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Multiparty SessionTypes.Multiparty Session Types (MPST)
[1–3] is a theoretical framework that stipulates how to write,
verify and ensure correct implementations of communica-
tion protocols. Themethodology of programmingwithMPST
(depicted in Fig. 1) starts from a communication protocol
(a global type) which specifies the behaviour of a system of
interacting processes. The local behaviour (a local type) for
each endpoint process is then algorithmically projected from
the protocol. Finally, each endpoint process is implemented
in an endpoint host language and type-checked against its
respective local type by a session typing system. The guaran-
tee of session types is that a system of well-typed endpoint
processes does not go wrong, i.e it does not exhibit commu-
nication errors such as reception errors, orphan messages
or deadlocks, and satisfies session fidelity, i.e. the local be-
haviour of each process follows the global specification.

Our approach. This talk presents ocaml-mpst, a library
for programming MPST protocols in OCaml which allows
to specify, verify and implement MPST protocols in a single
language, OCaml. Specifically, we introduce global combi-
nators, a statically typed, embedded DSL (EDSL) for writing
global types. Thus, an unsafe global protocol can be detected
as a type error by OCaml typecher.
Our approach consists of (1) the encoding of local types

using variant and record (sub)typing (which are pervasive in
functional programming languages), and (2) the formulation
of global protocols as a term-level (not type-level) object,
with a set of typing rules, which is designed to follow the
projection algorithm, making the global combinators having
the projected local behaviour in their types.

The benefits of ocaml-mpst are that it is (1) lightweight –
it does not depend on any external code-generation mecha-
nism, verification of global protocols is reduced to typability
of global combinators; (2) fully-static – our embedding inte-
grates with recent techniques for static checking of linearly
typed programming in OCaml [4, 5], and (3) expressive – we
can type strictly more processes than [6].

In our talk, we introduce the design of global combinators
(Fig. 2) and show our key finding that the merging of local

behaviours coincides with the existence of least upper bound
w.r.t. subtyping relation (Fig. 3), on top of that the typing
of global combinators is implemented. We also briefly show
the channel vector semantics of global combinators, which
gives the run-time entity of the multiparty channels using
Concurrent ML’s standard Event module.
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Figure 1. State-of-the-art MPST implementations

Figure 2.Merging in MPST
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Deadlock Freedom for
Asynchronous and Cyclic Process Networks*

Bas van den Heuvel and Jorge A. Pérez
University of Groningen, The Netherlands

This paper considers the challenging problem of establishing deadlock freedom for message-passing
processes using behavioral type systems. In particular, we consider the case of processes that im-
plement session types by communicating asynchronously in cyclic process networks. We present
APCP, a typed process framework for deadlock freedom which supports asynchronous communica-
tion, delegation, recursion, and a general form of process composition that enables specifying cyclic
process networks. We discuss the main decisions involved in the design of APCP and illustrate its
expressiveness and flexibility using several examples.

1 Introduction

Modern software systems often comprise independent components that interact by passing messages.
The π-calculus is a consolidated formalism for specifying and reasoning about message-passing pro-
cesses [19, 20]. Type systems for the π-calculus can statically enforce communication correctness. In
this context, session types are a well-known approach, describing two-party communication protocols
for channel endpoints and enforcing properties such as protocol fidelity and deadlock freedom.

Session type research has gained a considerable impulse after the discovery by Caires and Pfen-
ning [7] and Wadler [28] of Curry-Howard correspondences between session types and linear logic [12].
Processes typable in type systems derived from these correspondences are inherently deadlock free. This
is because the CUT-rule of linear logic imposes that processes in parallel must connect on exactly one
pair of dual endpoints. However, whole classes of deadlock free processes are not expressible with
the restricted parallel composition and endpoint connection resulting from CUT [9]. Such classes com-
prise cyclic process networks in which parallel components are connected on multiple endpoints at once.
Defining a type system for deadlock free, cyclic processes is challenging, because such processes may
contain cyclic dependencies, where components are stuck waiting for each other.

Advanced type systems that enforce deadlock freedom of cyclic process networks are due to Koba-
yashi [17], who exploits priority annotations on types to avoid circular dependencies. Dardha and Gay
bring these insights to the realm of session type systems based on linear logic by defining Priority-based
CP (PCP) [8]. Indeed, PCP incorporates the type annotations of Padovani’s simplification of Kobayashi’s
type system [21] into Wadler’s Classical Processes (CP) derived from classical linear logic [28].

In this paper, we study the effects of asynchronous communication on type systems for deadlock free
cyclic process networks. To this end, we define Asynchronous PCP (APCP), which combines Dardha
and Gay’s type annotations with DeYoung et al.’s semantics for asynchronous communication [10], and
adds support for tail recursion. APCP uncovers fundamental properties of type systems for asynchronous
communication, and simplifies PCP’s type annotations while preserving deadlock freedom results.

*Research partially supported by the Dutch Research Council (NWO) under project No. 016.Vidi.189.046 (Unifying Cor-
rectness for Communicating Software).
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In Section 2, we motivate APCP by discussing Milner’s cyclic scheduler [19]. Section 3 defines
APCP’s language and type system, and proves Type Preservation (Theorem 2) and Deadlock Freedom
(Theorem 6). In Section 4, we showcase APCP by returning to Milner’s cyclic scheduler and using
examples inspired by Padovani [21] to illustrate asynchronous communication and deadlock detection.
Section 5 discusses related work and draws conclusions.

2 Motivating Example: Milner’s Cyclic Scheduler

We motivate by example the development of APCP, our type system for deadlock freedom in asyn-
chronous, cyclic message-passing processes. We consider Milner’s cyclic scheduler [19], which crucially
relies on asynchrony and recursion. This example is inspired by Dardha and Gay [8], who use PCP to
type a synchronous, non-recursive version of the scheduler.

A1
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A4

A5

A6

P1

P2

P3

P4

P5

P6

Figure 1: Milner’s cyclic sche-
duler with 6 workers.
Lines denote channels connect-
ing processes.

The system consists of n≥ 1 worker processes Pi (the workers, for
short), each attached to a partial scheduler Ai. The partial schedulers
connect to each other in a ring structure, together forming the cyclic
scheduler. The scheduler then lets the workers perform their tasks in
rounds, each new round triggered by the leading partial scheduler A1
(the leader) once each worker finishes their previous task. We refer to
the non-leading partial schedulers Ai+1 for 1≤ i < n as the followers.

Each partial scheduler Ai has a channel endpoint ai to connect with
the worker Pi’s channel endpoint bi. The leader A1 has an endpoint cn

to connect with An and an endpoint d1 to connect with A2 (or with A1
if n = 1; we further elude this case for brevity). Each follower Ai+1 has
an endpoint ci to connect with Ai and an endpoint di+1 to connect with
Ai+2 (or with A1 if i+1 = n; we also elude this case).

In each round of the scheduler, each follower Ai+1 awaits a start
signal from Ai, and then asynchronously signals Pi+1 and Ai+2 to start. After awaiting acknowledgment
from Pi+1 and a next round signal from Ai, the follower then signals next round to Ai+2. The leader A1, re-
sponsible for starting each round of tasks, signals A2 and P1 to start, and, after awaiting acknowledgment
from P1, signals next round to A2. Then, the leader awaits An’s start and next round signals.

It is crucial that A1 does not await An’s start signal before starting P1, as the leader would otherwise
not be able to initiate rounds of tasks. Asynchrony thus plays a central role here: because An’s start signal
is non-blocking, it can start Pn before A1 has received the start signal. Of course, A1 does not need to
await An’s start and next round signals to make sure that every partial scheduler is ready to start the next
round.

Let us specify the partial schedulers formally:

A1 := µX(a1,cn,d1);d1 / start ·a1 / start ·a1 .ack;d1 /next · cn . start;cn .next;X〈a1,cn,d1〉
Ai+1 := µX(ai+1,ci,di+1); ci . start;ai+1 / start ·di+1 / start ·ai+1 .ack;

ci .next;di+1 /next ·X〈ai+1,ci,di+1〉
∀1≤ i < n

The syntax ‘µX(x̃);P’ denotes a recursive loop where P has access to the endpoints in x̃ and P may
contain recursive calls ‘X〈ỹ〉’ where the endpoints in ỹ are assigned to x̃ in the next round of the loop. The
syntax ‘x/ `’ denotes the output of label ` on x, and ‘x. `’ denotes the input of label ` on x. Outputs are
non-blocking, denoted ‘·’, whereas inputs are blocking, denoted ‘;’. For example, process x / ` · y. `′;P
may receive `′ on y and continue as x/ ` ·P.
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Leaving the workers unspecified, we formally specify the complete scheduler as a ring of partial
schedulers connected to workers:

Schedn := (νννcidi)1≤i≤n(∏1≤i≤n(νννaibi)(Ai |Pi))

The syntax ‘(νννxy)P’ denotes the connection of endpoints x and y in P, and ‘∏i∈IPi’ and ‘P |Q’ denote
parallel composition. Figure 1 illustrates Sched6, the scheduler for six workers.

We return to this example in Section 4, where we type check the scheduler using APCP to show that
it is deadlock free.

3 APCP: Asynchronous Priority-based Classical Processes

In this section, we define APCP, a linear type system for π-calculus processes that communicate asyn-
chronously (i.e., the output of messages is non-blocking) on connected channel endpoints. In APCP,
processes may be recursive and cyclically connected. Our type system assigns to endpoints types that
specify two-party protocols, in the style of binary session types [14].

APCP combines the salient features of Dardha and Gay’s Priority-based Classical Processes (PCP) [8]
with DeYoung et al.’s semantics for asynchronous communication [10], both works inspired by Curry-
Howard correspondences between linear logic and session types [7, 28]. Recursion—not present in the
works by Dardha and Gay and DeYoung et al.—is an orthogonal feature, whose syntax is inspired by the
work of Toninho et al. [25].

As in PCP, types in APCP rely on priority annotations, which enable cyclic connections by ruling out
circular dependencies between sessions. A key insight of our work is that asynchrony induces significant
improvements in priority management: the non-blocking outputs of APCP do not need priority checks,
whereas PCP’s outputs are blocking and thus require priority checks.

Properties of well-typed APCP processes are type preservation (Theorem 2) and deadlock freedom
(Theorem 6). This includes cyclically connected processes, which priority-annotated types guarantee
free from circular dependencies that may cause deadlock.

3.1 The Process Language

We consider an asynchronous π-calculus [15, 4]. We write x,y,z, . . . to denote (channel) endpoints (also
known as names), and write x̃, ỹ, z̃, . . . to denote sequences of endpoints. Also, we write i, j,k, . . . to
denote labels for choices and I,J,K, . . . to denote sets of labels. We write X ,Y, . . . to denote recursion
variables, and P,Q, . . . to denote processes.

Figure 2 (top) gives the syntax of processes. The output action ‘x[y,z]’ sends a message y (an end-
point) and a continuation endpoint z along x. The input prefix ‘x(y,z);P’ blocks until a message and
a continuation endpoint are received on x (referred to in P as the placeholders y and z, respectively),
binding y and z in P. The selection action ‘x[z]/ i’ sends a label i and a continuation endpoint z along x.
The branching prefix ‘x(z) . {i : Pi}i∈I’ blocks until it receives a label i ∈ I and a continuation endpoint
(reffered to in Pi as the placeholder z) on x, binding z in each Pi. Restriction ‘(νννxy)P’ binds x and y
in P, thus declaring them as the two endpoints of the same channel and enabling communication, as in
Vasconcelos [27]. The process ‘(P |Q)’ denotes the parallel composition of P and Q. The process ‘000’
denotes inaction. The forwarder process ‘x↔ y’ is a primitive copycat process that links together x and
y. The prefix ‘µX(x̃);P’ defines a recursive loop, binding occurrences of X in P; the endpoints x̃ form
a context for P. The recursive call ‘X〈x̃〉’ loops to its corresponding µX , providing the endpoints x̃ as
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Process syntax:

P,Q ::= x[y,z] output | x(y,z);P input
| x[z]/ i selection | x(z).{i : Pi}i∈I branching | (νννxy)P restriction
| (P |Q) parallel | 000 inaction | x↔ y forwarder
| µX(x̃);P recursive loop | X〈x̃〉 recursive call

................................................................................................................................................

Structural congruence:

P≡α P′ =⇒ P≡ P′ x↔ y≡ y↔ x

P |Q≡ Q |P (νννxy)x↔ y≡ 000

P |000≡ P P | (Q |R)≡ (P |Q) |R
x,y /∈ fn(P) =⇒ P | (νννxy)Q≡ (νννxy)(P |Q) (νννxy)000≡ 000

|x̃|= |ỹ| =⇒ µX(x̃);P≡ P{µX(ỹ);P{ỹ/x̃}/X〈ỹ〉} (νννxy)P≡ (νννyx)P

(νννxy)(νννzw)P≡ (νννzw)(νννxy)P
................................................................................................................................................

Reduction:

βID z,y 6= x =⇒ (νννyz)(x↔ y |P)−→P{x/z}

β⊗ & (νννxy)(x[a,b] | y(v,z);P)−→P{a/v,b/z}

β⊕& j ∈ I =⇒ (νννxy)(x[b]/ j | y(z).{i : Pi}i∈I)−→Pj{b/z}

κ & x /∈ ṽ, w̃ =⇒ (ννν ṽw̃)(x(y,z);P |Q)−→ x(y,z);(ννν ṽw̃)(P |Q)

κ& x /∈ ṽ, w̃ =⇒ (ννν ṽw̃)(x(z).{i : Pi}i∈I |Q)−→ x(z).{i : (ννν ṽw̃)(Pi |Q)}i∈I

(P≡ P′)∧ (P′−→Q′)∧ (Q′ ≡ Q) �≡
P−→Q

P−→Q �ν
(νννxy)P−→ (νννxy)Q

P−→Q �|
P |R−→Q |R

Figure 2: Definition of APCP’s process language.

context. We only consider contractive recursion, disallowing processes with subexpressions of the form
‘µX1(x̃); . . . ; µXn(x̃);X1〈x̃〉’.

Endpoints and recursion variables are free unless otherwise stated (i.e., unless they are bound some-
how). We write ‘fn(P)’ and ‘frv(P)’ for the sets of free names and free recursion variables of P, respec-
tively. Also, we write ‘P{x/y}’ to denote the capture-avoiding substitution of the free occurrences of y
in P for x. The notation ‘P{µX(ỹ);P′/X〈ỹ〉}’ denotes the substitution of occurrences of recursive calls
‘X〈ỹ〉’ in P with the recursive loop ‘µX(ỹ);P′’, which we call unfolding recursion. We write sequences
of substitutions ‘P{x1/y1} . . . {xn/yn}’ as ‘P{x1/y1,...,xn/yn}’.

Except for asynchrony and recursion, there are minor differences with respect to the languages of
Dardha and Gay [8] and DeYoung et al. [10]. Unlike Dardha and Gay’s, our syntax does not include
empty input and output prefixes that explicitly close channels; this simplifies the type system. We also
do not include the operator for replicated servers, denoted ‘!x(y);P’, which is present in the works by
both Dardha and Gay and DeYoung et al. Although replication can be handled without difficulties, we
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omit it here; we prefer focusing on recursion, because it fits well with the examples we consider. We
discuss further these omitted constructs in Section 3.4.

Simplifying Notation In an output ‘x[y,z]’, both y and z are free; they can be bound to a continuation
process using parallel composition and restriction, as in (νννya)(νννzb)(x[y,z] |Pa,b). The same applies to
selection ‘x[z]/ i’. We introduce useful notations that elide the restrictions and continuation endpoints:
Notation 1 (Derivable Actions and Prefixes). We use the following syntactic sugar:

x[y] ·P := (νννya)(νννzb)(x[a,b] |P{z/x}) x/ ` ·P := (νννzb)(x[b]/ ` |P{z/x})

x(y);P := x(y,z);P{z/x} x.{i : Pi}i∈I := x(z).{i : Pi{z/x}}i∈I

Note the use of ‘ · ’ instead of ‘ ; ’ in output and selection to stress that they are non-blocking.

Operational Semantics We define a reduction relation for processes (P−→Q) that formalizes how
complementary actions on connected endpoints may synchronize. As usual for π-calculi, reduction
relies on structural congruence (P ≡ Q), which equates the behavior of processes with minor syntactic
differences; it is the smallest congruence relation satisfying the axioms in Figure 2 (middle).

Structural congruence defines the following properties of our process language. Processes are equiv-
alent up to α-equivalence. Parallel composition is associative and commutative, with unit ‘000’. The
forwarder process is symmetric, and equivalent to inaction if both endpoints are bound together through
restriction. A parallel process may be moved into or out of a restriction as long as the bound channels do
not appear free in the moved process: this is scope inclusion and scope extrusion, respectively. Restric-
tions on inactive processes may be dropped, and the order of endpoints in restrictions and of consecutive
restrictions does not matter. Finally, a recursive loop is equivalent to its unfolding, replacing any recur-
sive calls with copies of the recursive loop, where the call’s endpoints are pairwise substituted for the
contextual endpoints of the loop (this is equi-recursion; see, e.g., Pierce [22]).

We can now define our reduction relation. Besides synchronizations, reduction includes commuting
conversions, which allow pulling prefixes on free channels out of restrictions; they are not necessary for
deadlock freedom, but they are usually presented in Curry-Howard interpretations of linear logic [7, 28,
8, 10]. We define the reduction relation ‘P−→Q ’ by the axioms and closure rules in Figure 2 (bottom).
Axioms labeled ‘β ’ are synchronizations and those labeled ‘κ’ are commuting conversions. We write
‘−→β ’ for reductions derived from β -axioms, and ‘−→∗’ for the reflexive, transitive closure of ‘−→’.

Rule βID implements the forwarder as a substitution. Rule β⊗ &synchronizes an output and an input
on connected endpoints and substitutes the message and continuation endpoint. Rule β⊕& synchronizes a
selection and a branch: the received label determines the continuation process, substituting the continua-
tion endpoint appropriately. Rule κ &(resp. κ&) pulls an input (resp. a branching) prefix on free channels
out of enclosing restrictions. Rules →≡, →ν , and →| close reduction under structural congruence, re-
striction, and parallel composition, respectively.

Notice how output and selection actions send free names. This is different from the works by Dardha
and Gay [8] and DeYoung et al. [10], where, following an internal mobility discipline [3], communication
involves bound names only. As we show in the next subsection, this kind of bound output is derivable
(cf. Theorem 1).

3.2 The Type System

APCP types processes by assigning binary session types to channel endpoints. Following Curry-Howard
interpretations, we present session types as linear logic propositions (cf., e.g., Wadler [28], Caires and
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Pfenning [6], and Dardha and Gay [8]). We extend these propositions with recursion and priority anno-
tations on connectives. Intuitively, actions typed with lower priority should be performed before those
with higher priority. We write o,κ,π,ρ, . . . to denote priorities, and ‘ω’ to denote the ultimate prior-
ity that is greater than all other priorities and cannot be increased further. That is, ∀t ∈ N. ω > t and
∀t ∈ N. ω + t = ω .

Duality, the cornerstone of session types and linear logic, ensures that the two endpoints of a channel
have matching actions. Furthermore, dual types must have matching priority annotations. The following
inductive definition of duality suffices for our tail-recursive types (cf. Gay et al. [11]).
Definition 1 (Session Types and Duality). The following grammar defines the syntax of session types
A,B, followed by the dual A,B of each type. Let o ∈ N∪{ω}.

A,B ::= A⊗o B | A &o B |⊕o{i : Ai}i∈I |&o{i : Ai}i∈I | • | µX .A | X
A,B ::= A

&o B | A⊗o B |&o{i : Ai}i∈I |⊕o{i : Ai}i∈I | • | µX .A | X
An endpoint of type ‘A⊗o B’ (resp. ‘A

&o B’) first outputs (resp. inputs) an endpoint of type A and then
behaves as B. An endpoint of type ‘&o{i : Ai}i∈I’ offers a choice: after receiving a label i∈ I, the endpoint
behaves as Ai. An endpoint of type ‘⊕o{i : Ai}i∈I’ selects a label i∈ I and then behaves as Ai. An endpoint
of type ‘•’ is closed; it does not require a priority, as closed endpoints do not exhibit behavior and thus
are non-blocking. We define ‘•’ as a single, self-dual type for closed endpoints, following Caires [5]:
the units ‘⊥’ and ‘111’ of linear logic (used by, e.g., Caires and Pfenning [7] and Dardha and Gay [8] for
session closing) are interchangeable in the absence of explicit closing.

Type ‘µX .A’ denotes a recursive type, in which A may contain occurrences of the recursion variable
‘X’. As customary, ‘µ’ is a binder: it induces the standard notions of α-equivalence, substitution (de-
noted ‘A{B/X}’), and free recursion variables (denoted ‘frv(A)’). We work with tail-recursive, contractive
types, disallowing types of the form ‘µX1. . . . .µXn.X1’. We adopt an equi-recursive view: a recursive
type is equal to its unfolding. We postpone formalizing the unfolding of recursive types, as it requires
additional definitions to ensure consistency of priorities upon unfolding.

