which is less or

equal than 1/2) and then reducing it back to zero, works essentially unaltered for any type

of relationship between the technology and its adoption by the network as expressed by 𝛼 .

When splits are highly destructive for the generated value, i.e., for large values of 𝛼 , the

7
For 𝛼 = 1, there are two equilibria and the socially desirable one trivially dominates the socially undesirable.
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Fig. 11. The QRE correspondence for various values of 𝛼 (left panel) and its projection on the
(𝛼,𝑇 ) plane (right panel). In all cases, 𝛾 = 0.2, however, qualitatively equivalent plots can be
generated for any value of 𝛾 ∈ (0, 1). The case 𝛼 = 2 (blue slice) has been treated in Section 4. As
𝛼 increases, the bottom stable part of the QRE correspondence may develop an unstable region:
s-shaped part in the green (less obvious) and red (clearly visible) slices and darker thin part – darker
parts correspond to more QRE – at the top of the right panel. Concerning the implementation
of the controlled catastrophe and memory encoding (or hysteresis mechanism) to destabilize
the undesired equilibrium 𝑥 = 1, this instability is inconsequential: all new equilibria lie in the
attracting region, 𝑥 < 1/2 of the desired equilibrium 𝑥1 = 0 for 𝑇 = 0. Hence, starting in the upper
branches, at 𝑥3 = 1 and increasing 𝑇 above the critical temperature, 𝑇𝑐 ≤ 1/2, the system will
stabilize in some (unique) QRE 𝑥∗ with 𝑥∗ < 1/2. Subsequently, when reseting 𝑇 back to zero, the
population will converge to 𝑥 = 0 by moving along the stable points of the bottom branches.

bifurcation occurs at increasingly smaller values of 𝑇 , implying that the mechanism is less

costly to implement.
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A APPENDIX
A.1 Additional Material and Omitted Proofs: Section 2
Remark 2. For games with general strategy sets, i.e., with possibly more than two strategies,

the Q-learning agents update their strategies according to the following rule

max

∑
𝑗=𝑊,𝑆

𝑥 𝑗𝑄𝑡 ( 𝑗) −𝑇
∑
𝑗=𝑊,𝑆

𝑥 𝑗 ln𝑥 𝑗

subject to:

∑
𝑗=𝑊,𝑆

𝑥 𝑗 = 1 (S1’)

𝑥 𝑗 ≥ 0, for 𝑗 =𝑊,𝑆.

Since, in the current setting each agent has two strategies, we obtain the convenient

representation in (S1). To intuitively explain the objective function in (S1’), observe that

the first term, i.e.,

∑
𝑗=𝑊,𝑆 𝑥 𝑗𝑄𝑡 ( 𝑗) enforces maximization of the𝑄-values. Since it is linear

in the 𝑥 𝑗 ’s, it would simply choose (put full probability on) the strategy with the highest𝑄-

value, if the second term (entropy) was missing. However, the introduction of the entropic

term, i.e., of −∑
𝑗=𝑊,𝑆 𝑥 𝑗 ln𝑥 𝑗 , essentially requires from the agent to choose the distribution

𝑥 with maximum entropy for every given weighted sum of the 𝑄-values, and hence, to

explore (assign positive probability on) suboptimal strategies.

The relative importance between maximization of𝑄-values and exploration of the strategy

space, is controlled by the introduced parameter 𝑇 ≥ 0. Termed temperature in physics, 𝑇

can be interpreted as a tunning parameter: as 𝑇 → 0, the agent always acts greedily and

chooses the strategy corresponding to the maximum 𝑄–value (pure exploitation), whereas

as 𝑇 → ∞, the agent’s chooses a strategy completely at random (pure exploration). In

particular, for 𝑇 = 0, the system reduces to the well known replicator (best response)

dynamics which (under standard regularity assumptions that are met in the present model)

recover the Nash equilbria of the underlying evolutionary game, cf. Section 2.1. For different

values of 𝑇 > 0, the resting points of the system change, sometimes in an abrupt way and

this is precisely the intuition that we exploit here to design a mechanism that will stabilize

the system in a desired state. In fact, as shown in [Yang et al., 2017], the temperature

can be considered as a control parameter in the arsenal of a system designer. From the

objective function, one discerns that parameter 𝑇 essentially rescales all the Q-values in a

multiplicative way. Hence, as shown in [Yang et al., 2017], 𝑇 can be treated as a taxation

parameter in economic systems or as a medically controlled substance in health related

settings.

https://doi.org/10.1023/A:1022676722315
https://doi.org/10.1103/PhysRevE.85.036102
https://doi.org/10.1145/3033274.3085144
https://doi.org/10.1145/3033274.3085144
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Proof of Proposition 2.1. The resulting game

𝑃 =

(
1 − 𝛾 −𝛾

0 1

)
,

with 𝛾 ∈ (0, 1) has three Nash equilibria: two pure, (𝑊,𝑊 ) with payoffs (1 − 𝛾, 1 − 𝛾)
and (𝑆, 𝑆) with payoffs (1, 1), and one (fully) mixed

((
1+𝛾

2
,

1−𝛾
2

)
,

(
1+𝛾

2
,

1−𝛾
2

))
with payoffs(

1−𝛾
2
,

1−𝛾
2

)
. These correspond to population states 𝑥1 = 0, 𝑥2 =

1+𝛾
2
, and 𝑥3 = 1. The

corresponding payoffs can be also derived by substituting in the average payoff function,

(4), which here becomes

𝑢 (𝑥) = 2𝑥2 − (2 + 𝛾) 𝑥 + 1

All three Nash equilibria are symmetric. The (𝑆, 𝑆) (bottom right) Nash equilibrium is

(strictly) payoff dominant, i.e., it Pareto-dominates the other two (recall that 𝛾 ∈ (0, 1)
is the cost from the current costly technology) and is also (strictly) risk dominant, since

0 + 1 > 1 − 2𝛾 . A symmetric mixed Nash equilibrium (𝑥∗, 𝑥∗) is evolutionary stable if

𝑢 (𝑥∗, 𝑥) > 𝑢 (𝑥, 𝑥) for all other mixed strategies 𝑥 ≠ 𝑥∗. Hence, the mixed Nash equilibrium

is not evolutionary stable, since for any other 𝑥 ∈ (0, 1) with 𝑥 ≠
1+𝛾

2

𝑢

(
1 + 𝛾

2

, 𝑥

)
− 𝑢 (𝑥, 𝑥) =

(
1 + 𝛾

2

− 𝑥
)
[(1 − 𝛾) 𝑥 + (−𝛾) (1 − 𝑥)] +

(
1 − 𝛾

2

− (1 − 𝑥)
)
(1 − 𝑥)

= −1

2

(2𝑥 − (1 + 𝛾))2 < 0

By contrast, both pure strategy equilibria are evolutionary stable, since 𝑢 (𝑊,𝑊 ) = 1−𝛾 >

0 = 𝑢 (𝑆,𝑊 ), and 𝑢 (𝑆, 𝑆) = 1 > −𝛾 = 𝑢 (𝑊,𝑆). □

A.2 Omitted Proofs: Section 4
Proof of Lemma 4.3. Let 𝑢 :=

√
1 − 2𝑇 . Then, 𝑇 ∈ (0, 1/2] implies that 𝑢 ∈ [0, 1) and

the transformation is one to one with inverse 𝑇 = 1

2

(
1 − 𝑢2

)
. Hence, we need to show that

𝑇𝑐 (𝛾) = 1

2

(
1 − 𝑢2

𝑐

)
, where 𝑢𝑐 is the unique root of the function

𝑔𝛾 (𝑢) := 𝑢 − 𝛾 − 1 − 𝑢2

2

ln

(
1 + 𝑢
1 − 𝑢

)
in (0, 1). Note that 𝑔𝛾 (𝑢) is defined for any 𝑢 ∈ (−1, 1). The derivative of 𝑔𝛾 (𝑢) with
respect to 𝑢 is

𝑑

𝑑𝑢
𝑔𝛾 (𝑢) = 𝑢 ln

(
1 + 𝑢
1 − 𝑢

)
> 0

for all 𝑢 ∈ (−1, 1). Hence, 𝑔𝛾 (𝑢) is strictly increasing with lim𝑢→−1
+ 𝑔𝛾 (𝑢) = −1 + 𝛾 < 0,