The priority of a type is determined by the priority of the type’s outermost connective:
Definition 2 (Priorities). For session type A, ‘pr(A)’ denotes its priority:

pr(A⊗o B) := pr(A

&o B) := o pr(µX .A) := pr(A)

pr(⊕o{i : Ai}i∈I) := pr(&o{i : Ai}i∈I) := o pr(•) := pr(X) := ω

The priority of ‘•’ and ‘X’ is ω: they denote “final”, non-blocking actions of protocols. Although ‘⊗’
and ‘⊕’ also denote non-blocking actions, their priority is not constant: duality ensures that the priority
for ‘⊗’ (resp. ‘⊕’) matches the priority of a corresponding ‘

&

’ (resp. ‘&’), which denotes a blocking
action.

Having defined the priority of types, we now turn to formalizing the unfolding of recursive types.
Recall the intuition that actions typed with lower priority should be performed before those with higher
priority. Based on this rationale, we observe that unfolding should increase the priorities of the unfolded
type. This is because the actions related to the unfolded recursion should be performed after the prefix.
The following definition lifts priorities in types:
Definition 3 (Lift). For proposition A and t ∈ N, we define ‘↑tA’ as the lift operation:

↑t(A⊗o B) := (↑tA)⊗o+t (↑tB) ↑t(⊕o{i : Ai}i∈I) :=⊕o+t{i : ↑tAi}i∈I ↑t• := •
↑t(A

&o B) := (↑tA)

&o+t (↑tB) ↑t(&o{i : Ai}i∈I) := &o+t{i : ↑tAi}i∈I

↑t(µX .A) := µX .↑t(A) ↑tX := X
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EMPTY000 `Ω; /0
P `Ω;Γ •

P `Ω;Γ,x:• ID
x↔ y `Ω;x:A,y:A

P `Ω;Γ Q `Ω;∆
MIX

P |Q `Ω;Γ,∆
P `Ω;Γ,x:A,y:A

CYCLE
(νννxy)P `Ω;Γ

⊗
x[y,z] `Ω;x:A⊗o B,y:A,z:B

P `Ω;Γ,y:A,z:B o< pr(Γ) &

x(y,z);P `Ω;Γ,x:A

&o B

j ∈ I ⊕
x[z]/ j `Ω;x:⊕o{i : Ai}i∈I,z:A j

∀i ∈ I. Pi `Ω;Γ,z:Ai o< pr(Γ)
&

x(z).{i : Pi}i∈I `Ω;Γ,x:&o{i : Ai}i∈I

P `Ω,X :|I|;(xi:Ai)i∈I ∀i ∈ I. Ai 6= X
RECµX((xi)i∈I);P `Ω;(xi:µX .Ai)i∈I

VAR
X〈(xi)i∈I〉 `Ω,X :|I|;(xi:X)i∈I

................................................................................................................................................
P `Ω;Γ,y:A,x:B ⊗?

x[y] ·P `Ω;Γ,x:A⊗o B
P `Ω;Γ,x:A j j ∈ I

⊕?

x/ j ·P `Ω;Γ,x:⊕o{i : Ai}i∈I

P `Ω;Γ t ∈ N
LIFT

P `Ω;↑tΓ

Figure 3: The typing rules of APCP (top) and admissible rules (bottom).

Henceforth, the recursive type ‘µX .A’ and its unfolding ‘A{↑t µX .A/X}’ denote the same type, where the
lift t ∈ N of the unfolded recursive calls depends on the context in which the type appears.

Typing Rules The typing rules of APCP ensure that actions with lower priority are performed before
those with higher priority (cf. Dardha and Gay [8]). To this end, they enforce the following laws:

1. an action with priority o must be prefixed only by inputs and branches with priority strictly smaller
than o—this law does not hold for output and selection, as they are not prefixes;

2. dual actions leading to synchronizations must have equal priorities (cf. Def. 1).

Judgments are of the form ‘P `Ω;Γ’, where P is a process, Γ is a context that assigns types to channels
(‘x:A’), and Ω is a context that assigns natural numbers to recursion variables (‘X :n’). The intuition
behind the latter context is that it ensures the amount of context endpoints to concur between recursive
definitions and calls. Both contexts Γ and Ω obey exchange: assignments may be silently reordered. Γ
is linear, disallowing weakening (i.e., all assignments must be used) and contraction (i.e., assignments
may not be duplicated). Ω allows weakening and contraction, because a recursive definition does not
necessarily require a recursive call although it may be called more than once. The empty context is
written ‘ /0’. We write ‘pr(Γ)’ to denote the least priority of all types in Γ. Notation ‘(xi:Ai)i∈I’ denotes
indexing of assignments by I. We write ‘↑tΓ’ to denote the component-wise extension of lift to typing
contexts.

Figure 3 (top) gives the typing rules. Typing is closed under structural congruence; we sometimes
use this explicitly in typing derivations in the form of a rule ‘≡’. Axiom ‘EMPTY’ types an inactive
process with no endpoints. Rule ‘•’ silently adds a closed endpoint to the typing context. Axiom ‘ID’
types forwarding between endpoints of dual type. Rule ‘MIX’ types the parallel composition of two
processes that do not share assignments on the same endpoints. Rule ‘CYCLE’ removes two endpoints
of dual type from the context by adding a restriction on them. Note that a single application of ‘MIX’
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P ` Γ,y:A,x:B ⊗?

x[y] ·P ` Γ,x:A⊗o B ⇒

⊗
x[a,b] ` x:A⊗o B,a:A,b:B

P ` Γ,y:A,x:B ≡
P{z/x} ` Γ,y:A,z:B

MIX
x[a,b] |P{z/x} ` Γ,x:A⊗o B,y:A,a:A,z:B,b:B

CYCLE2
(νννya)(νννzb)(x[a,b] |P{z/x})︸ ︷︷ ︸

x[y]·P (cf. Notation 1)

` Γ,x:A⊗o B

P ` Γ,x:A j j ∈ I
⊕?

x/ j ·P ` Γ,x:⊕o{i : Ai}i∈I
⇒

j ∈ I ⊕
x[b]/ j ` x:⊕o{i : Ai}i∈I,b:A j

P ` Γ,x:A j ≡
P{z/x} ` Γ,z:A j

MIX
x[b]/ j |P{z/x} ` Γ,x:⊕o{i : Ai}i∈I,z:A j,b:A j

CYCLE
(νννzb)(x[b]/ j |P{z/x})︸ ︷︷ ︸

x/ j·P (cf. Notation 1)

` Γ,x:⊕o{i : Ai}i∈I

Figure 4: Proof that rules ‘⊗?’ and ‘⊕?’ are admissible (cf. Theorem 1).

followed by ‘CYCLE’ coincides with the usual rule ‘CUT’ in type systems based on linear logic [7, 28].
Axiom ‘⊗’ types an output action; this rule does not have premises to provide a continuation process,
leaving the free endpoints to be bound to a continuation process using ‘MIX’ and ‘CYCLE’. Similarly,
axiom ‘⊕’ types an unbounded selection action. Priority checks are confined to rules ‘

&

’ and ‘&’, which
type an input and a branching prefix, respectively. In both cases, the used endpoint’s priority must be
lower than the priorities of the other types in the continuation’s typing context.

Rule ‘REC’ types a recursive definition by eliminating a recursion variable from the recursion context
whose value concurs with the size of the typing context, where contractiveness is guaranteed by requiring
that the eliminated recursion variable may not appear unguarded in each of the context’s types. Axiom
‘VAR’ types a recursive call by adding a recursion variable to the context with the amount of introduced
endpoints. As mentioned before, the value of the introduced and consequently eliminated recursion
variable is crucial in ensuring that a recursion is called with the same amount of channels as required by
its definition.

Let us compare our typing system to that of Dardha and Gay [8] and DeYoung et al. [10]. Besides
our support for recursion, the main difference is that our rules for output and selection are axioms.
This makes priority checking much simpler for APCP than for Dardha and Gay’s PCP: our outputs
and selections have no typing context to check priorities against, and types for closed endpoints have no
priority at all. Although DeYoung et al.’s output and selection actions are atomic too, their corresponding
rules are similar to the rules of Dardha and Gay: the rules require continuation processes as premises,
immediately binding the sent endpoints.

As anticipated, the binding of output and selection actions to continuation processes (Notation 1)
is derivable in APCP. The corresponding typing rules in Figure 3 (bottom) are admissible using ‘MIX’
and ‘CYCLE’. Note that it is not necessary to include rules for the sugared input and branching in
Notation 1, because they rely on name substitution only and typing is closed under structural congruence
and thus name substitution. Figure 3 (bottom) also includes an admissible rule ‘LIFT’ that lifts a process’
priorities.

Theorem 1. The rules ‘⊗?’, ‘⊕?’, and ‘LIFT’ in Figure 3 (bottom) are admissible.

Proof. We show the admissibility of rules ⊗? and ⊕? by giving their derivations in Figure 4 (omitting
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⊗
x[a,b] ` x:A⊗o B,a:A,b:B

P ` Γ,v:A,z:B &

y(v,z).P ` Γ,y:A

&o B
MIX+
CYCLE(νννxy)(x[a,b] | y(v,z).P) ` Γ,a:A,b:B

−→
P ` Γ,v:A,z:B ≡

P{a/v,b/z} ` Γ,a:A,b:B

................................................................................................................................................

Below, the contexts Γ′ and ∆′ together contain ṽ and w̃, i.e. Γ′,∆′ = (vi:Ci)vi∈ṽ,(wi:Ci)wi∈w̃.

P ` Γ,Γ′,y:A,z:B o< pr(Γ) &

x(y,z).P ` Γ,Γ′,x:A

&o B Q ` ∆,∆′
MIX+CYCLE∗

(ννν ṽw̃)(x(y,z).P |Q) ` Γ,∆,x:A

&o B
−→

P ` Γ,Γ′,y:A,z:B Q ` ∆,∆′
MIX+CYCLE∗

(ννν ṽw̃)(P |Q) ` Γ,∆,y:A,z:B
LIFT

(ννν ṽw̃)(P |Q) ` ↑o+1Γ,↑o+1∆,y:↑o+1A,z:↑o+1B o< pr(↑o+1Γ,↑o+1∆) &

x(y,z).(ννν ṽw̃)(P |Q) ` ↑o+1Γ,↑o+1∆,x:(↑o+1A)

&o (↑o+1B)

Figure 5: Type Preservation (cf. Theorem 2) in rules β⊗ &(top) and κ &(bottom).

the recursion context). The rule ‘LIFT’ is admissible, because P ` Ω;Γ implies P ` Ω;↑tΓ (cf. Dardha
and Gay [8]), by simply increasing all priorities in the derivation of P by t.

Theorem 1 highlights how APCP’s asynchrony uncovers a more primitive, lower-level view of message-
passing. In the next subsection we discuss deadlock freedom, which follows from a correspondence
between reduction and the removal of ‘CYCLE’ rules from typing derivations. In the case of APCP, this
requires care: binding output and selection actions to continuation processes leads to applications of
‘CYCLE’ not immediately corresponding to reductions.

3.3 Type Preservation and Deadlock Freedom

Well-typed processes satisfy protocol fidelity, communication safety, and deadlock freedom. All these
properties follow from type preservation (also known as subject reduction), which ensures that reduc-
tion preserves typing. In contrast to Caires and Pfenning [7] and Wadler [28], where type preservation
corresponds to the elimination of (top-level) applications of rule CUT, in APCP it corresponds to the
elimination of (top-level) applications of rule CYCLE.

Theorem 2 (Type Preservation). If P `Ω;Γ and P−→Q, then Q `Ω;↑tΓ for t ∈ N.

Proof. By induction on the reduction−→, analyzing the last applied rule (Fig. 2 (bottom)). The cases of
the closure rules �≡, �ν , and �| easily follow from the IH. The key cases are the β - and κ-rules. Figure 5
shows two representative instances (eluding the recursion context Ω): rule β⊗ &(top), a synchronization,
and rule κ &(bottom), a commuting conversion. Note how, in the case of rule κ &, the lift ↑t ensures
consistent priority checks.

Protocol fidelity ensures that processes respect their intended (session) protocols. Communication
safety ensures the absence of communication errors and mismatches in processes. Correct typability
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gives a static guarantee that a process conforms to its ascribed session protocols; type preservation gives
a dynamic guarantee. Because session types describe the intended protocols and error-free exchanges,
type preservation entails both protocol fidelity and communication safety. We refer the curious reader to
the early work by Honda et al. [16] for a detailed account, which shows by contradiction that well-typed
processes do not reduce to so-called error processes. This is a well-known and well-understood result.

In what follows, we consider a process to be deadlocked if it is not the inactive process and cannot
reduce. Our deadlock freedom result for APCP adapts that for PCP [8], which involves three steps:

1. First, CYCLE-elimination states that we can remove all applications of CYCLE in a typing deriva-
tion without affecting the derivation’s assumptions and conclusion.

2. Only the removal of top-level CYCLEs captures the intended process semantics, as the removal of
other CYCLEs corresponds to reductions behind prefixes which is not allowed [28, 8]. Therefore,
the second step is top-level deadlock freedom, which states that a process with a top-level CYCLE

reduces until there are no top-level CYCLEs left.

3. Third, deadlock freedom follows for processes typable under empty contexts.

Here, we address cycle-elimination and top-level deadlock-freedom in one proof.
As mentioned before, binding APCP’s asynchronous outputs and selections to continuations involves

additional, low-level uses of CYCLE, which we cannot eliminate through process reduction. Therefore,
we establish top-level deadlock freedom for live processes (Theorem 4). A process is live if it is equiva-
lent to a restriction on active names that perform unguarded actions. This way, e.g., in ‘x[y,z]’ the name
x is active, but y and z are not.

Definition 4 (Active Names). The set of active names of P, denoted ‘an(P)’, contains the (free) names
that are used for unguarded actions (output, input, selection, branching):

an(x[y,z]) := {x} an(x(y,z).P) := {x} an(000) := /0

an(x[z]/ j) := {x} an(x(z).{i : Pi}i∈I) := {x} an(x↔ y) := {x,y}
an(P |Q) := an(P)∪ an(Q) an(µX(x̃);P) := an(P)

an((νννxy)P) := an(P)\{x,y} an(X〈x̃〉) := /0

Definition 5 (Live Process). A process P is live, denoted ‘live(P)’, if there are names x,y and process P′

such that P≡ (νννxy)P′ with x,y ∈ an(P′).

We additionally need to account for recursion: as recursive definitions do not entail reductions, we
must fully unfold them before eliminating CYCLEs.

Lemma 3 (Unfolding). If P ` Ω;Γ, then there is process P? such that P? ≡ P and P? is not of the form
‘µX(x̃);Q’ and P? `Ω;Γ.

Proof. By induction on the amount n of consecutive recursive definitions prefixing P, such that P is of
the form ‘µX1(x̃); . . . ; µXn(x̃);Q’. If n = 0, the thesis follows immediately by letting P? := P.

Otherwise, n≥ 1. Then there are X ,Q such that P = µX((xi)i∈I);Q. By inversion of typing rule REC,
P ` Ω;(xi:µX .Ai)i∈I . Generally speaking, such typing derivations have the shape as in Figure 6 (top),
with zero or more VAR-axioms on X appearing at the top. We use structural congruence (Fig. 2 (middle))
to unfold the recursion in P, obtaining the process R := Q{µX((yi)i∈I);Q{(yi)i∈I/(xi)i∈I}/X〈(yi)i∈I〉} ≡ P.

We can type R by taking the derivation of P (cf. Figure 6 (top)), removing the final application of the
REC-rule and replacing any uses of the VAR-axiom on X by a copy of the original derivation, applying
α-conversion where necessary. Moreover, we lift the priorities of all types by at least the highest priority
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VAR
X〈(yi)i∈I〉 `Ω′,X :|I|;(yi:X)i∈I...

...
. . .

Q `Ω,X :|I|;(xi:Ai)i∈I RECµX((xi)i∈I);Q `Ω;(xi:µX .Ai)i∈I

................................................................................................................................................

VAR
X〈(yi)i∈I〉 `Ω′′,X :|I|;(yi:X)i∈I...

...
. . .

Q `Ω′,X :|I|;(xi:Ai)i∈I ≡
Q{(yi)i∈I/(xi)i∈I} `Ω′,X :|I|;(yi:Ai)i∈I RECµX((yi)i∈I);Q{(yi)i∈I/(xi)i∈I} `Ω′;(yi:µX .Ai)i∈I t ≥maxpr (Ai)i∈I LIFT

µX((yi)i∈I);Q{(yi)i∈I/(xi)i∈I} `Ω′;(yi:↑t µX .Ai)i∈I...
...

. . .
R `Ω;(xi:Ai{↑t µX .Ai/X})i∈I

Figure 6: Typing recursion before (top) and after (bottom) unfolding (cf. Lemma 3).

occurring in any type in Γ using the LIFT-rule, ensuring that priority conditions on typing rules remain
valid; we explicitly use at least the highest priority, as the context of connected endpoints may lift the
priorities in dual types even more. Writing the highest priority in Γ as ‘maxpr(Γ)’, the resulting proof
is of the shape in Figure 6 (bottom). Since types are equi-recursive, Ai{↑t µX .Ai/X} = Ai for every i ∈ I.
Hence, (yi:Ai{↑t µX .Ai/X})i∈I = Γ. Thus, the above is a valid derivation of R `Ω;Γ.

The rules applied after LIFT in the derivation of R in Figure 6 (bottom) are the same as those applied
after VAR and before REC in the derivation of P in Figure 6 (top) before unfolding. By the assumption
that recursion is contractive, there must be an application of a rule other than REC in this part of the
derivation. Therefore, the application of REC in the derivation of R is not part of a possible sequence of
RECs in the last-applied rules of this derivation. Hence, since we removed the final application of REC

in the derivation of P, the size of this sequence of RECs is n− 1, i.e. R is prefixed by n− 1 recursive
definitions. Thus, we apply the IH to find a process P? not prefixed by recursive definitions s.t. P? ≡ R≡
P `Ω;Γ.

Dardha and Gay’s top-level deadlock freedom result concerns a sequence of reduction steps that
reaches a process that is not live anymore [8]. In our case, top-level deadlock freedom concerns a single
reduction step only, because recursive processes might stay live across reductions forever.

Theorem 4 (Top-Level Deadlock Freedom). If P ` /0;Γ and live(P), then there is process Q such that
P−→Q.

Proof. By structural congruence (Fig. 2 (middle)), there is Pc = (νννxiyi)i∈I(ννν ñm̃)Pm such that Pc ≡ P,
with Pm = ∏k∈KPk and Pm ` /0;Λ,(xi:Ai,yi:Ai)i∈I s.t. for every i ∈ I, xi and yi are active names in Pm, and
Λ consists of Γ and the channels ñ, m̃ which are dually typed pairs of endpoints of which at least one is
inactive in Pm. Because P is live, there is always at least one pair xi,yi.

Next, we take the j ∈ I s.t. A j has the least priority, i.e. ∀i ∈ I \ { j}. pr(A j) ≤ pr(Ai). If there are
multiple to choose from, any suffices. The rest of the analysis depends on whether there is an endpoint
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z of input/branching type in Γ with lower priority than pr(A j). We thus distinguish the two cases below.
Note that output/selection types in Γ are associated with non-blocking actions and can be safely ignored.

• If there is such z, assume w.l.o.g. it is of input type. The input on z cannot be prefixed by an
input/branch on another endpoint, because then that other endpoint would have a type with lower
priority than z. Hence, there is k′ ∈ K s.t. Pk′ = z(u,v);P′k′ . We thus apply communicating conver-
sion κ &to find Q such that P−→Q:

P≡ (νννxiyi)i∈I(ννν ñm̃)(∏k∈K\{k′}Pk | z(u,v);P′k′)−→ z(u,v);(νννxiyi)i∈I(ννν ñm̃)(∏k∈K\{k′}Pk |P′k′) = Q

• If there is no such z, we continue with x j:A j and y j:A j. In case there is k′ ∈ K s.t. Pk ≡ u↔ v with
u ∈ {x j,y j}, the reduction is trivial by �ID; we w.l.o.g. assume there is no such k′.
By duality, A j and A j have the same priority, so priority checks in typing derivations prevent an
input/branching prefix on x j (resp. y j) from blocking an output/selection on y j (resp. x j). Hence,
x j and y j appear in separate parallel components of Pm, i.e. Pm = Px j |Py j |PR s.t.