𝑔𝛾 (0) = 0 − 𝛾 < 0 and lim𝑢→1
− 𝑔𝛾 (𝑢) = 1 − 𝛾 > 0. Accordingly 𝑔𝛾 (𝑢) has precisely one

root, 𝑢𝑐 ∈ (0, 1) which yields the unique solution of the equation in the statement of the

Lemma, given by 𝑇𝑐 (𝛾) = 1

2

(
1 − 𝑢2

𝑐

)
∈ (0, 1/2). □

Proof of Lemma 4.5. For any𝑇 > 0 and 𝛾 ∈ (0, 1), the function 𝑓 (𝑥 ;𝑇,𝛾) is continuous
in 𝑥 ∈ (0, 1) with

lim

𝑥→0
+
𝑓 (𝑥) = +∞, 𝑓 (1/2) = −𝛾, lim

𝑥→1
−
𝑓 (𝑥 ;𝑇,𝛾) = −∞. (19)
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This implies that 𝑓 (𝑥 ;𝑇,𝛾) starts positive and ends up negative. The derivative of 𝑓 (𝑥 ;𝑇,𝛾)
with respect to 𝑥 ∈ (0, 1) is 𝑓 ′ (𝑥 ;𝑇,𝛾) = 2 − 𝑇

𝑥 (1−𝑥) , with 𝑓 (𝑥 ;𝑇,𝛾) = 0, if and only if

𝑥2 − 𝑥 + 𝑇
2
= 0. This yields the critical points

𝑥𝑙,𝑢 =
1

2

(
1 ±
√

1 − 2𝑇

)
Depending on the value of 𝑇 relative to 𝑇𝑐 (𝛾), there are three cases for the number of the

solutions of the equation 𝑓 (𝑥 ;𝑇,𝛾) = 0 for 𝑥 ∈ (0, 1).
• 0 < 𝑇 < 𝑇𝑐 (𝛾). Since 𝑇𝑐 (𝛾) < 1/2 for any 𝛾 ∈ (0, 1) as shown in Lemma 4.3, we have

that 1 − 2𝑇 > 0 and it is immediate that 0 < 𝑥𝑙 < 1/2 < 𝑥𝑢 < 1. Also,

𝑓 (𝑥𝑙 ;𝑇,𝛾) = 𝑔𝛾
(
−
√

1 − 2𝑇

)
< 𝑔𝛾 (0) < 0

𝑓 (𝑥𝑢 ;𝑇,𝛾) = 𝑔𝛾
(√

1 − 2𝑇

)
> 𝑔𝛾

(√
1 − 2𝑇𝑐 (𝛾)

)
= 0

where the inequalities follow from the strict monotonicity of 𝑔𝛾 (𝑢) ∈ (−1, 1) that was
shown in the proof of Lemma 4.3. Hence, using equation (19), we have that 𝑓 (𝑥 ;𝑇,𝛾)
has precisely one root 𝑥1 ∈ (0, 𝑥𝑙 ), one root 𝑥2 ∈ (1/2, 𝑥𝑢) and one root 𝑥3 ∈ (𝑥𝑢, 1).
• 𝑇 = 𝑇𝑐 (𝛾). As in the previous case, 𝑇𝑐 (𝛾) < 1/2 implies that 0 < 𝑥𝑙 < 1/2 < 𝑥𝑢 < 1.

However, in this case, 𝑓 (𝑥𝑢 ;𝑇,𝛾) = 𝑔𝛾

(√
1 − 2𝑇𝑐 (𝛾)

)
= 0 and hence, using again

equation (19), it follows that 𝑓 has one root in (0, 𝑥1), and a second root in (1/2, 1) which
is precisely 𝑥𝑢 .