Px j ` /0;Λx j ,x j:A j , Py j ` /0;Λy j ,y j:A j , and PR ` /0;ΛR ,

where Λx j ,Λy j ,ΛR,x j:A j,y j:A j = Λ,(xi:Ai,yi:Ai)i∈I .
By Lemma 3 (unfolding), Px j ≡ P?

x j
and Py j ≡ P?

y j
s.t. P?

x j
and P?

y j
are not prefixed by recursive

definitions and P?
x j
` /0;Λx j ,x j:A j and P?

y j
` /0;Λy j ,y j:A j. We take the unfolded form of A j: by the

contractiveness of recursive types, A j has at least one connective. We w.l.o.g. assume that A j is an
input or branching type, i.e. either (a) A j = B

&oC or (b) A j = &o{l : Bl}l∈L.
Since pr(A j) = o is the least of the priorities in Γ, we know that either (in case a) P?

x j
≡ x j(v,z).Qx j

or (in case b) P?
x j
≡ x j(z) . {l : Ql

x j
}l∈L. Moreover, since either (in case a) A j = B⊗o C or (in

case b) A j = ⊕o{l : Bl}l∈L, we have that either (in case a) P?
y j
≡ y j[a,b] |Qy j or (in case b) P?

y j
≡

y j[b]/ l? |Qy j for l? ∈ L. In case (a), let Q′x j
:= Qx j{a/v,b/z}; in case (b), let Q′x j

:= Ql?
x j
{b/z}. Then,

(in case a) by reduction β⊗ &or (in case b) by reduction β⊕&,

P≡ (νννxiyi)i(ννν ñm̃)(P?
x j
|P?

y j
|PR)≡ (νννxiyi)i\ j(ννν ñm̃)((νννx jy j)(P?

x j
|P?

y j
) |PR)

−→ (νννxiyi)i\ j(ννν ñm̃)(Q′x j
|Qy j |PR).

Our deadlock freedom result concerns processes typable under empty contexts (as in, e.g., Caires and
Pfenning [7] and Dardha and Gay [8]). This way, the reduction guaranteed by Theorem 4 corresponds to
a synchronization (β -rule), rather than a commuting conversion (κ-rule). We first need a lemma which
ensures that non-live processes typable under empty contexts do not contain actions or prefixes.

Lemma 5. If P ` /0; /0 and P is not live, then P contains no actions or prefixes whatsoever.

Proof. Suppose, for contradiction, that P does contain actions or prefixes. For example, P contains some
subterm x(y,z);P′. Because P ` /0; /0, there must be a restriction on x in P binding it with, e.g., x′. Now,
x′ does not appear in P′, because the type of x in the derivation of P ` /0; /0 must be lower than the types
of the endpoints in P′, and by duality the types of x and x′ have equal priority. Hence, there is some Q
s.t. P≡ (ννν ũṽ)(νννxx′)(x(y,z);P′ |Q) where x′ ∈ fn(Q). There are two cases for the appearance of x′ in Q:
(1) not prefixed, or (2) prefixed.

• In case (1), x′ ∈ an(Q), so the restriction on x,x′ in P is on a pair of active names, contradicting the
fact that P is not live.
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• In case (2), x′ appears in Q behind at least one prefix. For example, Q contains some subterm
a(b,c);Q′ where x′ ∈ fn(Q′). Again, a must be bound in P to, e.g., a′. Through similar reasoning
as above, we know that a′ does not appear in Q′. Moreover, the type of a must have lower priority
than the type of x′, so by duality the type of a′ must have lower priority than the type of x. So, a′

also does not appear in P′. Hence, there is R s.t. P≡ (ννν ũṽ)(νννaa′)(νννxx′)(x(y,z);P′ |a(b,c);Q′ | R)
where a′ ∈ fn(R).
Now, the case split on whether a′ appears prefixed in R or not repeats, possibly finding new names
that prefix the current name again and again following case (2). However, process terms are finite
in size, so we know that at some point there cannot be an additional parallel component in P to
bind the new name, contradicting the existence of the newly found prefix. Hence, eventually case
(1) will be reached, uncovering a restriction on a pair of active names and contradicting the fact
that P is not live.

In conclusion, the assumption that there are actions or prefixes in P leads to a contradiction. Hence, P
contains no actions or prefixes whatsoever.

We now state our deadlock freedom result:

Theorem 6 (Deadlock Freedom). If P ` /0; /0, then either P≡ 000 or P−→β Q for some Q.

Proof. The analysis depends on whether P is live or not.

• If P is not live, then, by Lemma 5, it does not contain any actions or prefixes. Any recursive
loops in P are thus of the form ‘µX1(); . . . ; µXn();000’: contractiveness requires recursive calls to
be prefixed by inputs/branches or bound to parallel outputs/selections, of which there are none.
Hence, we can use structural congruence to rewrite each recursive loop in P to 000 by unfolding,
yielding P′ ≡ P. The remaining derivation of P′ only contains applications of EMPTY, MIX, •, or
CYCLE on closed endpoints. It follows easily that P≡ P′ ≡ 000.

• If P is live, by Theorem 4 there is Q s.t. P−→Q. Moreover, P does not have free names, for
otherwise it would not be typable under empty context. Because commuting conversions apply
only to free names, this means P−→β Q.

3.4 Explicit Closing and Replicated Servers

As already mentioned, our presentation of APCP does not include explicit closing and replicated servers.
We briefly discuss what APCP would look like if we were to include these constructs.

We achieve explicit closing by adding empty outputs ‘x[]’ and empty inputs ‘x();P’ to the syntax of
Figure 2 (top). We also add the synchronization ‘β111⊥’ and the commuting conversion ‘κ⊥’ in Figure 7
(bottom). At the level of types, we replace the conflated type ‘•’ with ‘111o’ and ‘⊥o’, associated to empty
outputs and empty inputs, respectively. Note that we do need priority annotations on types for closed
endpoints now, because the empty input is blocking and thus requires priority checks. In the type system
of Figure 3 (top), we replace rule ‘•’ with the rules ‘111’ and ‘⊥’ in Figure 7 (top).

For replicated servers, we add client requests ‘?x[y]’ and servers ‘!x(y);P’, typed ‘?oA’ and ‘!oA’,
respectively. We include syntactic sugar for binding client requests to continuations as in Notation 1:
‘?x[y] ·P := (νννya)(?x[a] |P)’. New reduction rules are in Figure 7 (bottom): synchronization rule ‘β?!’,
connecting a client and a server and spawns a copy of the server, and commuting conversion ‘κ!’. Also,
we add a structural congruence axiom to clean up unused servers: (νννxz)(!x(y);P)≡ 000. In the type system,
we add rules ‘?’, ‘!’, ‘W’ and ‘C’ in Figure 7 (top); the former two are for typing client requests and
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111
x[] `Ω;x:111o

P `Ω;Γ o< pr(Γ)
⊥

x();P `Ω;Γ,x:⊥o

?
?x[y] `Ω;x:?oA,y:A

P `Ω; ?Γ,y:A o< pr(?Γ)
!

!x(y);P `Ω; ?Γ,x:!oA

P `Ω;Γ
WP `Ω;Γ,x:?oA

P `Ω;Γ,x:?o,x′:?κ π = min(o,κ)
C

P{x/x′} `Ω;Γ,x:?πA
P `Ω;Γ,y:A

???x[y] ·P `Ω;Γ,x:?oA
................................................................................................................................................

β111⊥ (νννxy)(x[] | y();P)−→P

β?! (νννxy)(?x[a] | !y(v);P |Q)−→P{a/v} | (νννxy)(!y(v);P |Q)

κ⊥ x /∈ ṽ, w̃ =⇒ (ννν ṽw̃)(x();P |Q)−→ x();(ννν ṽw̃)(P |Q)

κ! x /∈ ṽ, w̃ =⇒ (ννν ṽw̃)(!x(y);P |Q)−→ !x(y);(ννν ṽw̃)(P |Q)

Figure 7: Typing rules for explicit closing and replicated servers.

VAR` X :3;a1:X ,cn:X ,d1:X
&` X :3;a1:X ,cn:&ρn{next : X},d1:X

&` X :3;a1:X ,cn:&πn{start : &ρn{next : X}},d1:X ⊕?

` X :3;a1:X ,cn:&πn{start : &ρn{next : X}},d1:⊕ρ1{next : X}
&` X :3;a1:&κ1{ack : X},cn:&πn{start : &ρn{next : X}},d1:⊕ρ1{next : X} ⊕?

` X :3;a1:⊕o1{start : &κ1{ack : X}},cn:&πn{start : &ρn{next : X}},d1:⊕ρ1{next : X} ⊕?

` X :3; a1:⊕o1{start : &κ1{ack : X}}, cn:&πn{start : &ρn{next : X}},
d1:⊕π1{start :⊕ρ1{next : X}}

REC` /0; a1:µX .⊕o1{start : &κ1{ack : X}}, cn:µX .&πn{start : &ρn{next : X}},
d1:µX .&π1{start :⊕ρ1{next : X}}

Figure 8: Typing derivation of the leader scheduler A1 of Milner’s cyclic scheduler (processes omitted).

servers, respectively, and the latter two are for connecting to a server without requests and for multiple
requests, respectively. In rule ‘!’, notation ‘?Γ’ means that every type in Γ is of the form ‘?oA’. Figure 7
(top) also includes an admissible rule ‘??’ which types the syntactic sugar for bound client requests.

4 Examples

Up to here, we have presented our process language and its type system, and we have discussed the
influence of asynchrony and recursion in their design and properties ensured by typing. We now present
examples to further illustrate the design and expressiveness of APCP.
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4.1 Milner’s Typed Cyclic Scheduler

To consider a process that goes beyond the scope of PCP, here we show that our specification of Milner’s
cyclic scheduler from Section 2 is typable in APCP, and thus deadlock free (cf. Theorem 6). Let us recall
the process definitions of the leader and followers, omitting braces ‘{. . .}’ for branches with one option:

A1 := µX(a1,cn,d1);d1 / start ·a1 / start ·a1 .ack;d1 /next · cn . start;cn .next;X〈a1,cn,d1〉
Ai+1 := µX(ai+1,ci,di+1); ci . start;ai+1 / start ·di+1 / start ·ai+1 .ack;

ci .next;di+1 /next ·X〈ai+1,ci,di+1〉
∀1≤ i < n

Each process Ai+1 for 0≤ i < n—thus including the leader—is typable as follows, assuming ci is cn for
i = 0 (see Fig. 8 for the derivation of A1, omitting processes from judgments):

Ai+1 ` /0; ai+1:µX .⊕oi+1{start : &κi+1{ack : X}}, ci:µX .&πi{start : &ρi{next : X}},
di+1:µX .⊕πi+1{start :⊕ρi+1{next : X}}

Note how, for each 1≤ i≤ n, the types for ci and di are duals.
To verify these typing derivations, we need to assign values to the priorities oi,κi,πi,ρi for each

1≤ i≤ n that satisfy the necessary requirements. From the derivation of A1 we require κ1 < ρ1,πn. For
each 1≤ i < n, from the derivation of Ai+1 we require ρi < ρi+1 and κi+1 < ρi,ρi+1 and πi < oi+1,πi+1.
We can easily satisfy these requirements by assigning oi := κi := πi := i and ρi := i+2 for each 1≤ i≤ n.

Assuming that Pi ` /0;ai:µX .&oi{start : ⊕κi{ack : X}} for each 1 ≤ i ≤ n, we have Schedn ` /0; /0.
Hence, it follows from Theorem 6 that Schedn is deadlock free for each n≥ 1.

4.2 Comparison to Padovani’s Type System for Deadlock Freedom

Padovani’s type system for deadlock freedom [21] simplifies a type system by Kobayashi [17]; both these
works do not consider session types. Just as for Dardha and Gay’s PCP [8], the priority annotations of
APCP are based on similar annotations in Padovani’s and Kobayashi’s type systems. Here, we compare
APCP to these type systems by discussing some of the examples in Padovani’s work.

Ring of Processes To illustrate APCP’s flexible support for recursion, we consider Padovani’s ever-
growing ring of processes [21, Ex. 3.8]. For the ring to continuously loop, Padovani uses self-replicating
processes. Although this exact method is not possible in APCP, we can use recursion instead:

Ringy
x := µX(x,y);(νννaa′)(x(z);(νννbb′)(X〈z,b〉 |X〈b′,a〉) | y[c] ·a′↔ c) ` /0;x:µX .X

&o •,y:µX .X⊗κ •

Each iteration, this process receives a fresh endpoint from its left neighbor and sends another fresh
endpoint to its right neighbor. It then spawns two copies of itself, connected to each other on a fresh
channel, and one connected to the left neighbor and the other to the right neighbor. There are no priority
requirements, so we can let o = κ . We can then connect the initial copy of Ring to itself, forming a
deadlock free ring of processes that doubles in size at every iteration (cf. Theorem 6):

(νννxy)Ringy
x−→3 (νννx1y1)(νννx2y2)(Ringy2

x1 |Ringy1
x2)

−→6(νννx1y1)(νννx2y2)(νννx3y3)(νννx4y4)(Ringy2
x1 |Ringy3

x2 |Ringy4
x3 |Ringy1

x4)−→12 . . .
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Blocking versus Non-blocking Padovani discusses the significance of blocking inputs versus non-
blocking outputs [21, Exs. 2.2 & 3.6]. Although we can express Padovani’s example in APCP with
minor modifications, we can do so more directly by including replication as in Section 3.4. Consider the
following processes, which are identical up to the order of input and output:

NodeA := !cA(c);c(x);c(y);x[a] · y(z);000 NodeB := !cB(c);c(x);c(y);y(z);x[a] ·000

We consider several configurations of nodes, using the syntactic sugar x〈y〉 ·P := x[y′] · (y↔ y′ |P):

L1(X) := (νννcAc′A)(νννcBc′B)(NodeA |NodeB | ?c′X [c] · (νννee′)(c〈e〉 · c〈e′〉 ·000))

L2(X ,Y ) := (νννcAc′A)(νννcBc′B)(NodeA |NodeB | (νννee′)(ννν f f ′)
(

?c′X [c] · c〈e〉 · c〈 f 〉 ·000
|?c′Y [c

′] · c′〈 f ′〉 · c′〈e′〉 ·000

)
)

L3(X ,Y,Z) := (νννcAc′A)(νννcBc′B)(NodeA |NodeB | (νννee′)(ννν f f ′)(νννgg′)




?c′X [c] · c〈e〉 · c〈 f 〉 ·000
|?c′Y [c

′] · c′〈g〉 · c′〈e′〉 ·000
|?c′Z[c

′′] · c′′〈 f ′〉 · c′′〈g′〉 ·000


)

where X ,Y,Z ∈ {A,B}.
To illustrate the significance of APCP’s asynchrony, let us consider how L2(A,A) reduces:

L2(A,A)−→6 (νννee′)(ννν f f ′)(e[a] · f (z);000 | f ′[a′] · e′(z′);000)−→ (ννν f f ′)( f (z);000 | f ′[a′] ·000)−→000.

The synchronization on e and e′ is possible because the output on f ′ is non-blocking. It is also possible
for f and f ′ to synchronize first, because the output on e is also non-blocking. In contrast, the reduction
of L2(B,B) illustrates the blocking behavior of inputs:

L2(B,B)−→6 (νννee′)(ννν f f ′)( f (z);e[a] ·000 | e′(z′); f ′[a′] ·000) 6−→.

This results in deadlock, for each node awaits a message, blocking their output to the other node.
Let us show how APCP detects (freedom of) deadlocks in each of these configurations by considering

priority requirements. For X ∈ {A,B}, we have NodeX ` /0;cX :!o((•⊗κX •) &πX (• &ρX •) &ψX •), requir-
ing ρB < κB and πX ,ψX < κX ,ρX . In each configuration, the input endpoint of one node is connected
to the output endpoint of another. Duality thus requires that κW = ρW ′ for W,W ′ ∈ {X ,Y,Z}. Hence, in
any configuration, if the input endpoint of a NodeB is connected the output endpoint of another NodeB,
we require κB = ρB, violating the requirement that ρB < κB. From this we can conclude that the above
configurations are deadlock free if and only if at least one of X ,Y,Z is A, and at most one of them is B.
This verifies that L2(A,A) contains no deadlock, while L2(B,B) does.

Note that in PCP the conditions for deadlock freedom are much stricter, as PCP’s blocking outputs
additionally require that κA < ρA. Hence, we also cannot connect the input of a NodeA to the output of
another NodeA. This means that L2(A,B) and L2(B,A) are the only deadlock free configurations in PCP.

5 Related Work & Conclusion

We have already discussed several related works throughout the paper [8, 10, 17, 21]. The work of
Kobayashi and Laneve [18] is related to APCP in that it addresses deadlock freedom for unbounded
process networks. Another related approach is Toninho and Yoshida’s [26], which addresses deadlock
freedom for cyclic process networks by generating global types from binary types. The work by Balzer et
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al. [1, 2] is also worth mentioning: it guarantees deadlock freedom for processes with shared, mutable re-
sources by means of manifest sharing, i.e. explicitly acquiring and releasing access to resources. Finally,
Pruiksma and Pfenning’s session type system derived from adjoint logic [23, 24] treats asynchronous,
non-blocking actions via axiomatic typing rules, similarly as we do (cf. axioms ‘⊗’ and ‘⊕’ in Figure 3);
we leave a precise comparison with their approach for future work.

In this paper, we have presented APCP, a type system for deadlock freedom of cyclic process net-
works with asynchronous communication and recursion. We have shown that, when compared to (the
synchronous) PCP [8], asynchrony in APCP significantly simplifies the management of priorities re-
quired to detect cyclic dependencies (cf. the discussion at the end of Section 4.2). We illustrated the
expressivity of APCP using multiple examples, and concluded that it is comparable in expressivity to
similar type systems not based on session types or logic, in particular the one by Padovani [21]. More
in-depth comparisons with this and the related type systems cited above would be much desirable. Fi-
nally, in ongoing work we are applying APCP to the analysis of multiparty protocols implemented as
processes [13].

Acknowledgements We are grateful to the anonymous reviewers for their careful reading of our paper
and their useful feedback.
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Decomposing Monolithic Processes in a Process Algebra with
Multi-actions

Compositional minimisation can be an effective technique to deal with the state space explosion
problem. This technique considers a parallel composition of multiple sequential processes. In its
simplest form, each sequential process is replaced by a minimal process such that the composition of
these minimal processes has a smaller state space that is behaviourally equivalent to the state space of
the original parallel composition. However, for a monolithic process, i.e., a process without parallel
composition, this technique is not applicable. Therefore, we present a technique that decomposes a
monolithic process with data parameters into multiple processes where each process defines behaviour
for a subset of the parameters of the monolithic process. We prove that the composition of these
processes is strongly bisimilar to the monolithic process under a suitable synchronisation context.
Moreover, we prove that state invariants can be used to further improve the effectiveness of the
decomposition. Finally, we apply the decomposition technique to several specifications.

1 Introduction

The mCRL2 language [11] is a process algebra with multi-actions that can be used to specify the behaviour
of communicating processes with data parameters. The corresponding mCRL2 toolset [4] translates the
process specification, which includes (interleaving) parallel composition and operators to describe process
communication, to a strongly bisimilar (non-deterministic sequential) monolithic process. Translating a
complicated process specification into a simpler normal form, in this case the monolithic process, has
several advantages. First of all, the design and implementation of state space exploration algorithms
can be greatly simplified. Furthermore, the design of effective static analysis techniques on the global
behaviour of the specification is also easier. One example is a static analysis to detect live variables as
presented in [16]. However, the static analysis techniques available at the moment are not always strong
enough to mitigate the state space explosion problem for this monolithic process even though its state
space can often be minimised with respect to some equivalence relation after state space exploration.

In the literature there are several promising techniques to deal with the state space explosion problem.
One of these techniques is compositional minimisation which can be used to obtain a smaller state space
that is behaviourally equivalent to the state space of the original specification. The idea is that state space
explosion often occurs due to all the possible interleaving of several processes in a parallel composition.
In compositional minimisation, the state space of each sequential process (referred to as a component)
is replaced by a (hopefully smaller) state space such that their composition is equivalent to the original
specification [20, 19]. This means that properties of the specification can be checked on the composition.

This basic approach is not always useful, because the size of the state spaces belonging to individual
components summed together might exceed the size of the original state space [7]. In particular, the state
space can become infinitely large for components that rely on synchronisation to bound their behaviour.
This can be avoided by specifying interface constraints (also known as environmental constraints or
context constraints) leading to a semantic compositional minimisation [9, 5]. Furthermore, the order in
which intermediate components are explored, minimised and subsequently composed heavily influences
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the size of the intermediate state spaces. There are heuristics for these problems that can be very effective
in practice, as shown by the CADP [6] (Construction and Analysis of Distributed Processes) toolset.