• 𝑇 > 𝑇𝑐 (𝛾). In this case,

𝑓 (𝑥𝑢 ;𝑇,𝛾) = 𝑔𝛾
(√

1 − 2𝑇

)
< 𝑔𝛾

(√
1 − 2𝑇𝑐 (𝛾)

)
= 0

which implies that 𝑓 (𝑥 ;𝑇,𝛾) turns negative at some point 𝑥1 < 𝑥𝑙 when 𝑇 < 1/2 or

𝑥1 < 1/2 when 𝑇 > 1/2 (and 𝑥𝑙 undefined) and remains negative thereafter since 𝑥2

is a local maximum. Hence, this 𝑥1 ∈ (0, 𝑥𝑙 ) or 𝑥1 ∈ (0, 1/2) is also the unique root of

𝑓 (𝑥 ;𝑇,𝛾) in (0, 1).
□

The three cases of Lemma 4.5 are illustrated in Figure 12. In the depicted instantiation,

𝛾 = 0.185 which yields 𝑇𝑐 (𝛾) ≈ 0.3. The three curves correspond to 𝑇 = 0.25,𝑇 = 𝑇𝑐 (𝛾) ≈
0.3 and 𝑇 = 1 which, in agreement with Lemma 4.5 give rise to 3, 2 and 1 solutions to the

equation 𝑓 (𝑥 ;𝑇,𝛾) = 0, 𝑥 ∈ (0, 1), respectively.

Proof of Theorem 4.6. By Lemma 4.5, 𝑓 (𝑥 ;𝑇,𝛾) = 2𝑥 − 1−𝛾 −𝑇 ln

(
𝑥

1−𝑥
)
has precisely

one root 𝑥1 (𝑇 ) in (0, 𝑥𝑙 (𝑇 )) for any value of 0 < 𝑇 ≤ 𝑇𝑐 (𝛾) < 1/2, where 𝑥𝑙 (𝑇 ) =
1

2

(
1 −
√

1 − 2𝑇

)
. Moreover, implicit differentiation of the function 𝑓 (𝑥,𝑇 ) := 2𝑥 (𝑇 ) − 1 −

𝛾 −𝑇 ln

(
𝑥 (𝑇 )

1−𝑥 (𝑇 )

)
, with 𝑓 (𝑥,𝑇 ) = 0, shows that 𝑥 (𝑇 ) is strictly increasing in𝑇 for 𝑥 < 1/2,

since

𝜕𝑓 (𝑥,𝑇 )
𝜕𝑇

𝑑𝑥

𝑑𝑇
+ 𝜕𝑓 (𝑥,𝑇 )

𝜕𝑇

𝑑𝑥

𝑑𝑇
= − ln

( 𝑥

1 − 𝑥

)
+

(
2 − 𝑥

1 − 𝑥

) 𝑑𝑥
𝑑𝑇

= 0
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Fig. 12. The function 𝑓 (𝑥 ;𝑇,𝛾) for 𝛾 = 0.185 and 𝑇 = 0.25,𝑇 = 𝑇𝑐 (𝛾) ≈ 0.3 and 𝑇 = 1. For
𝑇 < 𝑇𝑐 (𝛾), there are three steady states (roots of 𝑓 (𝑥 ;𝑇,𝛾)), for 𝑇 = 𝑇𝑐 (𝛾), there are precisely
2, and for 𝑇 > 𝑇𝑐 (𝛾), only one. The smallest root is always less than 1/2 (in particular less than

𝑥𝑙 =
1

2

(
1 −
√

1 − 2𝑇

)
, if 𝑥𝑙 exists), whereas the remaining ones (if any) are larger than 1/2.

which yields

𝑑𝑥

𝑑𝑇
=

ln

(
𝑥

1−𝑥
)

2 − 𝑇
𝑥 (1−𝑥)

> 0

for 𝑥 < 𝑥𝑙 (𝑇 ) and 𝑇 < 𝑇𝑐 (𝛾) < 1/2. Hence, 0 < 𝑥1 (𝑇 ) < 𝑥𝑙 (𝑇 ) implies that for any 𝜖 > 0,

there exists a 𝛿 > 0 such that 𝑥1 (𝑇 ) < 𝜖 for any 𝑇 < 𝛿 , since

lim

𝑇→0
+
𝑥𝑙 = lim

𝑇→0
+

1

2

(
1 −
√

1 − 2𝑇

)
= 0

This implies, that 𝑥1 (𝑇 ) → 0 as 𝑇 → 0
+
, which concludes the proof. □

B APPENDIX
B.1 Omitted Results and Proofs: Section 5.1
Lemma B.1. The critical temperature 𝑇𝑐 (𝛾), which is the unique solution of the equation

√
1 − 2𝑇 − 𝛾 −𝑇 · ln

(
1 +
√

1 − 2𝑇

1 −
√

1 − 2𝑇

)
= 0

in (0, 1/2), cf. Lemma 4.3, is decreasing in the cost parameter 𝛾 ∈ (0, 1).