Unfortunately, in our context where parallel composition is removed by a translation step the aforemen-
tioned compositional techniques, which rely on the user-defined parallel composition and the (sequential)
processes, are not applicable. In this paper, we define a decomposition technique (which we refer to as a
cleave) of a monolithic process based on a partitioning of its data parameters that yields two components.
This way we have the monolithic process available for static analysis (with corresponding transformations)
and we can use compositional minimisation. We show that under a suitable synchronisation context the
composition of the two components is strongly bisimilar to the monolithic process. The technique can be
applied recursively to obtain a number of components to which composition minimisation can be applied.
We also perform a case study to evaluate the decomposition technique in practice.

The advantages of decomposing the monolithic process are the same as for compositional minimisation.
First of all, by minimising the state spaces of intermediate components the composed state space can be
immediately smaller than the state space obtained by exploring the monolithic process. Furthermore, state
space exploration relies on the evaluation of data expressions of the higher-level specification language and
that can be costly, whereas the composition of the state spaces of the components can be computed without
evaluating expressions. An advantage of the decomposition technique over compositional minimisation
is that constraints resulting from the synchronisation of these processes can be used when deriving the
components. These constraints can be further improved by using so-called state invariants, as we also
demonstrate in this paper. Finally, the components resulting from the decomposition are not limited to
the user-defined processes present in the specification, which could yield a more optimal composition.
Indeed, the case studies on which we report support both observations.

Related Work. Several different techniques are related to this type of decomposition. Most notably, the
work on decomposing Petri nets into a set of automata [2] also aims to speed up state space exploration by
means of decomposition. The work on functional decomposition [3] describes a technique to decompose
a specification based on a partitioning of the action labels instead of a partitioning of the data parameters.
In [13] it was shown how this type of decomposition can be achieved for mCRL2 processes. Furthermore,
a decomposition technique was used in [10] to improve the efficiency of equivalence checking. However,
that work considers processes that were already in a parallel composition and further decomposes them
based on the actions that occur in each component.

Outline. In Section 2 the syntax and semantics of the considered process algebra are defined. The
decomposition problem is defined in Section 3 and the cleave technique is presented in Section 4. In
Section 5 the cleave technique is improved with state invariants. In Section 6 the implementation
is described shortly and a case study is presented in Section 7 to illustrate the effectiveness of the
decomposition technique in practice. Finally, a conclusion and future work is presented in Section 8.

2 Preliminaries

We assume the existence of an abstract data theory that describes data sorts. Each sort D has an associated
non-empty semantic domain denoted by D. The existence of sorts Bool and Nat with their associated
Boolean (B) and natural number (N) semantic domains respectively, with standard operators is assumed.
Furthermore, we assume the existence of an infinite set of sorted variables. We use e : D to indicate that
e is an expression (or variable) of sort D. The set of free variables of an expression e is denoted FV(e),



3

and a variable that is not free is called bound. An expression e is closed iff FV(e) = /0. A substitution σ
is a total function from variables to closed data expressions of their corresponding sort. We use σ(e) to
denote the syntactic replacement of variables in expression e by their substituted expression.

An interpretation function, denoted by [[. . .]], maps syntactic objects to values within their correspond-
ing semantic domain. We assume that [[e]] for closed expressions e is already defined. Semantic objects
are typeset in boldface to differentiate them from syntax, e.g., the semantics of expression 1+1 is 2. We
denote data equivalence by e≈ f , which is true iff [[e]] = [[ f ]]; for other operators we use the same symbol
in both syntactic and semantic domains. We adopt the usual principle of substitutivity; i.e., for all variables
x, expressions e and closed expressions g and h it holds that if g≈ h then [x← g](e)≈ [x← h](e).

We denote a vector of length n+ 1 by ~d = 〈d0, . . . ,dn〉. Two vectors are equivalent, denoted by
〈d0, . . . ,dn〉 ≈ 〈e0, . . . ,en〉, iff their elements are pairwise equivalent, i.e., di ≈ ei for all 0≤ i≤ n. Given
a vector 〈d0, . . . ,dn〉 and a subset I ⊆ N, we define the projection, denoted by 〈d0, . . . ,dn〉|I , as the vector

〈di0 , . . . ,dil 〉 for the largest l ∈ N such that i0 < i1 < .. . < il ≤ n and ik ∈ I for 0≤ k ≤ l. We write ~d : ~D
for a vector of n+1 variables d0 : D0, . . . ,dn : Dn and denote the projection for a subset of indices I ⊆ N
by ~d|I : ~D|I . Finally, we define Vars(~d) = {d0, . . . ,dn}.

A multi-set over a set A is a total function m : A→ N; we refer to m(a) as the multiplicity of a and we
write H. . .I for a multi-set where the multiplicity of each element is either written next to it or omitted
when it is one. For instance, Ha : 2,bI has elements a and b with multiplicity two and one respectively, and
all other elements have multiplicity zero. For multi-sets m,m′ : A→ N, we write m⊆ m′ iff m(a)≤ m′(a)
for all a ∈ A. Multi-sets m+m′ and m−m′ are defined pointwise: (m+m′)(a) = m(a)+m′(a) and
(m−m′)(a) = max(m(a)−m′(a),0) for all a ∈ A.

2.1 Labelled Transition Systems

Let Λ be the set of (sorted) action labels. We use Da to indicate the sort of action label a ∈ Λ. The set of
all multi-sets over {a(e) | a ∈ Λ,e ∈ Da} is denoted Ω. Note that Da is the semantic domain of Da. In
examples we typically omit the expression and parentheses whenever Da consists of a single element.
Definition 2.1. A labelled transition system with multi-actions, abbreviated LTS, is a tuple L =
(S,s0,Act,→) where S is a set of states; s0 ∈ S is an initial state; Act ⊆ Ω and → ⊆ S×Act× S is
a labelled transition relation.

We typically use ω to denote an element of Act and we write s ω−→ t whenever (s,ω, t) ∈ →. As
usual, a finite LTS can be depicted as an edge-labelled directed graph, where vertices represent states, the
labelled edges represent the transitions, and a dangling arrow indicates the initial state.

We recall the well-known strong bisimulation equivalence relation on LTSs [14].
Definition 2.2. Let Li = (Si,si,Acti,→i) for i ∈ {1,2} be two LTSs. A binary relation R⊆ S1×S2 is a
(strong) bisimulation relation iff for all s Rt:

• if s ω−→1 s′ then there is a state t ′ ∈ S2 such that t ω−→2 t ′ and s′ Rt ′, and

• if t ω−→2 t ′ then there is a state s′ ∈ S1 such that s ω−→1 s′ and s′ Rt ′.
States s and t are bisimilar, denoted s - t, iff s R t for a bisimulation relation R. We write L1 -L2 iff
s1 - s2 and say L1 and L2 are bisimilar.

2.2 Linear Process Equations

We draw inspiration from the process algebra mCRL2 [11], which contains multi-actions, to describe the
elements of an LTS; similar concepts and constructs may appear in other shapes elsewhere.
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Definition 2.3. Multi-actions are defined as follows:

α ::= τ | a(e) | α|α

Constant τ represents the empty multi-action and a ∈ Λ is an action label with an expression e of sort
Da. The semantics of a multi-action α for any substitution σ , denoted by [[α ]]σ , is an element of Ω and
defined inductively as follows: [[τ ]]σ = HI, [[a(e)]]σ = Ha([[σ(e)]])I and [[α|β ]]σ = [[α ]]σ +[[β ]]σ . If α is
a closed expression then the substitution can be omitted.

The states and transitions of an LTS are described by means of a monolithic process called a linear
process equation, which consists of a number of condition-action-effect statements, referred to as sum-
mands. Each summand symbolically represents a partial transition relation between the current and the
next state for a multi-set of action labels. Let PN be a set of process names.

Definition 2.4. A linear process equation (LPE) is an equation of the form:

P(d : D) = ∑
e0:E0

c0→ α0 .P(g0)+ . . . + ∑
en:En

cn→ αn .P(gn)

Where P ∈ PN is the process name, d is the process parameter, and each:

• Ei is a sort ranged over by sum variable ei (where ei 6= d),

• ci is the enabling condition, a boolean expression so that FV(ci)⊆ {d,ei},
• αi is a multi-action τ or a1

i ( f 1
i )| . . . |ani

i ( f ni
i ) such that each ak

i ∈ Λ and f k
i is an expression of sort

Dak
i

such that FV( f k
i )⊆ {d,ei},

• gi is an update expression of sort D, satisfying FV(gi)⊆ {d,ei}.
The +-operator denotes a non-deterministic choice among the summands of the LPE; the ∑-operator

describes a non-deterministic choice among the possible values of the associated sum variable bound by
the ∑-operator. We omit the ∑-operator when the sum variable does not occur freely within the condition,
action and update expressions. We use +i∈I for a finite set of indices I ⊆ N as a shorthand for a number
of summands.

We often consider LPEs where the parameter sort D represents a vector; in that case we write
d0 : D0, . . . ,dn : Dn to indicate that there are n+1 parameters where each di has sort Di. Similarly, we also
generalise the action sorts and the sum operator in LPEs, where we permit ourselves to write a( f0, . . . , fk)
and ∑e0:E0,...,el :El

, respectively.

The operational semantics of an LPE are defined by a mapping to an LTS. Let P be the set of symbols
P(ι) such that P(d : D) = φP, for any P ∈ PN, is an LPE and ι is a closed expression of sort D.

Definition 2.5. Let P(d : D) =+i∈I ∑ei:Ei ci→ αi .P(gi) be an LPE and let ι : D be a closed expression.
The semantics of P(ι), denoted by [[P(ι)]], is the LTS (P,P(ι),Ω,→) where→ is defined as follows: for
all indices i ∈ I, closed expressions ι ′ : D and substitutions σ such that σ(d) = ι ′ there is a transition

P(ι ′)
[[σ(αi)]]−−−−→ P(σ(gi)) iff [[σ(ci)]] = true.

For a given LPE, we refer to the reachable part of the LTS, induced by the LPE, as the state space.
Note that in the interpretation of an LPE a syntactic substitution is applied to the update expressions to
define the reached state. This means that different closed syntactic expressions which correspond to the
same semantic object, e.g., 1+1 and 2 for our assumed sort Nat, result in different states. As stated by
the lemma below, such states are always bisimilar.



5

Machine(0, false)

Machine(3, true) Machine(2, true) Machine(1, true)

Machine(0, true)

Machine(3, false)Machine(2, false)Machine(1, false)

Htoggle(false)I

HcountI HcountI

HcountI

Htoggle(true)I
HcountIHcountI

HcountI

Figure 1: Example LTS for the behaviour of a machine.

Lemma 2.6. Given an LPE P(d : D) = φP. For all closed expressions e,e′ : D such that [[e≈ e′ ]] = true
we have [[P(e)]]- [[P(e′)]].

For any given state space we can therefore consider a representative state space where for each
state a unique closed expression is chosen that is data equivalent. In examples we always consider the
representative state space.
Example 2.7. Consider the LPE below which models a machine that can be toggled with a delay of three
counts. Whenever the counter reaches zero, i.e., n is zero, it can be toggled again after which it counts
down three times, etcetera.

Machine(n : Nat,s : Bool) = (n > 0)→ count .Machine(n−1,s)

+(n≈ 0)→ toggle(s) .Machine(3,¬s)

A representative state space of the machine that is initially off, defined by [[Machine(0, false)]], is shown
in Figure 1.

2.3 A Process Algebra of Communicating Linear Process Equations

We define a minimal language to express parallelism and interaction of LPEs; the operators are taken from
mCRL2 [11] and similar-styled process algebras. Let Comm be the set of communication expressions of
the form a0| . . . |an→ c where a0, . . . ,an,c ∈ Λ are action labels.
Definition 2.8. The process algebra is defined as follows:

S ::= ΓC(S) | ∇A(S) | τH(S) | S ‖ S | P(ι)

Here, A⊆ 2Λ→N is a non-empty finite set of finite multi-sets of action labels, H ⊆ Λ is a non-empty finite
set of action labels and C ⊆ Comm is a finite set of communications. Finally, we have P(ι) ∈ P.

The set S contains all expressions of the process algebra. Operator ΓC describes communication, ∇A

action allowing, τH action hiding and ‖ parallel composition; the elementary objects are the processes,
defined as LPEs.

The operational semantics of expressions in S are defined in Definition 2.11. We first introduce three
auxiliary functions on Ω that are used in the semantics.
Definition 2.9. Given ω ∈Ω we define γC, where C ⊆ Comm, as follows:

γ /0(ω) = ω
γC(ω) = γC\C1(γC1(ω)) for C1 ⊂C

γ{a0|...|an→c}(ω) =





Hc(d)I+ γ{a0|...|an→c}(ω− Ha0(d), . . . ,an(d)I)
if Ha0(d), . . . ,an(d)I⊆ ω

ω otherwise
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For γC to be well-defined we require that the left-hand sides of the communications do not share
labels. Furthermore, the action label on the right-hand side must not occur in any other left-hand side. For
example γ{a|b→c}(a|d|b) = c|d, but γ{a|b→c,a|d→c}(a|d|b) and γ{a|b→c,c→d}(a|d|b) are not allowed.

Definition 2.10. Let ω ∈Ω, H ⊆ Λ and ω ∈Ω. We define θH(ω) as the multi-set ω ′ defined as:

ω ′(a(d)) =

{
0 if a ∈ H
ω(a(d)) otherwise

Finally, given a multi-action α we define α to obtain the multi-set of action labels, e.g., a(3)|b(5) =
Ha,bI. Formally, a(e) = HaI, τ = HI and α|β = α +β . We define ω for ω ∈Ω in a similar way.

Definition 2.11. The operational semantics of an expression Q of S, denoted [[Q]], are defined by the
corresponding LTS (S,Q,Ω,→) with its transition relation defined by the rules below and the transition
relation given in Definition 2.5 for each expression in P. For any ω,ω ′ ∈Ω and P,P′,Q,Q′ expressions of
S:

COM
P ω−→ P′ C ⊆ Comm

ΓC(P)
γC(ω)−−−→ ΓC(P′)

ALLOW
P ω−→ P′ A⊆ 2Λ→N ω ∈ A

∇A(P)
ω−→ ∇A(P′)

HIDE
P ω−→ P′ H ⊆ Λ

τH(P)
θH(ω)−−−→ τH(P′)

PAR
P ω−→ P′ Q ω ′−→ Q′

P ‖ Q ω +ω ′−−−→ P′ ‖ Q′

PARR
Q ω−→ Q′

P ‖ Q ω−→ P ‖ Q′
PARL

P ω−→ P′

P ‖ Q ω−→ P′ ‖ Q

3 The Decomposition Problem

The state space of a monolithical LPE may grow quite large and generating that state space may either
take too long or require too much memory. We are therefore interested in decomposing an LPE into two
or more LPEs, where the latter are referred to as components, such that the state spaces of the resulting
components are smaller than that of the original state space. Such a decomposition is considered valid iff
the original state space is strongly bisimilar to the state space of these components when combined under
a suitable context. We formalise this problem as follows.

Definition 3.1. Let P(~d : ~D) = φ be an LPE and~ι : ~D a closed expression. The LPEs P0(~d|I0 : ~D|I0) = φ0

to Pn(~d|In : ~D|In) = φn, for indices I0, . . . , In ⊆ N, are a valid decomposition of P and~ι iff there is a context
C such that:

[[P(~ι)]]- [[C[P0(~ι|I0) ‖ . . . ‖ Pn(~ι|In)]]]

Where C[P0(~ι|I0) ‖ . . . ‖ Pn(~ι|In)] is an expression in S. We refer to the expression C[P0(~ι|I0) ‖ . . . ‖ Pn(~ι|In)]
as the composition.

In the next sections, we will show that a suitable context C can be constructed using the operators
from S, and we define a decomposition technique that results in exactly two components (a cleave). The
technique can, in principle, be applied recursively to the smaller components. The primary benefit of
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a valid decomposition is that a state space that is equivalent to the original state space can be obtained
as follows. First, the state space of each component is derived separately. The composition can then be
derived from the component state spaces, exploiting the rules of the operational semantics. The component
state spaces can be minimised modulo bisimilarity, which is a congruence with respect to the operators
of S before deriving the results of the composition expression. The composition resulting from these
minimised components can be considerably smaller than the original state space, because also the original
state space can often be reduced considerably modulo strong bisimilarity after generation. This process is
referred to as compositional minimisation.

4 A Solution to the Decomposition Problem

A basic observation that we exploit in our solution to the decomposition problem is that when hiding
label c in a multi-action α|c, we are left with multi-action α , provided that c does not occur in α .
When the multi-action α is an event that is possible in a monolithic LPE and the label c is the result
of a communication of two components, we can effectively exchange information between multiple
components, without this information becoming visible externally. The example below illustrates the idea
using a naive but valid solution to the decomposition technique on the LPE of Example 2.7.
Example 4.1. Reconsider the LPE Machine we defined earlier, and consider the two components depicted
below.

MachineV (n : Nat) = ∑
s:Bool

(n > 0)→ count|sync0
V (n,s) .MachineV (n−1)

+ ∑
s:Bool

(n≈ 0)→ τ|sync1
V (n,s) .MachineV (3)

MachineW (s : Bool) = ∑
n:Nat

(n > 0)→ τ|sync0
W (n,s) .MachineW (s)

+ ∑
n:Nat

(n≈ 0)→ toggle(s)|sync1
W (n,s) .MachineW (¬s)

Each component describes part of the behaviour and knows the value of parameter n or s, but not the other.
To cater for this, it is ‘over-approximated’ by a sum variable. The state space of MachineV (0) is shown
below. The synchronisation actions sync expose the non-deterministically chosen values of the unknown
parameters.

MachineV (0)

MachineV (3)

MachineV (2)

MachineV (1)

Hsync1
V (0, true)I

Hsync1
V (0, false)I

Hcount,sync0
V (3, true)I

Hcount,sync0
V (3, false)I

Hcount,sync0
V (2, false)I

Hcount,sync0
V (2, true)I

Hcount,sync0
V (1, true)I

Hcount,sync0
V (1, false)I

Enforcing synchronisation of the sync actions, the context C can be chosen as follows to achieve a valid
decomposition:

∇{HtoggleI,HcountI}(τ{sync0,sync1}(Γ{sync0
V |sync0

W→sync0,sync1
V |sync1

W→sync1}(MachineV (0) ‖MachineW (false))))

Unfortunately the state space of MachineW (false) in the above example is infinitely branching and it
has no finite state space that is strongly bisimilar to it, rendering the decomposition useless in practice.
We will subsequently develop a more robust solution.
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4.1 Separation Tuples

To obtain a useful decomposition it can be beneficial to reduce the number of parameters that occur
in the synchronisation actions, because these then become a visible part of the transitions in the state
spaces of the individual components. In the worst case, as illustrated by LPE MachineW of Example 4.1,
synchronisation actions lead to a component having an infinite state space despite the fact that the state
space of the original LPE is finite.

One observation we exploit is that in some cases we can actually remove the synchronisation for
summands completely. For instance, in the first summand of Machine in Example 2.7, the value of
parameter s remains unchanged and the condition is only an expression containing parameter n. We refer
to summands with such a property as independent summands. When defining the context C, we can allow
a component to execute multi-actions of its independent summands without enforcing a synchronisation
with the other component. This allows, for instance, component MachineV to independently execute
(multi-)action count without synchronising the values of s and n with MachineW .

However, this might introduce an issue when (some of) the action labels of the independent summand
also occur in action expressions of other summands. To see this, consider an LPE that contains two
summands with a as action expression that are independent in different components and another summand
with a|a as action expression. In this case, we expect a|a to be allowed in the composition expression
to allow transitions from the last summand to occur. However, then the two independent summands in
different components could also result in a simultaneous transition due to rule Par and that transition was
not possible in the monolithic LPE. We solve the problem by introducing a tag action label and only allow
the execution of independent actions with a single tag in the composition.

A second observation that we exploit is that if there are independent summands, then not every
summand needs to be present in both components. However, we must ensure that each summand of the
monolithic LPE is covered by at least one of the two components that we extract from the LPE. The
summands that we extract for a given component are identified by a set of indices J of the summands of
the monolithic LPE. Of these, we furthermore can identify summands that are dependent and summands
that are independent. The indices for the latter are collected in the set K.

A third observation that can be utilised is that for the dependent summands, there is some degree of
flexibility for deciding which part of the summand of the monolithic LPE will be contributed by which
component. More specifically, by carefully distributing the enabling condition c and action expression α of
a summand of the monolithic LPE over the two components, the amount of information (i.e., information
about ‘missing’ parameters, given by a synchronisation expression h) that needs to be exchanged between
these two components when they execute their respective summands, can be minimised.