Proof. For 𝛾 ∈ (0, 1), the critical temperature 𝑇𝑐 (𝛾) is given by equation

√
1 − 2𝑇 − 𝛾 −𝑇 · ln

(
1 +
√

1 − 2𝑇

1 −
√

1 − 2𝑇

)
= 0,

cf. Lemma 4.3. To proceed, let 𝐹 (𝛾,𝑇 ) :=
√

1 − 2𝑇 − 𝛾 −𝑇 · ln
(

1+
√

1−2𝑇

1−
√

1−2𝑇

)
. Implicit differen-

tiation of 𝐹 with respect to 𝛾 , yields

0 =
𝜕𝐹 (𝛾,𝑇 )
𝜕𝛾

+ 𝜕𝐹 (𝛾,𝑇 )
𝜕𝑇

· 𝑑𝑇
𝑑𝛾

= −1 − ln

(
1 +
√

1 − 2𝑇

1 −
√

1 − 2𝑇

)
· 𝑑𝑇
𝑑𝛾
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Hence

𝑑𝑇

𝑑𝛾
= −

(
ln

(
1 +
√

1 − 2𝑇

1 −
√

1 − 2𝑇

))−1

which is negative, since the argument of the ln is larger than 1 for all 𝑇 > 0. □

Lemma B.2. Let 𝑓 (𝑥 ;𝛾,𝑇 ) as in Definition 4.2 and let 𝑓𝜖 (𝑥 ;𝑇,𝛾) := 𝑓 (𝑥 ;𝑇,𝛾) + 𝜖 (𝑥)
where 𝜖 (𝑥) denotes a noise term defined for 𝑥 (0, 1) such that |𝜖 (𝑥) | ≤ 𝜖0 for some 𝜖0 ∈
(0,min {𝛾, 1 − 𝛾}). Then, it holds that

𝑓 (𝑥 ;𝑇,𝛾 + 𝜖0) < 𝑓𝜖 (𝑥 ;𝑇,𝛾) < 𝑓 (𝑥 ;𝑇,𝛾 − 𝜖0)

Proof. Since
𝜕
𝜕𝛾
𝑓 (𝑥 ;𝑇,𝛾) = −1 < 0, 𝑓 (𝑥 ;𝑇,𝛾) is decreasing in 𝛾 which implies that

𝑓 (𝑥 ;𝑇,𝛾 + 𝜖0) < 𝑓 (𝑥 ;𝑇,𝛾) + 𝜖 (𝑥) = 𝑓𝜖 (𝑥 ;𝑇,𝛾) < 𝑓 (𝑥 ;𝑇,𝛾 − 𝜖0)
□

Definition B.3. Given 𝑇 ≥ 0 and 𝛾 ∈ (0, 1), we define 𝑥∗(𝑇 ;𝛾) = min{𝑥 : 𝑓 (𝑥 ;𝑇,𝛾) = 0}.
Note that by Theorem 4.4, 𝑥∗ (𝑇 ;𝛾) < 1/2 for any pair (𝑇,𝛾).

Proof of Theorem 5.1. The stability part of the Proposition is derived in the same way

as in Theorem 4.4 and follows directly from Lemma B.2 and the fact that |𝜖 (𝑥) | ≤ 𝜖0.

Our primary analysis indicates that 𝑥∗(𝑇,𝛾) < 1

2
, ∀𝑇 ∈ (0,∞) and ∀𝛾 ∈ (0, 1); which

immediately gives a most basic bound to the uncertain region |𝑥∗(𝑇 ;𝑔−𝜖)−𝑥∗(𝑇 ;𝑔−𝜖) | < 1

2
.

However this bound can be tightened for specific values of𝑇 as we show in the rest of this

section.

Lemma B.4. Given 𝛾 ∈ (0, 1) and 𝑇 ∈ [0,∞) , then ∀𝑥 ∈ (0, 1)
𝑓 ′(𝑥 ;𝑇,𝛾) ∈ (−∞, 2 − 4𝑇 )

Proof. Let 𝑥 ∈ (0, 1). Then

𝑓 ′′(𝑥 ;𝑇,𝛾) ≤ 0 =⇒ 𝑇 (1 − 2𝑥)
𝑥2(1 − 𝑥)2 ≤ 0

=⇒ 1 − 2𝑥 ≤ 0

=⇒ 𝑥 ≥ 1

2

Hence, ∀𝑥 ∈ (0, 1) it follows that 𝑓 ′(𝑥 ;𝑇,𝛾) ≤ 𝑓 ′( 1
2
) = 2 − 4𝑇

Furthermore, lim𝑡→0
+ 𝑓 ′(𝑡 ;𝑇,𝛾) = lim𝑡→1

− 𝑓 ′(𝑡 ;𝑇,𝛾) = −∞, which, by continuity im-

plies that 𝑓 ′(𝑥 ;𝑇,𝛾) ∈ (−∞, 2 − 4𝑇 ), ∀𝑥 ∈ (0, 1)
□

Let 𝑇 > 1

2
. Using Taylor’s Approximation on 𝑥∗(𝑇 ;𝛾 − 𝜖), it follows that ∀𝑥 ∈ (0, 1)

there exists some 𝜆(𝑥) ∈ [min{𝑥∗(𝑇 ;𝛾 − 𝜖), 𝑥},max{𝑥∗(𝑇 ;𝛾 − 𝜖), 𝑥}] such as

𝑓 (𝑥 ;𝑇,𝛾 − 𝜖) = 𝑓 (𝑥∗(𝑇 ;𝛾 − 𝜖);𝑇,𝛾 − 𝜖) + 𝑓 ′(𝜆(𝑥);𝑇,𝛾 − 𝜖) (𝑥 − 𝑥∗(𝑇 ;𝛾 − 𝜖))
=⇒ 𝑓 (𝑥 ;𝑇,𝛾) + 𝜖 = 𝑓 ′(𝜆(𝑥);𝑇,𝛾 − 𝜖) (𝑥 − 𝑥∗(𝑇 ;𝛾 − 𝜖))
=⇒ 𝑓 (𝑥 ;𝑇,𝛾 + 𝜖) = 𝑓 ′(𝜆(𝑥);𝑇,𝛾 − 𝜖) (𝑥 − 𝑥∗(𝑇 ;𝛾 − 𝜖)) − 2𝜖
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Hence, for 𝑥 = 𝑥∗(𝑇 ;𝛾 + 𝜖) and by Lemma B.4 we have

𝑓 (𝑥∗(𝑇 ;𝛾 + 𝜖);𝑇,𝛾 + 𝜖) = 𝑓 ′(𝜆(𝑥∗(𝑇 ;𝛾 + 𝜖));𝑇,𝛾 − 𝜖) (𝑥∗(𝑇 ;𝛾 + 𝜖) − 𝑥∗(𝑇 ;𝛾 − 𝜖)) − 2𝜖

=⇒ 𝑥∗(𝑇 ;𝛾 + 𝜖) − 𝑥∗(𝑇 ;𝛾 − 𝜖) = 2𝜖

𝑓 ′(𝜆(𝑥∗(𝑇 ;𝛾 − 𝜖));𝑇,𝛾 − 𝜖)

=⇒ |𝑥∗(𝑇 ;𝛾 + 𝜖) − 𝑥∗(𝑇 ;𝛾 − 𝜖) | = 2𝜖

|𝑓 ′(𝜆(𝑥∗(𝑇 ;𝛾 − 𝜖));𝑇,𝛾 − 𝜖) |
=⇒ |𝑥∗(𝑇 ;𝛾 + 𝜖) − 𝑥∗(𝑇 ;𝛾 − 𝜖) | ≤ 𝜖

|1 − 2𝑇 |
As a final remark, note that |𝑥∗(𝑇 ;𝛾 + 𝜖) − 𝑥∗(𝑇 ;𝛾 − 𝜖) | < 𝜖, ∀𝑇 > 1. In fact |𝑥∗(𝑇 ;𝛾 +

𝜖) − 𝑥∗(𝑇 ;𝛾 − 𝜖) | → 0 as 𝑇 →∞. □

B.2 Omitted Results and Proofs: Section 5.2
Remark 3. Parameter 𝛼 expresses the value that is created by the technology in response

to its adoption. In particular, there are three interesting cases, depending on whether 𝛼 is

smaller, larger than or equal to 1.