Note that the way we distribute the list of process parameters of the monolithic LPE over the two
components may affect which summands can be considered independent. For instance, had we decided to
assign the (multi-)action count to MachineW and toggle to MachineV , we would not be able to declare
count’s summand independent. Consequently, the set of process parameter indices U , assigned to a
component, and the set K are mutually dependent. To capture this relation, we introduce the concept of a
separation tuple. The concept of a separation tuple, a 7-tuple which we introduce below, formalises the
required relation between K, J and U , and the conditions c, and action α and synchronisation expressions
h of a component. To define the expressions we use indexed sets where the index of each element,
indicated by a subscript, determines the index of the summand to which the expression belongs.

Definition 4.2. Let P(~d : ~D) =+i∈I ∑ei:Ei ci → αi .P(~gi) be an LPE. Let (P,U,K,J,cU ,αU ,hU) be a
separation tuple such that U ⊆ N is a set of parameter indices and K ⊆ J ⊆ I are two sets of summand
indices. Furthermore, cU ,αU and hU are indexed sets of condition, action and update expressions
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respectively such that for all i ∈ (J \K) it holds that FV(cU
i )∪ FV(αU

i )∪ FV(~hU
i ) ⊆ Vars(~d)∪ {ei}.

Finally, for all i ∈ K it holds that FV(ci)∪FV(αi)∪FV(~gi|U)⊆ Vars(~d|U)∪{ei}.
The separation tuple induces an LPE, where Uc = N\U , as follows:

PU(~d|U : ~D|U) = +
i∈(J\K)

∑
ei:Ei,~d|Uc :~D|Uc

cU
i → αU

i |synci
U(~h

U
i ) .PU(~gi|U)

+ +
i∈K

∑
ei:Ei

ci→ αi|tag .PU(~gi|U)

We assume that action labels synci
V and synci

W , for any i ∈ I, and label tag does not occur in α j, for any
j ∈ I, to ensure that these action labels are fresh.

The components, induced by two separation tuples, may be combined in a context that enforces
synchronisation of the sync events and hiding their communication trace so that all actions left can be
traced back to the monolithic LPE from which the components originate. Under specific conditions, this
is achieved by the following context.
Definition 4.3. Let P(~d : ~D) =+i∈I ∑ei:Ei ci → αi .P(~gi) be an LPE and (P,V,KV ,JV ,cV ,αV ,hV ) and
(P,W,KW ,JW ,cW ,αW ,hW ) be separation tuples. Let PV (~d|V : ~D|V ) = φV and PW (~d|W : ~D|W ) = φW be the
induced LPEs according to Definition 4.2. Let ι : ~D be a closed expression. Then the composition
expression is defined as:

τ{tag}(∇{αi | i∈I}∪{αi|tag | i∈(KV∪KW )}(τ{synci | i∈I}(Γ{synci
V |synci

W→synci | i∈I}(PV (~ι|V ) ‖ PW (~ι|W )))))

Before we proceed to identify the conditions under which two separation tuples induce a valid
decomposition using the above context, we revisit Example 2.7 to illustrate the concepts introduced so far.
Example 4.4. Reconsider the LPE presented in Example 2.7. The separation tuple (P,V,{0},{0,1},{(n >
0)0,(n≈ 0)1},{(count|tag)0,(τ)1},{〈〉1}) induces component PV and (P,W, /0,{1},{true1},{toggle(s)1},
{〈〉1}) component PW .

PV (n : Nat) = (n > 0)→ count|tag .PV (n−1)

+(n≈ 0)→ sync1
V .PV (3)

PW (s : Bool) = true→ toggle(s)|sync1
W .PW (¬s)

Note that we omitted the ∑-operator in the summands of PV since sum variable s does not occur as a
free variable in the expressions; and similar reasoning for PW . The state spaces of components PV (0) and
PW (false) are shown below.

PV (0)

PV (3)

PV (2)

PV (1)

Hsync1
V I Hcount,tagI

Hcount,tagIHcount,tagI

PW (false) PW (true)

Htoggle(false),sync1
W I

Htoggle(true),sync1
W I

We obtain the following composition according to Definition 4.3:

τ{tag}(∇{HtoggleI,HcountI,Hcount,tagI}(τ{sync0,sync1}(

Γ{sync0
V |sync0

W→sync0,sync1
V |sync1

W→sync1}(PV (0) ‖ PW (false)))))

The state space of this expression is strongly bisimilar to the state space of Machine(0, false) shown in
Example 2.7. As shown above the state space of PV (0) has four states and transitions, and the state space
of PW (false) has two states and transitions, which are both smaller than the original state space. Their
composition has the same size as the original state space and no further minimisation can be achieved.
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4.2 Cleave Correctness Criteria

It may be clear that not every decomposition which satisfies Definition 4.3 yields a valid decomposition
(in the sense of Definition 3.1). For example, replacing the condition expression true in Example 4.4
of the summand in PW by false would not result in a valid decomposition. Our aim in this section is to
present the necessary and sufficient conditions to establish that the state space of the monolithic LPE is
bisimilar to the state space of the composition expression resulting from Definition 4.3.

Consider any decomposition of an LPE P according to Definition 4.3, induced by separation tuples
(P,V,KV ,JV ,cV ,αV ,hV ) and (P,W,KW ,JW ,cW ,αW ,hW ). Note that bisimilarity requires states that are
related to mimick each other’s steps. Since three LPEs are involved (the LPE P and the two components
induced by the separation tuples), we must consider situations that can emerge from any of these three
LPEs executing a (multi-)action.

Suppose that the monolithic LPE P can take a step; this must be because the enabling condition of a
summand of P holds true. Then that same summand must appear in at least one component induced by a
separation tuple. Vice versa, in case one of the components can take a step, then we must be able to trace
back that step to the monolithic LPE. In case the summand is dependent, then we must ensure that that
summand is covered by both components, and, together, both components cover all summands. This gives
rise to requirement (SYN): JV = I \KV and JW = I \KW .

For the independent summands with indices KV , we see that Definition 4.3 guarantees that the
free variables of their condition, action and update expressions are taken from ~d|V . Dually for the
independent summands related to KW . However, this is not sufficient to guarantee full independence of
both components: what may happen is that the execution of a summand that is assumed to be independent
still modifies the value of a process parameter of the other component, violating the idea of independence.
In order to guarantee true independence, we add requirement (IND): for all r ∈ KV we have ~gr |W = ~d|W ,
and, dually, for all r ∈ KW we demand ~gr |V = ~d|V . Note that in case KV and KW overlap, condition (IND)
guarantees that the involved summands only induce self-loops.

For the dependent summands, i.e., those with an index r in (JV ∩JW ), both components must necessar-
ily execute their r-indexed summands to match the r-indexed summand of P. Note that the enabledness of
summand r in P depends on the enabling condition cr. Consequently, if cr holds true, then the r-indexed
conditions cV

r and cW
r must also hold true. Moreover, since we are dealing with dependent summands,

the multi-action expression αV
r |αW

r must reduce to αr under these conditions. It is important to observe
that also the additional synchronisation vectors~hV and~hW must agree, for otherwise the sync actions
of both components cannot participate in the synchronisation. Note that we do not need to explicitly
require that the next state reached by P after executing its r-indexed summand can also be reached by the
individual components upon executing their r-indexed summands, since this property is guaranteed by
the construction in Definition 4.2. These requirements are guaranteed by condition (ORI). Vice versa,
whenever both components can simultaneously execute their r-indexed summand, we must ensure that
also the monolithic LPE P can execute its r-indexed summand. Condition (COM) ensures that this
requirement is met. A technical complication in formalising requirement (COM), however, is that the
sum variables of the individual components carry the same name in all three LPEs. In particular, from
the fact that both individual components can successfully synchronise, we cannot deduce a unique value
assigned to these homonymous sum-variables. We must therefore also ensure that the resulting next states
reached in the components by executing the r-indexed summands indeed is the same as could have been
reached by executing the r-indexed summand in P. Contrary to requirement (ORI), this property is not
guaranteed by the construction of Definition 4.2, so there is a need to explicitly require it to hold.

A pair of separation tuples of P satisfying the above requirements is called a cleave of P. Below, we



11

formalise this notion, together with the requirements we informally introduced above.

Definition 4.5. Let P(~d : ~D) =+i∈I ∑ei:Ei ci → αi .P(~gi) be an LPE and (P,V,KV ,JV ,cV ,αV ,hV ) and
(P,W,KW ,JW ,cW ,αW ,hW ) be separation tuples as defined in Definition 4.2. The two separation tuples are
a cleave of P iff the following requirements hold.

SYN. JV = I \KW and JW = I \KV .

IND. For all r ∈ KV , ~gr |W = ~d|W , and for all r ∈ KW , ~gr |V = ~d|V .

ORI. For all r ∈ (JV ∩ JW ) and substitutions σ satisfying [[σ(cr)]], also:
• [[σ(cV

r )]] and [[σ(cW
r )]], and

• [[σ(~hV
r )]] = [[σ(~hW

r ))]], and
• [[σ(αV

r |αW
r )]] = [[σ(αr)]].

COM. For all r ∈ (JV ∩ JW ) and substitutions σ and σ ′ satisfying [[σ(cV
r )]] and [[σ ′(cW

r )]] and [[σ(~hV
r )]] =

[[σ ′(~hW
r )]], there is a substitution ρ such that [[ρ(~d|V )]] = [[σ(~d|V )]] and [[ρ(~d|W )]] = [[σ ′(~d|W )]] and:

• [[ρ(cr)]], and
• [[σ(αV

r )|σ ′(αW
r )]] = [[ρ(αr)]], and

• [[σ(~gr |V )]] = [[ρ(~gr |V )]], and
• [[σ ′(~gr |W )]] = [[ρ(~gr |W )]].

Observe that the separation tuples inducing the decomposition obtained Example 4.4 are a cleave
indeed. Moreover, we already argued informally that the decomposition yields a state space that is bisimilar
to the original monolithic LPE. We remark that also the decomposition we obtained in Example 4.1 can
be achieved by a cleave. However, we can also observe that this decomposition is not a particularly useful
cleave for the purpose of compositional minimisation.

We finish this section with a formal claim stating that a cleave induces a valid decomposition of a
monolithic LPE. The complete proof can be found in Appendix A.

Theorem 4.6. Let P(~d : ~D) =+i∈I ∑ei:Ei ci→ αi .P(~gi) be an LPE and let (P,V,KV ,JV ,cV ,αV ,hV ) and
(P,W,KW , JW ,cW ,αW ,hW ) be a cleave as defined in Definition 4.5. The composition expression defined
in Definition 4.3 is a valid decomposition as defined in Definition 3.1 for a closed expression~ι ′′ : ~D.

Proof. We show that [[P(~ι ′′)]] is strongly bisimilar to [[τH ′(∇A(τH(ΓC(PV (~ι ′′|V ) ‖ PW (~ι ′′|W )))))]] (the com-
position expression of Definition 4.3) where H ′ = {tag}, A = {αi | i ∈ I}∪ {αi|tag | i ∈ (KV ∪KW )},
H = {synci | i ∈ I} and C = {synci

V |synci
W → synci | i ∈ I} and therefore a valid decomposition.

Let (S1,s1,Act1,→1) = [[P(~ι ′′)]] and (S2,s2,Act2,→2) = [[τH ′(∇A(τH(ΓC(PV (~ι ′′|V ) ‖ PW (~ι ′′|W )))))]]. Let
R be the smallest relation such that P(~ι ′)RτH ′(∇A(τH(ΓC(PV (~ι ′|V ) ‖ PW (~ι ′|W ))))) for any closed expression
~ι ′ : ~D. We show that R is a strong bisimulation relation up to -. Pick any arbitrary closed expression~ι : ~D
and suppose that P(~ι) R τH ′(∇A(τH(ΓC(PV (~ι|V ) ‖ PW (~ι|W ))))) holds.

• Case P(~ι) ω−→1 Q′. There is an index r ∈ I and a closed expression l : Er such that for σ = [~d←
~ι ,er← l] it holds that [[σ(cr)]], ω = [[σ(αr)]] and Q′ = P(σ(~gr)). There are three cases to consider
based on the index r.

– Case r ∈ I \ (KV ∪KW ). From SYN this means that r ∈ (JV ∩ JW ). We derive the transitions
using requirement ORI. First, [[σ(cV

r )]] and [[cW
r )]] and therefore:

PV (~ι|V )
[[σ(αV

r |syncV
r (~h

V
r ))]]−−−−−−−−−−−→2 PV (σ(~gr |V )) and PW (~ι|W )

[[σ(αW
r |syncW

r (~hW
r ))]]−−−−−−−−−−−→2 PW (σ(~gr |W ))
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Furthermore, [[σ(αr)]] = [[σ(αV
r |αW

r )]] and by rule PAR there is:

PV (~ι|V ) ‖ PW (~ι|W )
[[σ(αr)|syncV (σ(~hV

r ))|syncW (σ(~hW
r )))]]−−−−−−−−−−−−−−−−−−−−−→2 PV (σ(~gr |V )) ‖ PW (σ(~gr |W ))

From [[σ(~hV
r )]] = [[σ(~hW

r )]] follows θH ′(θH(γC([[σ(αr)|syncV (σ(~hV
r ))|syncW (σ(~hW

r ))]]))) =
[[σ(αr)]] and from [[σ(αr)]] ∈ A we can derive using the operational rules that:

τH ′(∇A(τH(ΓC(PV (~ι|V ) ‖ PW (~ι|W )))))
[[σ(αr)]]−−−−→2 τH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖ PW (σ(~gr |W ))))))

Finally, P(σ(~gr))R τH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖ PW (σ(~gr |W )))))).

– Case r ∈KV . In short, we derive PV (~ι|V )
[[σ(αr)|tag]]−−−−−−−→2 PV (σ(~gr |V )) because [[σ(cr)]] holds. The

composition expression has a transition labelled [[σ(αr)]] to the state τH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖
PW (σ(~gr |W )))))) from PARL, IND and the definition of auxiliary operators. Finally, by defi-
nition P(σ(~gr))R τH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖ PW (σ(~gr |W )))))).

– Case r ∈ KW . Similar to case r ∈ KV .

• Case τH ′(∇A(τH(ΓC(PV (~ι|V ) ‖ PW (~ι|W )))))
ω−→2 Q′. We can derive that there is an expression

Q ∈ S such that Q′ = τH ′(∇A(τH(ΓC(Q)))), and ω ′ ∈Ω such that ω = θH ′(θH(γC(ω ′))), PV (~ι|V ) ‖
PW (~ι|W )

ω ′−→2 Q and ω ∈ A. There are three cases where a parallel composition results in a transition.

Suppose that PV (~ι|V ) ‖ PW (~ι|W )
ω ′−→2 Q is due to:

– Rule PAR with premise PV (~ι|V )
ωV−→2 P′V and PW (~ι|W )

ωW−−→2 P′W . Then there is a transition

PV (~ι|V ) ‖ PW (~ι|W )
ωV+ωW−−−−→2 P′V ‖ P′W such that ωV + ωW = ω ′ and Q = P′V ‖ P′W . From

θH ′(θH(γC(ωV +ωW ))) ∈ A we know that γC(ωV +ωW ) = ω +HsyncrI, for some index r ∈ I,
because only a single tag is allowed with original action labels. Therefore, it also follows that
r ∈ I \ (KV ∪KW ).
Observe that the sets of indices V and V c are disjoint (and similarly W and W c). Also ~d|V
are the parameters of PV and ~d|V c are sum variables in the r-indexed summand for which
any value can be chosen. Therefore, by the existence of these transitions in the premise
there are closed expressions l, l′ : Er, and ~κ : ~D|V c , ~κ ′ : ~D|W c with the substitutions σ =

[~d|V ←~ι|V , ~d|V c ← ~κ,er ← l] and σ ′ = [~d|W ←~ι|W , ~d|W c ← ~κ ′,er ← l′] such that [[σ(cV
r )]]

holds, ωV = [[σ(αV
r |syncV

r (~h
V
r ))]] and P′V = PV ([[σ(~gr |V )]]). Furthermore, [[σ ′(cW

r )]] holds,

ωW = [[σ ′(αW
r |syncW

r (~hW
r ))]] and P′W = PW ([[σ ′(~gr |W )]]). Finally, [[σ(~hV

r )]] = [[σ ′( ~hW
r )]] due

to synchronisation.
From the requirement COM it follows that there is a closed expression l′′ : Er such that for
ρ = [~d←~ι ,er← l′′] that [[ρ(cr)]] holds and [[σ(αV

r )|σ ′(αW
r )]] = [[ρ(αr)]]. We conclude that

P(~ι) ω−→1 P(ρ(~gr)). Furthermore, from [[σ(~gr |V )]] = [[ρ(~gr |V )]], and [[σ ′(~gr |W )]] = [[ρ(~gr |W )]]
and Lemma 2.6 it follows that PV (σ(~gr |V ))-PV (ρ(~gr |V )) and PW (σ ′(~gr |W ))-PW (ρ(~gr |W ))
By the congruence of strong bisimilarity with respect to S we obtain that:

τH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖ PW (σ ′(~gr |W )))))- τH ′(∇A(τH(ΓC(PV (ρ(~gr |V )) ‖ PW (ρ(~gr |W )))))

Finally, P(ρ(~gr))R τH ′(∇A(τH(ΓC(PV (ρ(~gr |V )) ‖ PW (ρ(~gr |W )))).
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– Rule PARL with premise PV (~ι|V )
ω ′−→2 P′V . Then Q = P′V ‖ PW (~ι|W ). Pick an arbitrary index

r ∈ JV . If r ∈ JV \KV then the action expression contains an action labelled syncV
r , which

means that θH ′(θH(γC(ω ′))) /∈ A. Contradiction, and thus r ∈ KV . Now, we can show that

P′ = PV (σ(~gr |V )) and that there is a transition P(~ι) ω ′−→1 P(σ(~gr)) by IND for a suitable
substitution σ . Finally, P(σ(~gr))R τH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖ PW (σ(~gr |W ))))).

– Rule PARR with premise PV (~ι|W )
ω ′−→2 P′W , along the same lines as above.

We conclude that [[P(~ι ′′|V )]]- [[τH ′(∇A(τH(ΓC(PV (~ι ′′|V ) ‖ PW (~ι ′′|W )))))]].

5 State Invariants

One way to restrict the behaviour of the components is to strengthen the condition expressions of each
summand to avoid certain outgoing transitions. We show that so-called state invariants [1] can be used for
this purpose. These state invariants are typically formulated by the user based on intuition of the model
behaviour.

Definition 5.1. Given an LPE P(d : D) =+i∈I ∑ei:Ei ci→ αi .P(gi). A boolean expression ψ such that
FV(ψ)⊆ {d} is called a state invariant iff the following holds: for all i ∈ I and closed expressions ι : D
and l : Ei such that [[[d← ι ,ei← l](ci∧ψ)]] holds then [[[d← [d← ι ,ei← l](gi)](ψ)]] holds as well.

The essential property of a state invariant is that whenever it holds for the initial state it is guaranteed
to hold for all reachable states in the state space. This follows relatively straightforward from its definition.
Next, we define a restricted LPE where (some of) the condition expressions are strengthened with a
boolean expression.

Definition 5.2. Given an LPE P(d : D) =+i∈I ∑ei:Ei ci→ αi .P(gi), a boolean expression ψ such that
FV(ψ)⊆ {d} and a set of indices J ⊆ I. We define the restricted LPE, denoted by Pψ,J , as follows:

Pψ,J(d : D) =+
i∈J

∑
ei:Ei

ci∧ψ → αi .Pψ,J(gi)

+ +
i∈(I\J)

∑
ei:Ei

ci→ αi .Pψ,J(gi)

Note that if the boolean expression ψ in Definition 5.2 is a state invariant for the given LPE then for
all closed expressions~ι : ~D such that [[[~d←~ι ](ψ)]] holds, it holds that [[P(~ι)]]- [[Pψ,J(~ι)]], for any J ⊆ I.
Therefore, we can use a state invariant of an LPE to strengthen all of its condition expressions.

Moreover, a state invariant of the original LPE can also be used to restrict the behaviour of the
components obtained from a cleave, as formalised in the following theorem. Note that the set of indices is
used to only strengthen the condition expressions of summands that introduce synchronisation, because
the condition expressions of independent summands cannot contain the other parameters as free variables.
Furthermore, the restriction can be applied to independent summands before the decomposition.

Theorem 5.3. Let P(~d : ~D) = +i∈I ∑ei:Ei ci → αi . P(~gi) be an LPE and (V,KV ,JV ,cV ,αV ,hV ) and
(W,KW ,JW ,cW ,αW ,hW ) be separations tuples as defined in Definition 4.2. Let ψ be a state invari-
ant of P. Given closed expressions~ι : ~D such that [[[~d←~ι ](ψ)]] holds the following expression, where
C = JV ∩ JW , is a valid decomposition:

τ{tag}(∇{αi | i∈I}∪{αi|tag | i∈(IindV∪KW )}(τ{synci | i∈I}(Γ{synci
V | synci

W→synci | i∈I}(P
ψ,C
V (~ι|V ) ‖ Pψ,C

W (~ι|W )))))
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Proof. This proof is similar to the proof of Theorem 4.6 with the strong bisimilation relation only defined
for states where the invariant holds. The full proof can be found in Appendix B.