• 𝛼 < 1: Subadditive value. In this case, the total value generated from the two technologies

is subadditive implying that a (perfect) split of the network is more beneficial for the

society.

• 𝛼 = 1: Linear value. In this case, the aggregate value that is generated in increasing in

the rate of adoption of the innovative (less costly) technology.

• 𝛼 > 1: Superadditive value. In this case, the aggregate value is (locally) maximized

when either technology is fully adopted. This is the most interesting case in the current

context.

Typical instantiations of these cases are depicted in the two panels of Figure 13.

Lemma B.5. For any 𝛼 ≥ 2, and any 𝑥 ∈ [0, 1], it holds that

𝑥𝛼 (1 − 𝑥) + 𝑥 (1 − 𝑥)𝛼 ≤ 1

2𝛼
.

Proof. Since 𝑥 ∈ [0, 1], we can rewrite the inequality as

𝑥𝛼 (1 − 𝑥) + 𝑥 (1 − 𝑥)𝛼 ≤ 𝑥

2𝛼
+ 1 − 𝑥

2𝛼

which is equivalent to[
𝑥𝛼 (1 − 𝑥) − 𝑥

2𝛼

]
+

[
𝑥 (1 − 𝑥)𝛼 − 1 − 𝑥

2𝛼

]
≤ 0

Hence, by symmetry, it suffices to show that 𝑥𝛼 (1 − 𝑥) − 𝑥
2𝛼
≤ 0, for any 𝑥 ∈ [0, 1] and

𝛼 > 2. The last equation is equivalent to 𝑥𝛼−1 (1 − 𝑥) ≤ 1

2𝛼
. By differentiating the left hand

side with respect to 𝑥 , we find that
𝑑
𝑑𝑥

(
𝑥𝛼−1 (1 − 𝑥)

)
= 𝑥𝛼−2

𝛼

(
𝛼−1

𝛼
− 𝑥

)
which is zero for

𝑥 = 𝛼−1

𝛼
. Since 𝑥𝛼−1 (1 − 𝑥) is equal to 0 for both 𝑥 = 0 and 𝑥 = 1, it attains a maximum at
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Fig. 13. Aggregate payoff𝑢𝐴 (𝑥) created by the population as a whole at population state 𝑥 ∈ [0, 1]
(investment in technology𝑊 ) for various values of parameter 𝛼 . The aggregate payoff (vertical
axis) is calculated by the formula: 𝑢𝐴 (𝑥) = 𝑉𝐾𝛼

[
𝑥𝛼 − 𝛾

𝑉𝐾𝛼−1
𝑥 + (1 − 𝑥)𝛼

]
, with 𝑥 ∈ [0, 1] and

selected values of the parameters 𝑉 = 10, 𝐾 = 4 and 𝛾 = 1. For 𝛼 = 2 (left panel) and in general
for 𝛼 > 1, the total aggregate value is (locally) maximized at the boundaries, i.e., when either
technology is fully adopted (superadditive value). The global maximum is attained when the less
costly technology 𝑆 is fully adopted, i.e., when 𝑥 = 0. By contrast, for 𝛼 = 1/2 (right panel, blue
line), and in general for 𝛼 < 1, the aggregate wealth is maximized when the population is split
between the two technologies (subadditive value). For 𝛼 = 1 (right panel, red line), the aggregate
wealth is increasing in the adoption of the less costly technology 𝑆 (linear value).

𝑥 = 𝛼−1

𝛼
with value

(
𝛼−1

𝛼

)𝛼−1
1

𝛼
. Accordingly, it suffices to show that(

𝛼 − 1

𝛼

)𝛼−1

1

𝛼
≤ 1

2𝛼

or equivalently that

(
𝛼−1

𝛼

)𝛼−1 ≤ 1/2 for any 𝛼 ≥ 2. However, the term on the left side is

decreasing in 𝛼 , since by taking the logarithm and applying the inequality ln (𝑥) ≤ 𝑥 − 1,

we obtain that

𝑑

𝑑𝛼
ln

(
𝛼 − 1

𝛼

)𝛼−1

= ln

(
𝛼 − 1

𝛼

)
+ 1

𝛼
≤ 𝛼 − 1

𝛼
− 1 + 1

𝛼
= 0

Hence, the maximum of the left side is attained for 𝛼 = 2, yielding a value of

(
2−1

2

)
2−1

= 1

2
,

which concludes the proof. □

Proof of Theorem 5.2. The case 𝛼 = 1 is trivial and 𝛼 = 2 has been treated in the main

part of paper. For 𝛼 ≥ 3, 𝛾 ∈ (0, 1) and 𝑇 ≥ 1

2
, the function 𝑓 𝛼 (𝑥) := 𝑥𝛼−1 − (1 − 𝑥)𝛼−1 −

𝛾 −𝑇 ln
𝑥

1−𝑥 is continuous and satisfies

lim

𝑥→0
+
𝑓 (𝑥) = lim

𝑥→0
+

(
𝑥𝛼−1 − (1 − 𝑥)𝛼−1 − 𝛾 −𝑇 ln

𝑥

1 − 𝑥

)
= ∞

𝑓

(
1

2

)
= −𝛾 < 0

Hence, since 𝑓 is continuous in (0, 1), by Bolzano’s theorem that there exists 𝑥∗ ∈ (0, 1

2
)

such that 𝑓 (𝑥∗). To prove uniqueness, it will be sufficient to prove that for 𝑇 ≥ 1/2, 𝑓𝛼 (𝑥)
is decreasing in 𝑥 . This implies that for 𝑇 ≥ 1/2, there is a unique steady state 𝑥∗ and
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hence, the critical temperature 𝑇𝑐 will necessarily satisfy 𝑇𝑐 ≤ 1/2. Taking the derivative
of 𝑓𝛼 (𝑥) with respect to 𝑥 , we obtain

𝑑

𝑑𝑥
𝑓𝛼 (𝑥) = (𝛼 − 1) 𝑥𝛼−2 + (𝛼 − 1) (1 − 𝑥)𝛼−2 −𝑇 1

𝑥 (1 − 𝑥) .

The last expression is decreasing in 𝑇 and hence it suffices to prove that 𝑓𝛼 (𝑥) ≤ 0, for

𝑇 = 1/2. In this case, 𝑓𝛼 (𝑥) ≤ 0 is equivalent to

𝑥𝛼−1 (1 − 𝑥) + 𝑥 (1 − 𝑥)𝛼−1 ≤ 1

2 (𝛼 − 1)
and the claim follows from Lemma B.5. In particular, equality holds only if 𝑇 = 1

2
, 𝛼 = 3

(𝛼 − 1 = 2), and 𝑥 = 1

2
. Hence, 𝑓 is decreasing in (0, 1) which proves the claim. Finally, for

𝑇 = 0 and any 𝛼 > 1 (the case 𝛼 = 1 is trivial), the first derivative of 𝑓 with respect to 𝑥

becomes

𝑑

𝑑𝑥
𝑓𝛼 (𝑥) = 𝑥 (1 − 𝑥)

[
𝑥𝛼−1 − 𝛾 − (1 − 𝑥)𝛼−1 = (𝛼 − 1) 𝑥𝛼2 > 0,

]
for all 𝑥 ∈ (0, 1) and all 𝛼 > 1 which implies that 𝑓𝛼 (𝑥) is monotonically increasing. Since

𝑓 starts negative and 𝑓 (1/2) = −𝛾 < 0, the third state lies in (1/2, 1). Hence, they dynamics

¤𝑥 = 𝑥 (1 − 𝑥)
[
𝑥𝛼−1 − 𝛾 − (1 − 𝑥)𝛼−1

]
has two obvious steady states 𝑥 = 0 and 𝑥 = 1 and one third steady state in (1/2, 1). Ac-
cordingly, the usual stability analysis apply which proves that [0, 1/2] lies in the attracting

region of 𝑥 = 0 as claimed. □

Remark 4. In the continuous interval, 𝛼 ∈ [2, 3], 𝑓𝛼 (𝑥) is not monotone decreasing.

However the statement of Theorem 5.2 continues to hold. Since this case requires more

technical details without providing any additional insight, its proof is omitted.
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