Observe that the predicate n≤ 3 is a state invariant of the LPE Machine in Example 2.7. Therefore,
we can consider the process Machineψ,I

W in Example 4.1 for the composition expression, which is finite.
This would yield two finite components, but the state space of Machineψ,I

W is larger than that of PW in
Example 4.4.

Finally, we remark that the restricted state space contains deadlock states whenever the invariant does
not hold. These deadlocks can be avoided by applying the invariant to the update expression of each
parameter instead of the parameter itself without affecting the correctness.

6 Implementation

While Theorem 4.6 and Definition 4.5 together provide the conditions that guarantee that a cleave yields
a valid decomposition, requirements (ORI) and (COM) of the latter definition are difficult to ensure
due to the semantic nature of these requirements. In practice, we need to effectively approximate these
correctness requirements using static analysis.

While we leave it to future work to investigate to what extent a precise and efficient static analysis is
possible, we have implemented an automated prototype translation that, given a user-supplied partitioning
of the process parameters of the monolithic LPE, exploits a simple static analysis to obtain components that
are guaranteed to satisfy the requirements of a cleave. First of all the prototype identifies the independent
summands in both components. Furthermore, we decide on each clause of a conjunctive condition and
action in the action expression where it belongs. This analysis is based on the observation that whenever
all free variables of an expression occur in one component then that expression should be kept in that
component, and thus removed from the other component.

7 Case Study

We have used our prototype to carry out several experiments using specifications written in the high-level
language mCRL2 [11], a process algebra generalising the one of Section 2.3. To apply the decomposition
technique we use the LPEs that the mCRL2 toolset [4] generates as part of the pre-processing step the
toolset uses before further analyses of the specifications are conducted. We compare the results of the
monolithic exploration and the exploration based on the decomposition technique.

7.1 Alternating Bit Protocol

The alternating bit protocol (ABP) is a communication protocol that uses a single control bit, which is sent
along the message, to implement a reliable communication channel over two unreliable channels [11]. The
specification contains four processes for the sender, receiver and two unreliable communication channels.

First, we choose the partitioning of the parameters such that one component (ABPV ) contains the
parameters of the sender and one communication channel, and the other component (ABPW ) contains
the parameters of the receiver and the other communication channel. We observe that both components
are larger than the original state space, and can also not be minimised further, illustrating that traditional
compositional minimisation is, in this case, not particularly useful.
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Table 1: Metrics for the alternating bit protocol.

Model original minimised

#states #trans #states #trans
ABP 182 230 48 58
ABPV 204 512 204 512
ABPW 64 196 60 192
ABP

ψ
V 104 180 53 180

ABP
ψ
W 58 110 21 108

ABP
ψ
V ‖ ABP

ψ
W 172 220 48 58

ABP′V 5 35 5 35
ABP′W 78 118 28 42
ABP′V ‖ ABP′W 76 90 48 58

Further analysis showed that the behaviour of each process heavily depends on the state of the
other processes, which results in large components as this information is lost. We can encode this
global information as a state invariant based on the control flow parameters. The second cleave is
obtained by obtaining two restricted components (ABPψ

V and ABP
ψ
W ) using this invariant. This yields a

useful decomposition. Finally, we have obtained a cleave into components ABP′V and ABP′W where the
partitioning is not based on the original processes. This yields a very effective cleave as shown in Table 1.

7.2 Practical Examples

Table 2: State space metrics for various practical specifications.

Model Ref exploration minimised

#states #transitions #states #transitions
Chatbox [18] 65 536 2 621 440 16 144
ChatboxV 128 4 352 128 3 456
ChatboxW 512 37 888 8 440
ChatboxV ‖ ChatboxW 1 024 22 528 16 144

Register [12] 914 048 1 885 824 1 740 3 572
RegisterV 464 10 672 464 10 672
RegisterW 97 280 273 408 5 760 16 832
RegisterV ‖ RegisterW 76 416 157 952 1 740 3 572

WMS [17] 155 034 776 2 492 918 760 44 526 316 698 524 456
WMSV 212 992 5 144 576 212 992 2 801 664
WMSW 1 903 715 121 945 196 414 540 26 429 911
WMSV ‖WMSW 64 635 040 1 031 080 812 44 526 316 698 524 456

The Chatbox specification [18] describes a chat room facility in which four users can join, leave and
send messages. This specification is interesting because it is described as a monolithic process, which
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means that compositional minimisation is not applicable in the first place. The size of the components
(ChatboxV and ChatboxW ) before and after minimisation modulo strong bisimulation are presented to
show that these are small and can be further reduced. The composition (ChatboxV ‖ChatboxW ) shows that
indeed the decomposition technique can be used quite successfully, because the result under exploration is
much smaller than the original state space. Finally, we have also listed the size of the minimised original
state space (which is equal to the minimised composition) as it indicates the best possible result. The
Register specification [12] describes a wait-free handshake register and the WMS specification a workload
management system [17], used at CERN. For the latter two experiments we found that partitioning the
parameters into a set of so-called control flow parameters and remaining parameters yields the best results.

We also consider the total execution time and maximum amount of memory required to obtain the
original state space using exploration and the state space obtained using the decomposition technique, for
which the results can be found in Table 3. The execution times in seconds or hours required to obtain
the state space under “exploration” in Table 2, excluding the final minimisation step of the original or
composition state space which are only shown for reference. The cost of the static analysis of the cleave
itself was in the range of several milliseconds.

Table 3: Execution times and maximum memory usage measurements.
Model monolithic decomposition

time memory time memory
Chatbox 4.76s 21.9MB 0.2s 15.7MB
Register 7.94s 99.7MB 1.56s 47.7MB
WMS 2.4h 15.1GB 0.8h 11.8GB

8 Conclusion

We have presented a decomposition technique, referred to as cleave, that can be applied to any monolithic
process with the structure of an LPE and have shown that the result is always a valid decomposition.
Furthermore, we have shown that state invariants can be used to improve the effectiveness of the de-
composition. We consider defining a static analysis to automatically derive the parameter partitioning
for the practical application of this technique as future work. Furthermore, the cleave is currently not
well-suited for applying the typically more useful abstraction based on (divergence-preserving) branching
bisimulation minimisation [8]. The reason for this is that τ-actions might be extended with synchronisation
actions and tags. As a result they become visible, effectively reducing branching bisimilarity to strong
bisimilarity.

References

[1] Marc Bezem & Jan Friso Groote (1994): Invariants in Process Algebra with Data. In Bengt Jonsson &
Joachim Parrow, editors: CONCUR, LNCS 836, Springer, pp. 401–416, doi:10.1007/978-3-540-48654-1 30.
Available at https://doi.org/10.1007/978-3-540-48654-1_30.

[2] Pierre Bouvier, Hubert Garavel & Hernán Ponce de León (2020): Automatic Decomposition of Petri Nets into
Automata Networks - A Synthetic Account. In Ryszard Janicki, Natalia Sidorova & Thomas Chatain, editors:
Application and Theory of Petri Nets and Concurrency - 41st International Conference, PETRI NETS 2020,



17

Paris, France, June 24-25, 2020, Proceedings, Lecture Notes in Computer Science 12152, Springer, pp. 3–23,
doi:10.1007/978-3-030-51831-8 1. Available at https://doi.org/10.1007/978-3-030-51831-8_1.

[3] Ed Brinksma, Rom Langerak & Peter Broekroelofs (1993): Functionality Decomposition by Compositional
Correctness Preserving Transformation. In Costas Courcoubetis, editor: CAV, LNCS 697, Springer, pp.
371–384, doi:10.1007/3-540-56922-7 31.

[4] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P. de Vink, Wieger
Wesselink, Anton Wijs & Tim A. C. Willemse (2019): The mCRL2 Toolset for Analysing Concurrent Systems -
Improvements in Expressivity and Usability. In Tomás Vojnar & Lijun Zhang, editors: TACAS, LNCS 11428,
Springer, pp. 21–39, doi:10.1007/978-3-030-17465-1 2.

[5] Shing-Chi Cheung & Jeff Kramer (1996): Context Constraints for Compositional Reachability Analysis. ACM
Trans. Softw. Eng. Methodol. 5(4), pp. 334–377, doi:10.1145/235321.235323.

[6] Hubert Garavel, Frédéric Lang, Radu Mateescu & Wendelin Serwe (2013): CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), pp. 89–107, doi:10.1007/s10009-012-0244-z.

[7] Hubert Garavel, Frédéric Lang & Laurent Mounier (2018): Compositional Verification in Action. In Falk Howar
& Jiri Barnat, editors: FMICS, LNCS 11119, Springer, pp. 189–210, doi:10.1007/978-3-030-00244-2 13.

[8] R. J. van Glabbeek, B. Luttik & N. Trc̆ka (2009): Branching Bisimilarity with Explicit Divergence. Fundam.
Inform. 93(4), pp. 371–392, doi:10.3233/FI-2009-109.
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The appendix is only provided for completeness. These proofs will be made available in a
preprint.

A Proof of Theorem 4.6

The following definition and proposition is due to [15]. These are in the context of two LTSs L1 =
(S1,s1,Act1,→1) and L2 = (S2,s2,Act2,→2). We introduce for a binary relation R⊆ S1×S2 the following
notation -R- to denote the relational composition such that -R- = {(s, t) ∈ S1×S2 | ∃s′ ∈ S1, t ′ ∈ S2 :
s- s′∧ s′ Rt ′∧ t ′- t}.
Definition A.1. A binary relation R⊆ S1×S2 is a strong bisimulation up to - iff for all s Rt it holds that:

• if s ω−→ s′ then there is a state t ′ ∈ S2 such that t ω−→ t ′ and s′-R- t ′.

• if t ω−→ t ′ then there is a state s′ ∈ S1 such that t ω−→ t ′ and t ′-R- s′.

Proposition A.2. If R is a strong bisimulation up to - then R⊆ -
This result establishes that if R is a strong bisimulation up to - then for any pair (s, t) ∈ R we can

conclude that s- t.
We introduce two auxiliary lemmas to relate the transition induced by some expression P ∈ S to the

transitions induced by applying the allow, hide and communication operators, in the same order as the
composition expression defined in Definition 4.3, to P.

Lemma A.3. Given expressions P,Q ∈ S, a set of multi-sets of action labels A⊆ 2Λ→N, sets of events

H ′,H ⊆ Λ, a set of communications C ⊆ Comm. If P ω ′−→ Q and θH ′(θH(γC(ω ′))) ∈ A then:

τH ′(∇A(τH(ΓC(P))))
θH′ (θH(γC(ω ′)))−−−−−−−−−→ τH ′(∇A(τH(ΓC(Q))))

Proof. We can derive the following:

HIDE

ALLOW

HIDE

COM
P ω ′−→ Q C ⊆ Comm

ΓC(P)
γC(ω ′)−−−→ ΓC(Q) H ⊆ Λ

τH(ΓC(P))
θH(γC(ω ′))−−−−−−→ τH(ΓC(Q)) A⊆ 2Λ→N θH(γC(ω ′)) ∈ A

∇A(τH(ΓC(P)))
θH(γC(ω ′))−−−−−−→ ∇A(τH(ΓC(Q))) H ′ ⊆ Λ

τH ′(∇A(τH(ΓC(P))))
θH′ (θH(γC(ω ′)))−−−−−−−−−→ τH ′(∇A(τH(ΓC(Q))))

Lemma A.4. Given expressions P,Q ∈ S, a set of multi-sets of action labels A⊆ 2Λ→N, sets of events
H ′,H ⊆ Λ, a set of communications C ⊆ Comm if:

τH ′(∇A(τH(ΓC(P))))
ω−→ Q′

then there are Q ∈ S and ω ′ ∈ Ω such that Q′ = ∇A(τH(ΓC(Q))), ω = θH ′(θH(γC(ω ′))), P ω ′−→ Q and
ω ∈ A.
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Proof. Assume that τH ′(∇A(τH(ΓC(P))))
ω−→ Q′. From the structure of the premise conclusion we know

that only rule HIDE is applicable, which can only be applied for some Q′′ ∈ S such that:

HIDE
∇A(τH(ΓC(P))))

θH′ (ω)−−−−→ Q′′ H ′ ⊆ Λ

τH ′(∇A(τH(ΓC(P))))
θH′ (ω)−−−−→ τH ′(Q′′) (1)

Similarly, we derive the applicability of the ALLOW and COM rules such that we essentially can obtain
(the only possible) derivation shown in the proof of Lemma A.3.

Theorem 4.6. Let P(~d : ~D) =+i∈I ∑ei:Ei ci→ αi .P(~gi) be an LPE and let (P,V,KV ,JV ,cV ,αV ,hV ) and
(P,W,KW , JW ,cW ,αW ,hW ) be a cleave as defined in Definition 4.5. The composition expression defined
in Definition 4.3 is a valid decomposition as defined in Definition 3.1 for a closed expression~ι ′′ : ~D.

Proof. Let P(~d : ~D)=+i∈I ∑ei:Ei ci→αi .P(~gi) be an LPE and let (P,V,KV ,JV ,cV ,αV ,hV ) and (P,W,KW ,
JW ,cW ,αW ,hW ) be a cleave as defined in Definition 4.5.

Pick an arbitrary closed expression~ι ′′ : ~D. We show that [[τH ′(∇A(τH(ΓC(PV (~ι ′′|V ) ‖PW (~ι ′′|W )))))]] where
H ′ = {tag}, A = {αi | i ∈ I}∪{αi|tag | i ∈ (KV ∪KW )}, H = {synci | i ∈ I} and C = {synci

V |synci
W →

synci | i ∈ I} is strongly bisimilar to [[P(~ι ′′)]].
Let (S1,s1,Act1,→1) = [[P(~ι ′′)]] and (S2,s2,Act2,→2) = [[τH ′(∇A(τH(ΓC(PV (~ι ′′|V ) ‖ PW (~ι ′′|W )))))]]. Let

R be the smallest relation such that P(~ι ′)RτH ′(∇A(τH(ΓC(PV (~ι ′|V ) ‖ PW (~ι ′|W ))))) for any closed expression
~ι ′ : ~D. We show that R is a strong bisimulation relation up to -. Pick any arbitrary closed expression~ι : ~D
and suppose that P(~ι) R τH ′(∇A(τH(ΓC(PV (~ι|V ) ‖ PW (~ι|W ))))) holds.

• Case P(~ι) ω−→1 Q′. There is an index r ∈ I and a closed expression l : Er such that for σ = [~d←
~ι ,er← l] it holds that [[σ(cr)]], ω = [[σ(αr)]] and Q′ = P(σ(~gr)). There are three cases to consider
based on the index r.

– Case r ∈ I \ (KV ∪KW ). From SYN this means that r ∈ (JV ∩ JW ). We derive the transitions
using requirement ORI. First, from [[σ(cV

r ∧ cW
r )]] it follows that:

PV (~ι|V )
[[σ(αV

r |syncV
r (~h

V
r ))]]−−−−−−−−−−−→2 PV (σ(~gr |V ))

and PW (~ι|W )
[[σ(αW

r |syncW
r (~hW

r ))]]−−−−−−−−−−−→2 PW (σ(~gr |W ))

Furthermore, [[σ(αr)]] = [[σ(αV
r |αW

r )]] and by rule PAR there is:

PV (~ι|V ) ‖ PW (~ι|W )
[[σ(αr)|syncV (σ(~hV

r )))|syncW (σ(~hW
r )))]]−−−−−−−−−−−−−−−−−−−−−−→2

PV (σ(~gr |V )) ‖ PW (σ(~gr |W ))

From [[σ(~hV
r )]] = [[σ(~hW

r )]] it follows that:

θH ′(θH(γC([[σ(αr)|syncV (σ(~hV
r )))|syncW (σ(~hW

r ))]]))) = [[σ(αr)]]

From [[σ(αr)]] ∈ A we know by Lemma A.3 that:

τH ′(∇A(τH(ΓC(PV (~ι|V ) ‖ PW (~ι|W )))))
[[σ(αr)]]−−−−→2

τH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖ PW (σ(~gr |W ))))))

Finally, P(σ(~gr))R τH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖ PW (σ(~gr |W )))))).
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– Case r ∈ KV . We derive PV (~ι|V )
[[σ(αr)|tag]]−−−−−−−→2 PV (σ(~gr |V )), because [[σ(cr)]] holds. There is a

transition PV (~ι|V ) ‖ PW (~ι|W )
[[σ(αr)|tag]]−−−−−−−→2 PV (σ(~gr |V )) ‖ PW (~ι|W ) by From rule PARL. Further-

more, by definition θH ′(θH(γC(σ(αr)|tag))) = σ(αr) and σ(αr) ∈ A. From Lemma A.3 we
conclude that:

τH ′(∇A(τH(ΓC(PV (~ι|V ) ‖ PW (~ι|W )))))
σ(αr)−−−→2

τH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖ PW (~ι|W )))))

By IND it holds that ~gr |W =~ι|W . Finally, by definition P(σ(~gr))RτH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖
PW (σ(~gr |W )))))).

– Case r ∈ KW . Follows from the same observations as r ∈ KV .

• Case τH ′(∇A(τH(ΓC(PV (~ι|V ) ‖PW (~ι|W )))))
ω−→2 Q′. By Lemma A.4 there is an expression Q∈ S such

that Q′= τH ′(∇A(τH(ΓC(Q)))), and ω ′ ∈Ω such that ω = θH ′(θH(γC(ω ′))), PV (~ι|V ) ‖ PW (~ι|W )
ω ′−→2

Q and ω ∈ A. There are three cases where a parallel composition results in a transition. Suppose

that PV (~ι|V ) ‖ PW (~ι|W )
ω ′−→2 Q is due to:

– Rule PAR with premise PV (~ι|V )
ωV−→2 P′V and PW (~ι|W )

ωW−−→2 P′W . Then there is a transition

PV (~ι|V ) ‖ PW (~ι|W )
ωV+ωW−−−−→2 P′V ‖ P′W such that ωV +ωW = ω ′ and Q = P′V ‖ P′W .

From θH ′(θH(γC(ωV +ωW ))) ∈ A we know that γC(ωV +ωW ) = ω +HsyncrI, for some index
r ∈ I, because only a single tag is allowed with original action labels. Therefore, it also
follows that r ∈ I \ (KV ∪KW ).
Observe that the sets of indices V and V c are disjoint (and similarly W and W c). Also ~d|V
are the parameters of PV and ~d|V c are sum variables in the r-indexed summand for which any
value can be chosen. Therefore, by the existence of these transitions in the premise there are
closed expressions l, l′ : Er, and ~κ : ~D|V c , ~κ ′ : ~D|W c with the substitutions

σ = [~d|V ←~ι|V , ~d|V c ←~κ,er← l]

and σ ′ = [~d|W ←~ι|W , ~d|W c ←~κ ′,er← l′]

such that [[σ(cV
r )]] holds, ωV is equal to [[σ(αV

r )|syncV
r (~h

V
r ))]] and P′V = PV ([[σ(~gr |V )]]).

And [[σ ′(cW
r )]] holds, ωW = [[σ ′(αW

r )|syncW
r (~hW

r )]]) and P′W = PW ([[σ ′(~gr |W )]]) and finally
[[σ(~hV

r )]] = [[σ ′(~hW
r )]] holds due to the synchronisation.

From the requirement COM it follows that there is a closed expression l′′ : Er such that for
ρ = [~d←~ι ,er← l′′] that [[ρ(cr)]] holds and [[σ(αV

r )|σ ′(αW
r )]] = [[ρ(αr)]]. We conclude that

P(~ι) ω−→1 P(ρ(~gr)). Furthermore, from [[σ(~gr |V )]] = [[ρ(~gr |V )]], and [[σ ′(~gr |W )]] = [[ρ(~gr |W )]]
and Lemma 2.6 it follows that:

PV (σ(~gr |V ))-PV (ρ(~gr |V ))

and PW (σ ′(~gr |W ))-PW (ρ(~gr |W ))

By the congruence of strong bisimilarity with respect to S we obtain that:

τH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖ PW (σ ′(~gr |W )))))-
τH ′(∇A(τH(ΓC(PV (ρ(~gr |V )) ‖ PW (ρ(~gr |W )))))

Finally, P(ρ(~gr))R τH ′(∇A(τH(ΓC(PV (ρ(~gr |V )) ‖ PW (ρ(~gr |W )))).
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– Rule PARL with premise PV (~ι|V )
ω ′−→2 P′V . Then there is a transition PV (~ι|V ) ‖ PW (~ι|W )

ω ′−→2
P′V ‖ PW (~ι|W ) and Q = P′V ‖ PW (~ι|W ). Pick an arbitrary index r ∈ JV . If r ∈ JV \KV then the
action expression contains an action labelled syncV

r , which means that θH ′(θH(γC(ω ′))) /∈ A.
Contradiction.
As such r ∈ KV and the requirement FV(cr)∪FV(αr)∪FV(~gr |U) ⊆ Vars(~d|U)∪{er} holds.
Therefore, there is a closed expression l : Er such that for σ = [~d|V ←~ι|V ,er← l] such that
[[σ(cr)]], ω ′ = [[σ(αr)|tag]] and P′V = PV (σ(~gr |V )).

We know that for σ ′ = [~d ←~ι ,er ← l] that (syntactically) σ(cr) = σ ′(cr) and σ(αr) =

σ ′(αr). Therefore, [[σ ′(cr)]] holds and ω ′ = [[σ ′(αr)]] such that P(~ι) ω ′−→1 P(σ ′(~gr)). From

~gr |W =~ι|W (IND) we conclude that P(~ι) ω ′−→1 P(σ(~gr)). Finally, we conclude P(σ(~gr))R
τH ′(∇A(τH(ΓC(PV (σ(~gr |V )) ‖ PW (σ(~gr |W ))))).

– Rule PARR with premise PW (~ι|W )
ω ′−→2 P′W . along the same lines as above.

Using Proposition A.2 we conclude that [[P(~ι ′′|V )]]- [[τH ′(∇A(τH(ΓC(PV (~ι ′′|V ) ‖ PW (~ι ′′|W )))))]].

B Proof of Theorem 5.3

Theorem 5.3. Let P(~d : ~D) = +i∈I ∑ei:Ei ci → αi . P(~gi) be an LPE and (V,KV ,JV ,cV ,αV ,hV ) and
(W,KW ,JW ,cW ,αW ,hW ) be separations tuples as defined in Definition 4.2. Let ψ be a state invari-
ant of P. Given closed expressions~ι : ~D such that [[[~d←~ι ](ψ)]] holds the following expression, where
C = JV ∩ JW , is a valid decomposition:

τ{tag}(∇{αi | i∈I}∪{αi|tag | i∈(IindV∪KW )}(τ{synci | i∈I}(Γ{synci
V | synci

W→synci | i∈I}(P
ψ,C
V (~ι|V ) ‖ Pψ,C

W (~ι|W )))))

Proof. Let ψ be a state invariant of P and let~ι ′′ : ~D be a closed expression such that [[[~d←~ι ′′](ψ)]] holds.
Let (S1,s1,Act1,→1) = [[P(~ι ′′)]] and (S2,s2,Act2,→2) = [[τH ′(∇A(τH(ΓC(P

ψ,C
V (~ι ′′|V ) ‖ Pψ,C

W (~ι ′′|W )))))]].

Let R be the smallest relation such that P(~ι ′)R τH ′(∇A(τH(ΓC(P
ψ,C
V (~ι ′|V ) ‖ Pψ,C

W (~ι ′|W ))))), for any

closed expression~ι ′ : ~D such that [[[~d←~ι ′](ψ)]] holds. We show that R is a strong bisimulation relation
up to -. The rest of the proof follows the same structure as the proof presented in Appendix A.

Consider the case P(~ι) ω−→1 Q′. First of all, we know that [[[~d←~ι ](ψ)]] holds by definition of R. In the
case r ∈ I \ (KV ∪KW ), which means that r ∈ (JV ∩JW ), we can therefore conclude that [[σ(cV

r ∧cW
r ∧ψ)]]

holds. Furthermore, by definition of a state invariant we know that [[[~d← σ(~gr)](ψ)]] and thus P(σ(~gr))R
τH ′(∇A(τH(ΓC(P

ψ,C
V (σ(~gr |V )) ‖ Pψ,C

W (σ(~gr |W )))))). The other case deal with unrestricted summands and
as such only the observation that [[[~d← σ(~gr)](ψ)]] holds needs to be added.

Consider the case τH ′(∇A(τH(ΓC(P
ψ,C
V (~ι|V ) ‖ Pψ,C

W (~ι|W )))))
ω−→2 Q′. We can easily see that the re-

stricted condition imply the original condition as well. In the first case Pψ,C
V (~ι|V )

ωV−→2 P′V and Pψ,C
W (~ι|W )

ωW−−→2
P′W and rule PAR we observe that if [[σ(cV

r ∧ψ)]] holds then [[σ(cV
r )]] holds as well, and similarly if

[[σ ′(cW
r ∧ψ)]] holds that [[σ ′(cW

r )]] holds. The remainder of the proof stays exactly the same. In the case

Pψ,C
V (~ι|V )

ω ′−→2 P′V and rule PARL such that Pψ,C
V (~ι|V ) ‖ Pψ,C

W (~ι|W )
ω ′−→2 P′V ‖ Pψ,C

W (~ι|W ) we observe that
r ∈ (JV \KV ) and as such the condition expression is not restricted.
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This note concerns the relative expressiveness of calculi for concurrency with constructs for com-
pensation handling and dynamic update, which are important in the rigorous specification of reliable
communicating systems. Compensations and updates are intuitively similar: both specify how the
behavior of a concurrent system changes at runtime in response to an exceptional event. Process
calculi including these constructs, however, are technically quite different.

In a recent journal paper, we develop valid encodings of a calculus with compensation handling
into a calculus of adaptable processes. The encodings differ in the target language: the first consid-
ers adaptable processes with subjective updates, in which a process reconfigures itself; the second
considers objective updates, in which a process is reconfigured by a process in its context. We es-
tablished that subjective updates are more efficient than objective ones in encoding primitives for
compensation handling: the first encoding requires less steps than the second one to mimic a single
step in the source language of compensable processes.

Introduction

In service-oriented systems, long-running transactions (LRTs) are computing activities which extend in
time and may involve distributed, loosely coupled resources [7]. These features distinguish LRTs from
traditional database-like transactions. One particularly delicate aspect of LRTs management is handling
(partial) failures: mechanisms for detecting failures and bringing the LRT back to a consistent state need
to be explicitly programmed.

Because designing and programming such mechanisms is error prone, specialized constructs, such
as exceptions and compensations, have been put forward to offer direct programming support. Our focus
is in compensation mechanisms: as their name suggests, they are meant to compensate the failure or
cancellation of an LRT. Upon receiving a failure signal, a compensation mechanism is expected to install
and activate behaviors for recovering system consistency. Such a compensation behavior may be different
from the LRT’s initial behavior.

Several calculi for concurrency with constructs for compensation handling has been proposed (see,
e.g., [12, 3, 7]). Building upon process calculi such as the π-calculus [13], they capture different forms
of error recovery and offer reasoning techniques on communicating processes with compensation con-
structs. Some works have compared the expressiveness of these calculi [3, 2, 10, 11]. In particular,
Lanese et al. [10] address this question by considering a basic process language on top of which different
primitives for error handling, distilled from an extensive literature, can be uniformly considered. Their
core calculus of compensable processes extends the π-calculus with: transactions t[P,Q], protected block
〈P〉, and compensation update instbλY.Rc.P. If compensations do not allow compensation updates it
calls static recovery, otherwise dynamic recovery. In transactions t[P,Q] processes P and Q represent
default and compensation activities, respectively. Transactions can be nested: process P in t[P,Q] may
contain other transactions. Also, they can be cancelled: process t[P,Q] behaves as P until an error notifi-
cation (failure signal) arrives along name t. Error notifications are output messages coming from inside
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or outside the transaction. To illustrate this the simplest manifestation of compensations, consider the
following transitions:

t[P,Q] | t.R τ−−→ Q | R t[t.P1 | P2,Q]
τ−−→ Q (1)

The left (resp. right) transition shows how t can be canceled by an external (resp. internal) signal.
Failure discards the default behavior; the compensation activity is executed instead. In both cases, the
default activity (i.e., P and P1,P2) are entirely discarded. This may not be desirable in all cases; after a
compensation is enabled, we may like to preserve (some of) the behavior in the default activity. To this
end, one can use protected blocks to shield a process from failure signals. These blocks are transparent:
Q and 〈Q〉 have the same behavior, but 〈Q〉 is not affected by failure signals. This way, the transition

t2[P2,Q2] | t2 τ−−→ 〈Q2〉,

says that the compensation behavior Q2 will be immune to failures. In the following example, we concen-
trate on static recovery and the response to failures is specified via discarding, preserving, and aborting
semantics. Let us consider the process: P = t

[
t1[P1,Q1] | t2[〈P2〉,Q2] | R | 〈P3〉,Q5

]
. We then have:

Discarding semantics: t | P τ−→D 〈P3〉 | 〈Q5〉;
Preserving semantics: t | P τ−→P 〈P3〉 | 〈Q5〉 | t1[P1,Q1] | t2[〈P2〉,Q2];
Aborting semantics: t | P τ−→A 〈P3〉 | 〈Q5〉 | 〈P2〉 | 〈Q1〉 | 〈Q2〉.

Thus, the three different semantics implement different levels of protection. In the discarding se-
mantics only top-level protected blocks are preserved. Therefore, it only concerns the compensation
activity for transaction t and the protected block 〈P3〉. The preserving semantics protects also the nested
transactions t1 and t2; a process such as R, without an enclosing protected block, is discarded. Finally,
the aborting semantics preserves all protected blocks and compensation activities in the default activity
for t, including those in nested transactions, such as 〈P2〉.
When compensation updates are allowed compensations admit dynamic recovery. Compensation update
is performed by a new operator instbλY.Rc.P′, where function λY.R is the compensation update (Y can
occur inside R). Applying such a compensation update to compensation Q produces a new compensation
R{Q/Y} after internal transition. Note that R may not occur at all in the resulting compensation, and it
may also occur more than once. For instance, λY.0 deletes the current compensation. One key merit of
this approach is that different proposals arise as instances. As in static recovery, the response to failures
can be specified via discarding, preserving, and aborting semantics.

The language in [10] leads to six distinct calculi with compensation primitives.
In a somewhat different vein, a calculus of adaptable processes was proposed by Bravetti et al. [1]

to specify dynamic update in communicating systems. Adaptable processes can express forms of recon-
figuration that are triggered by exceptional events, not necessarily catastrophic. An adaptable process
can be deployed in a location, which serves as delimiters for dynamic updates. A process P located
at l, denoted l[P], can be reconfigured by an update prefix l{(X).Q}.R, where Q denotes an adaptation
routine for l, parameterized by variable X . With these two constructs, dynamic update is realized by the
following reduction rule, in which C1 and C2 denote contexts of arbitrarily nested locations:

C1
[
l[P]

]
|C2

[
l{(X).Q}.R

]
−→ C1

[
Q{P/X}

]
|C2

[
R
]

(2)

We call this an objective update: a located process is reconfigured in its own context by an update prefix
at a different context: the update prefix l{(X).Q} moves from C2 to C1, and the reconfigured behavior
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Q{P/X} is left in C1. Notice that X may occur zero or many times in Q; if Q does not contain X then
the current behavior P will be erased as a result of the update. This way, dynamic update is then a form
of process mobility, implemented using higher-order process communication as found in languages such
as, e.g., the higher-order π-calculus [14], the Kell calculus [15], and Homer [9].

An alternative to objective update is subjective update, where process reconfiguration flows in the
opposite direction:

C1
[
l[P] | R1

]
|C2

[
l{(X).Q}.R

]
−→ C1

[
0 | R1

]
|C2

[
Q{P/X} | R

]
(3)

As objective update, subjective update relies on process mobility; however, the direction of movement
is different: above, process P moves from C1 to C2, and the reconfigured behavior Q{P/X} is left in C2,
not in C1. Thus, in a subjective update the located process “reconfigures itself”, which makes for a more
autonomous semantics for adaptation than objective updates.

Recent Results

In our recent journal paper [4], we have compared process calculi with compensation handling (as for-
malized in [10]) and with dynamic update (as formalized in [1]), from the point of view of relative
expressiveness. There are good reasons for focusing on the formal models in [10, 1]. On the one hand,
the calculus of compensable processes in [10] is expressive enough to uniformly capture several different
languages proposed in the literature. Because of its expressiveness, this calculus provides an appropriate
starting point for further investigations. On the other hand, the calculus of adaptable processes in [1] is
a minimal process model of dynamic reconfiguration, based on a few process constructs and endowed
with a simple operational semantics, which can support both objective and subjective updates. Our pre-
liminary studies [5, 6] suggest that adaptable processes provide a flexible framework to elucidate the
underpinnings of compensation handling from a fresh perspective.

In this context, our journal paper [4] presents the following contributions:

1. We develop two translations of a core calculus with compensation handling with discarding se-
mantics [10] into adaptable processes [1]: the first translation relies on objective updates; the
second exploits subjective updates.

2. We establish that the two language translations are valid encodings [8], i.e., they satisfy structural
properties (compositionality and name invariance) and semantic properties (operational correspon-
dence, divergence reflection, and success sensitiveness) that bear witness to their robustness.

3. We exploit the correctness properties of our encodings to distinguish between subjective and ob-
jective updates in calculi for concurrency. We introduce an encodability criterion called efficiency,
which allows us to formally state that subjective updates are better suited to encode compensation
handling than objective updates, because they induce tighter operational correspondences.

We briefly elaborate on points (1) and (3):

• Concerning (1), while we focus on compensable processes with discarding semantics, we also
consider translations in which the source calculus uses preserving semantics, aborting semantics,
and dynamic compensations.

• Concerning (3), our encoding into adaptable processes with objective updates reveals a limitation:
in modeling the “recollection” of protected blocks scattered within nested transactions, objective
updates leave behind processes in the “wrong” location. To remedy this, the encoding uses addi-
tional synchronizations to bring processes into the appropriate locations. This reflects prominently
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in the cost of mimicking a source computation step, as measured by the number of its associated
target computation steps (which are spelled out by our statements of operational correspondence).
The encoding into the calculus with subjective updates does not have this limitation.

As already mentioned, the encodings presented in [4] refine and extend results first reported in [5, 6].
Below we list the key extensions of the results that are developed in our journal paper:

1. We develop the class of well-formed compensable processes to formalize our encodings, for which
error notifications are crucial. Precisely, this class of processes disallows certain non-deterministic
interactions that involve nested transactions and error notifications.

2. We extend the criteria included in the definition of valid encoding. The following criteria have been
added: name invariance, divergence reflection and success sensitiveness. Therefore, we included
additional definitions and theorems that establish that our encoding satisfies these new criteria.

3. We develop additional definitions and theorems necessary to complete the proof of operational
correspondence (completeness and soundness).

Conclusion

The recent journal paper [4] addresses programming abstractions for compensation handling and runtime
adaptation by analyzing the relative expressiveness of existing calculi. We believe that a presentation
based on [4] is in the scope of ICE workshop for two reasons. First, formal models for concurrency with
compensation and adaptation, have been intensively studied, from multiple angles, by researchers in the
ICE community. Second, the technical results in [4] can be convincingly presented to a broad audience
by means of compelling examples.
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In this position paper, we would like to offer and defend a template to study equivalences between
programs—in the particular framework of process algebras for concurrent computation. We believe
that our layered model of development will clarify the distinction that is too often left implicit between
the tasks and duties of the programmer and of the tester. It will also enlighten pre-existing issues
that have been running across process algebras such as the calculus of communicating systems, the
π-calculus—also in its distributed version—or mobile ambients. Our distinction starts by subdividing
the notion of process in three conceptually separated entities, that we call Processes, Systems and
Tests. While the role of what can be observed and the subtleties in the definitions of congruences have
been intensively studied, the fact that not every process can be tested, and that the tester should have
access to a different set of tools than the programmer is curiously left out, or at least not often formally
discussed. We argue that this blind spot comes from the under-specification of contexts—environments
in which comparisons occur—that play multiple distinct roles but supposedly always “stay the same”.

1 Introduction

In the study of programming languages, contextual equivalences play a central role: to study the behavior
of a program, or a process, one needs to observe its interactions with different environments, e.g. what
outcomes it produces. If the program is represented by a term in a given syntax, environments are often
represented as contexts surrounding the terms. But contexts play multiple roles that serve different actors
with different purposes. The programmer uses them to construct larger programs, the user employs them
to provide input and obtain an output, and the tester or attacker uses them to debug and compare the
program or to try to disrupt its intended behavior.

We believe that representing those different purposes with the same “monolithic” syntactical notion
of context forced numerous authors to repeatedly “adjust” their definition of context without always
acknowledging it. We also argue that collapsing multiple notions of contexts into one prevented further
progress. In this article, we propose a way of clarifying how to define contextual equivalences, and show
that having co-existing notions of equivalences legitimates and explains recurring choices, and supports a
rigorous guideline to separate the development of a program from its usage and testing.

Maybe in the mind of most of the experts in the formal study of programming language is our proposal
too obvious to discuss. However, if this is the case, we believe that this “folklore” remains unwritten, and
that since we were not at that “seminar at Columbia in 1976”1, we are to remain in darkness.

We believe the interactive and friendly community of ICE to be the ideal place to reach curious and
open-minded actors in the field, and to either be proven wrong or—hopefully—impact some researchers.

1To re-use in our setting Paul Taylor’s witty comment [76].
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Non-technical articles can at times have a tremendous impact [25], and even if we do not claim to have
Dijkstra’s influence or talent, we believe that our precise, documented proposition can shed a new light
on past results, and frame current reflections and future developments. We also believe that ignoring or
downplaying the distinctions we stress have repeatedly caused confusions.

2 The Flow of Testing

We begin by illustrating with a simple Java example the three syntactic notions–process, system and
test–we will be using. Imagine giving a user the code while(i < 10){x *= x; i++;}. A user cannot execute
or use this “snippet” unless it is wrapped into a method, with adequate header, and possibly variable
declaration(s) and return statement. Once the programmer performed this operation, the user can use the
obtained program, and the tester can interact with it further, e.g. by calling it from a main method.

All in all, a programmer would build on the snippet, then the tester would build an environment to
interact with the resulting program, and we could obtain the code below. Other situations could arise–e.g.,
if the snippet was already wrapped–, but we believe this is a fair rendering of “the life of a snippet”.

public class Main{

public static int foo(int x){

int i = 0;

while(i < 10){

x *= x;

i++;

}

return x;

}

public static void main(){

System.out.print(foo(2));

}

}

In this example, the snippet is what we will call a
process, the snippet once wrapped is what we will
call a system and the “Interaction” part without the
system in it, but with additional “observations”—i.e.
measures on the execution, terminal output—, is what
we will call a test. Our terminology comes from the
study of concurrent process algebras, where most of
our intuitions and references are located, but let us
first make a brief detour to examine how our lens
applies to λ -calculus.

3 A Foreword on λ -Calculus

Theoretical languages often take λ -calculus as a model or a comparison basis. It is often said that the
λ -calculus is to sequential programs what the π-calculus is to concurrent programs [69,78]. Indeed, pure λ -
calculus (i.e. without types or additional features like probabilistic sum [27] or quantum capacities [74,77])
is a reasonable [6], Turing-complete and elegant language, that requires only a couple of operators, one
reduction rule and one equivalence relation to produce a rich and meaningful theory, sometimes seen as
an idealized target language for functional programming languages.

Since most terms2 do not reduce as they are, to study their behavior, one needs first to make them
interact with an environment, represented by a context. Contexts are generally defined as “term[s] with
some holes” [11, p. 29, 2.1.18], that we prefer to call slots and denote [□]. Under this apparent simplicity,
they should not be manipulated carelessly, as having multiple slots or not being careful when defining
what it means to “fill a slot” can lead to e.g. lose confluence [16, pp. 40–41, Example 2.2.1], and as those
issues persist even in the presence of a typing system [33]. Furthermore, definitions and theorems that use
contexts frequently impose some restrictions on the contexts considered, to exclude e.g. (λx.y)[□] that

2Actually, if application, abstraction and variables all count as one, the ratio between normal term and term with redexes is
unknown [15]. We imply here “since most interesting terms”, in the sense of terms that represent programs.
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simply “throw away” the term put in the slot in one step of reduction. Following the above observations,
we conclude that contexts often come in two flavors, depending on the nature of the term considered:

For closed terms (i.e. without free variables), a context is essentially a series of arguments to feed the
term. This observation allows to define e.g. solvable terms [11, p. 171, 8.3.1 and p. 416, 16.2.1].

For open terms (i.e. with free variables), a context is a Böhm transformation [11, p. 246, 10.3.3], which
is equivalent [11, p. 246, 10.3.4] to a series of abstractions followed by a series of applications, and
sometimes called “head context” [7, p. 25].

Being closed corresponds to being “wrapped”–ready to use–, and feeding arguments to a term
corresponds to interacting with it from a main method: the Böhm transformation actually encapsulates two
operations at once. In this case, the interaction can observe different aspects: whether the term terminates,
whether it grows in size, etc., but it is generally agreed upon that no additional operator or reduction rule
should be used. Actually, the syntax is restricted when testing, as only application is allowed: the tested
term should not be wrapped in additional layers of abstraction if it is already closed.

Adding features to the λ -calculus certainly does not restore the supposed purity or unicity of the
concept of context, but actually distances it even further from being simply “a term with a slot”. For
instance, contexts are narrowed down to term context [77, p. 1126] and surface context [27, pp. 4, 10] for
respectively quantum and probabilistic λ -calculus, to “tame” the power of contexts. In resource sensitive
extensions of the λ -calculus, the quest for full abstraction even led to a drastic separation of λ -terms
between terms and tests [20], a separation naturally extended to contexts [19, p. 73, Figure 2.4].

This variety happened after the 2000’s formal studies of contexts was undertaken [16, 17, 33], which
led to the observation that treating contexts “merely as a notation [. . .] hinders any formal reasoning[,
while treating them] as first-class objects [allows] to gain control over variable capturing and, more
generally, ‘communication’ between a context and expressions to be put into its holes” [17, p. 29]. It is
ironic that λ -calculists took inspiration from a concurrent language to split their syntax in two right at its
core [20, p. 97], or to study formally the communication between a context and the term in its slot, while
concurrent languages sometimes tried to keep the “purity” and indistinguishability of their contexts.

In the case of concurrent calculi like the calculus of communicating systems (CCS) or the π-calculus,
interactions with environments are also represented using a notion of context. But the status of contexts in
concurrent calculi is even more unsettling when one notes that, while “wrapping” contexts are of interest
mainly for open terms in lambda calculus, all terms need a pertinent notion of context in concurrent
systems to be tested and observed. Indeed, as the notion of “feeding arguments to a concurrent process”
concurs with the idea of wrapping it into a larger process, it seems that the distinction we just made
between two kinds of contexts in λ -calculus cannot be ported to concurrent calculi. Our contribution starts
by questioning whenever, indeed, process calculi have treated contexts as a uniform notion independently
from the nature of the term or what it was used for.

4 Contextual Relations

Comparing terms is at the core of the study of programming languages, and process algebra is no exception.
Generally, and similarly to what is done in λ -calculus, a comparison is deemed of interest only if it
is valid in every possible context3 an idea formally captured by the notion of (pre-)congruence. An
equivalence relation R is usually said to be a congruence if it is closed by context, i.e. if for all P, Q

3As a reviewer noted, “Proving a behavioural equivalence is a congruence has a reading that is somewhat left out of the
discussion in the paper. Namely, the behavioural equivalence provides a mathematical notion of behaviour and showing such
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(open or closed) terms, (P,Q) ∈ R implies that for all context C[□], (C[P],C[Q]) ∈ R. (Sometimes,
the additional requirement that terms in the relation needs to be similar up to uniform substitution is
added [38], and sometimes [62, p. 516, Definition 2], only the closure by substitution—seen as a particular
kind of context—is required.)

A notable example of congurence is barbed congruence [45, Definition 2.1.4, 56, Definition 8], which
closes by context a reduction-closed relation used to observe “barbs”–the channel(s) on which a process
can emit or receive. It is often taken to be the “reference behavioural equivalence” [45, p. 4], as it observes
the interface of processes, i.e. on which channels they can interact over the time and in parallel.

But behind this apparent uniformity in the definition of congruences, the definition of contextual
relations itself have often been tweaked by altering the definition of context, with no clear explanation nor
justification, as we illustrate below.

In the calculus of communicating systems, notions as central as contextual bisimulation [8, pp. 223-
224, Definition 421] and barbed equivalence [8, p. 224, Definition 424] considers only static contexts [8,
p. 223, Definition 420], which are composed only of parallel composition with arbitrary term and
restriction. As the author of those notes puts it himself, “the rules of the bisimulation game may be hard
to justify [and] contextual bisimulation [. . .] is more natural” [8, p. 227]. But there is no justification—
other than technical, i.e. because they “they persist after a transition” [8, p. 223]—as to why one should
consider only some contexts in defining contextual equivalences.

In the π-calculus, contexts are defined liberally [72, p. 19, Definition 1.2.1], but still exclude contexts like
e.g. [□]+0 right from the beginning. Congruences are then defined using this notion of context [72, p. 19,
Definition 1.2.2], and strong barbed congruence is no exception [72, p. 59, Definition 2.1.17]. Other
notions, like strong barbed equivalence [72, p. 62, Definition 2.1.20], are shown to be a non-input
congruence [72, p. 63, Lemma 2.1.24], which is a notion relying on contexts that forbids the slot to
occur under an input prefix [72, p. 62, Definition 2.1.22]. In other words, two notions of contexts and of
congruences co-exist generally in π-calculus, but “[i]t is difficult to give rational arguments as to why
one of these relations is more reasonable than the other.” [34, p. 245]

In the distributed π-calculus, contexts are restricted right from the beginning to particular operators [34,
Definition 2.6]. Then, relations are defined to be contextual if they are preserved by static contexts [34,
Definition 2.6], which contains only parallel composition with arbitrary terms and name binding. These
contexts also appear as “configuration context” [41, p. 375] or “harness” in the ambient calculus [32,
p. 372]. Static operators are deemed “sufficient for our purpose” [34, p. 37] and static contexts only are
considered “[t]o keep life simple” [34, p. 38], but no further justification is given.

In the semantic theory for processes, at least in the foundational theory we would like to discuss below,
one difficulty is that the class of formal theories restricted to “reduction contexts” [38, p. 448] still fall
short on providing a satisfactory “formulation of semantic theories for processes which does not rely on
the notion of observables or convergence”. Hence, the authors have to furthermore restrict the class of
terms to insensitive terms [38, p. 450] to obtain a notion of generic reduction [38, p. 451] that allows
a satisfactory definition of sound theories [38, p. 452]. Insensitive terms are essentially the collection
of terms that do not interact with contexts [38, p. 451, Proposition 3.15], an analogue to λ -calculuus’
genericity Lemma [11, p. 374, Proposition 14.3.24]. Here, contexts are restricted by duality: insensitive
terms are terms that will not interact with the context in which they are placed, and that need to be
equated by sound theories.

behaviour is preserved by language contexts attests that the latter are proper functions of behaviour (i.e., if C[·] is provided
with ‘behaviour’ then the result is still ‘behaviour’). In this sense, the congruence result can be viewed as a sanity check on the
language constructors.”



C. Aubert & D. Varacca 5

Across calculi, a notion of “closing context”—that emerged from λ -calculus [8, p. 85], and matches the
“wrapping” of a snippet—can be found in e.g. typed versions of the π-calculus [72, p. 479], in mobile
ambient [78, p. 134], in the applied π-calculus [1, p. 7], and in the fusion calculus [46, p. 6]. Also known
as “completing context” [67, p. 466], those contexts are parametric in a term, the idea being that such a
context will “close” the term under study, making it amenable to tests and comparisons.

Let us try to extract some general principles from this short survey. It seems that contexts are 1. in
appearance given access to the same operators than terms, 2. sometimes deemed to be “un-reasonable”,
without always a clear justification, 3. shrunken by need, to bypass some of the difficulties they raise, or
to preserve some notions, 4. sometimes picked by the term itself—typically because the same “wrapping”
cannot be applied to all processes. Additionally, in all those cases, contexts are given access to a subset
of operators, or restricted to contexts with particular behavior, but never extended. If we consider that
contexts are the main tool to test the equivalence of processes, then why should the testers–or the attacker–
always have access to fewer tools than the programmer? What reason is there not to extend the set of
tools, of contexts, or simply take it to be orthogonal? The method we sketch below allows and actually
encourages such nuances, would justify and acknowledge the restrictions we just discussed instead of
adding them passing-by, and actually corresponds to common usage.

5 Processes, Systems and Tests

As in the λ -calculus, most concurrent calculi make a distinction between open and closed terms. For
instance, the distributed π-calculus [34] implements a distinction between closed terms (called pro-
cesses [34, p. 14]) and open terms, based on binding operators (input and recursion).

Most of the time, and since the origin of the calculus of communicating systems, the theory starts by
considering only programs—“closed behaviour expression[s], i.e. ones with no free variable” [49, p. 73]—
when comparing terms, as—exactly like in λ -calculus—they correspond to self-sufficient, well-rounded
programs: it is generally agreed upon that open terms should not be released “into the wild”, as they are
not able to remain in control of their internal variables, and can be subject to undesirable or uncontrolled
interferences. Additionally, closed terms are also the only ones to have a reduction semantics, which
means that they can evolve without interacting with the environment–this would corresponds, in Java, to
being wrapped, i.e. inserted into a proper header and ready to be used or tested.

However, in concurrent calculi, the central notions of binders and of variables have been changing,
and still seem today sometimes “up in the air”. For instance, in the original CCS, restriction was not a
binder [49, p. 68], and by “refusing to admit channels as entities distinct from agents” [52, p. 16] and
defining two different notions of scopes [52, p. 18], everything was set-up to produce a long and recurring
confusion as to what a “closed” term meant in CCS. In the original definition of π-calculus [54, 55], there
is no notion of closed terms, as every (input) binding on a channel introduces a new and free occurrence
of a variable. However, the language they build upon—ECCS [26]—made this distinction clear, by
separating channel constants and variables.

Once again in an attempt to mimic the “economy” [53, p. 86] of λ -calculus, but also taking inspiration
from the claimed “monotheism” of the actor model [36], different notions such as values, variables, or
channels have been united under the common terminology of “names”. This is at times identified as a
strength, to obtain a “richer calculus in which values of many kinds may be communicated, and in which
value computations may be freely mixed with communications.” [54, p. 20] However, it seems that a
distinction between those notions always needs to be carefully re-introduced when discussing technically
the language [8, p. 258, Remark 493], extensions to it [1, p. 4] or possible implementations [14, p. 13, 29].
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Finally, let us note that extensions of π-calculus can sometimes have different binders, as e.g. output
binders are binding in the private π-calculus [61, p. 113].

In the λ -calculus, being closed is what makes a term “ready to be executed in an external environment”.
But in concurrent calculi, being a closed term—no matter how it is defined—is often not enough, as it is
routine to exclude e.g. terms with un-guarded operators like sum [72, p. 416] or recursion [52, p. 166].
However, these operators are sometimes not excluded from the start, even if they can never be parts of
tested terms. The usual strategy [8, Remark 414, 52]is often to keep them “as long as possible”, and to
exclude them only when their power cannot be tamed any more to fit the framework or prove the desired
result, such as the preservation of weak bisimulation by all contexts.

In our opinion, the right distinction is not about binders of free variables, but about the role played by
the syntactic objects in the theory. As “being closed” is 1. not always well-defined, or at least changing,
2. sometimes not the only condition, we would like to use the slightly more generic adjectives complete
and incomplete–wrapped or not, in our Java terminology. Process algebras generally study terms by
1. completing them if needed, 2. inserting them in an environment, 3. executing them, 4. observing
them thanks to predicates on the execution (“terminates”, “emitted the barb a”, etc.), hence constructing
equivalences, preorders or metrics [39] on them. Often, the environment is essentially made of another
process composed in parallel with the one studied, and tweaked to improve the likeliness of observing a
particular behavior: hence, we would like to think of them as tests that the observed systems has to pass,
justifying the terminology we will be using.

Processes are “partial” programs, still under development; sometimes called “open terms”, they corre-
spond to incomplete terms. They would be called code fragments, or snippets, in standard programming.

Systems are “configured processes”, ready to be executed in any external environment: sometimes called
“closed terms”, they correspond to complete terms. They would be functions shipped with a library in
standard programming, and ready to be executed.

Tests are defined using contexts and observations, and aims at executing and testing systems. They would
be main methods calling a library or an API in standard programming, along with a set of observables.

Our terminology is close to the one used e.g. in ADPI [34, Chapter 5] or mobile ambients [47, Table 1],
which distinguish processes and systems. In the literature of process algebra, the term “process” is
commonly used to denote these three layers, possibly generating confusion. We believe this usage comes
from a strong desire to keep the three layers uniform, using the same name, operators and rules, but this
principle is actually constantly dented (as discussed in Sect. 4), for reasons we expose below.

6 Designing Layered Concurrent Languages

Concurrent languages could benefit from this organization from their conception:

Define processes The first step is to select a set of operators called construction operators, used by the
programmer to write processes. Those operators should be expressive, easy to combine, with constraints
as light as possible, and selected with the situation that is being modeled in mind—and not depending on
whenever they fare well with not-yet-defined relations, as it is often done to privilege the guarded sum
over the internal choice. To ease their usage, a “meta-syntax” can be used, something that is generally
represented by the structural equivalence. (Another interesting approach is proposed in “the π-calculus,
at a distance” [4, p. 45], that bypasses the need for a structural equivalence without losing the flexibility
it usually provides.)



C. Aubert & D. Varacca 7

Define deployment criteria How a process can become a system ready to be executed and tested should
then be defined as a series of conditions on the binding of variables, the presence or absence of some
construction operators at top-level, and even the addition of deployment operators, marking the process
as ready to be deployed in an external environment4. Having a set of deployment operators that restricts,
expands or intersects with the set of construction operators is perfectly acceptable, and it should enable
the transformation of processes into systems and their composition.

Define tests The last step requires to define 1. a set of testing operators, 2. a notion of environment
constructed from those operators, along with instructions on how to place a system in it, 3. a system of
reduction rules regimenting how a system can execute in an environment, 4. a set of observables, i.e. a
function from systems in environments to a subset of a set of atomic proposition (like “emits barb a”,
“terminates”, “contains recursion operator”, etc.).

Observe that each step uses its own set of operators and generates its own notion of context—to
construct, to deploy, or to test. Tests would be key in defining notions of congruence, that would likely be
reduction-closed, observational contextually-closed relations. Determining if tests should wrap processes
into systems or if that should be done ahead of the test itself resonates with a long-standing debate in
process algebra, and is discussed in Sect. 9.2. Note that compared to how concurrent languages are
generally designed, our approach is refined along two axis: 1. every step previously exposed allows the
introduction of novel operators, 2. multiple notions of systems or tests can and should co-exist in the same
process algebra.

7 Addressing Existing Issues

In the process algebras literature, processes and systems often have the same structure as tests and all
use the same operators and contexts, to preserve and nurture a supposedly required simplicity—at least
on the surface of it. But actually, we believe that the distinction we offer is constantly used “under the
hood”, without always a clear discussion, but that it captures and clarifies some of the choices, debates,
improvements and explanations that have been proposed.

Co-defining observations and contexts Originally, the barb was a predicate [56, p. 690], whose defini-
tion was purely syntactic. Probably inspired by the notion of observer for testing equivalences [23, p. 91],
an alternative definition was made in terms of parallel composition with a tester process [45, p. 10,
Definition 2.1.3]. This illustrates perfectly how the set of observables and the notion of context are
inter-dependent, and that tests should always come with a definition of observable and a notion of
context: we believe our proposal could help in clarifying the interplay between observations and contexts.
One could even imagine having a series of “contexts and observations lemmas” illustrating how certain
observations can be simulated by some operators, or reciprocally.

Justifying the “silent” transition’s treatment It is routine to define relations (often called “weak”) that
ignore silent (a.k.a. τ-) transitions, seen as “internal”. This sort of transitions was dubbed “unobservable
internal activity” [34, p. 6] and sometimes opposed to “externally observable actions” [70, p. 230].
While we agree that “[t]his abstraction from internal differences is essential for any tractable theory
of processes” [52, p. 3], we would also like to stress that both can and should be accommodated, and
that “internal” transition should be treated as invisible to the user, but should still be accessible to the
programmer when they are running their own tests.

4Exactly like a Java method header can use keywords—extends, implements, etc.—that cannot be used in a method body.
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The question “to what extent should one identify processes differing only in their internal or silent
actions?” [13, p. 6] is sometimes asked, and discussed as if it was a property of the process algebra and
not something that can be internally tuned when needed. We argue that the answer to that question is “it
depends who is asking!”: from a user perspective, internal actions should not be observed, but it makes
sense to let a programmer observe them when testing to help in deciding which process to prefer based
on information not available to users.

Letting multiple comparisions co-exist The discussion on τ-transitions resonates with a long debate
on which notion of behavioral relation is the most “reasonable”, and—still recently—a textbook can
conclude a brief overview of this issue by “hop[ing] that [they] have provided enough information to
[their] readers so that they can draw their own conclusions on this long-standing debate” [70, p. 160].
Sometimes, a similar question is phrased in terms of choosing the right level of abstraction to obtain
meaningful language comparisons [43, Section 3]. We firmly believe that the best answer to both
questions is to acknowledge that different relations and comparisons tools match different needs, and
that there is no “one size fits all” answer for the needs of all the variety of testers. Of course, comparing
multiple relations is an interesting and needed task [28, 31], but one should also state that multiple
comparison tools can and should co-exist, and such vision will be encapsulated by the division we are
proposing.

Embracing a feared distinction The distinction between our notions of processes and systems is ram-
pant in the literature, but too often feared, as if it was a parenthesis that needed to be closed to restore
some supposedly required purity and uniformity of the syntax. A good example is probably given by
mobile ambients [47]. The authors start with a two-level syntax that distinguishes between processes
and systems [47, p. 966]. Processes have access to strictly more constructors than systems [47, p. 967,
Table 1], that are supposed to hide the threads of computation [47, p. 965]. A notion of system context
is then introduced—as a restriction of arbitrary contexts—and discussed, and two different ways for
relations to be preserved by context are defined [47, p. 969, Definiton 2.2].

The authors even extend further the syntax for processes with a special ◦ operator [47, p. 971, Definition
3.1], and note that the equivalences studied will not consider this additional constructor: we can see
at work the distinction we sketched, where operators are added and removed based on different needs,
and where the language needs not to be monolithic. The authors furthermore introduce two different
reduction barbed congruences [47, p. 969, Definition 2.4]—one for systems, and one for processes, with
different notions of contexts—but later on prove that they coincide on systems [47, p 989, Theorem
6.10]. It seems to us that the distinction between processes and systems was essentially introduced for
technical reasons, but that re-unifying the syntax—or at least prove that systems do not do more than
processes—was a clear goal right from the start. We believe it would have been fruitful to embrace this
distinction in a framework similar to the one we sketched: while retaining the interesting results already
proven, maintaining this two-level syntax would allow to make a clearer distinction between the user’s
and the programmer’s roles and interests, and assert that, sometimes, systems can and should do more
than processes–for instance, interacting with users!–, and can be compared using different tools.

Keeping on extending contexts We are not the first to argue that constructors can and should be added
to calculi to access better discriminatory power, but without necessarily changing the “original” language.
The mismatch operator, for instance, has a similar feeling: “reasonable” testing equivalences [18, p. 280]
require it, and multiple languages [2, p. 24] use it to provide finer-grained equivalences. For technical
reasons [72, p. 13], this operator is generally not part of the “core” of π-calculus, but resurfaces by
need to obtain better equivalences: we defend a liberal use of this fruitful technics, by making a clear
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separation between the construction operators—added for their expressivity—and the testing operators—
that improve the testing capacities.

Treating extensions as different completions It would benefit their study and usage to consider differ-
ent extensions of processes algebras as different completion strategies for the same construction operators.
For instance, reversible [42] or timed [80] extensions of CCS could be seen as two completion strategies—
different conditions for a process to become a system—for the same class of processes, inspired from the
usual CCS syntax [8, Chapter 28.1]. Those completion strategies would be suited for different needs, as
one could e.g. complete a CSS process as a RCCS [22] system to test for relations such as hereditary
history-preserving bisimulation [9], and then complete it with time markers as a safety-critical system.
This would correspond to having multiple compilation, or deployment, strategies, based on the need,
similar to “debug” and “real-time”, versions of the same piece of software.We think also of Debian’s
DebugPackage, enabling generation of stack traces for any package, or of the CONFIG_PREEMPT_RT

patch that converts a kernel into a real-time micro-kernel: both uses the same source code as their “casual”
versions.

Obtaining fine-grained typing systems The development of typing systems for concurrent program-
ming languages is a notoriously difficult topic. Some results in π-calculus have been solidified [72, Part
III], but diverse difficulties remain. Among them, the co-existence of multiple systems for e.g. session
types [35], the difficulty to tie them precisely to other type systems as Linear Logic [21], and the doubts
about the adaptation of the “proof-as-program” paradigm in a concurrent setting [12], make this problem
active and diverse. The ultimate goal seems to find a typing system that would accommodate different
uses and scenarios that are not necessarily comparable.

Using our proposal, one could imagine easing this process by developing two different typing systems,
one aimed at programmers—to track bugs and produce meaningful error messages—and one aimed at
users—to track security leaks or perform user-input validation. Once again, having a system developed
along the layers we recommend would allow to have e.g. a type system for processes only, and to erase
the information when completing the process, so that the typing discipline would be enforced only when
the program is being developed, but not executed. This is similar to arrays of parameterized types in
Java [60, pp. 253–258], that checks the typing discipline at compilation time, but not at run-time.

While this series of examples and references illustrates how our proposal could clarify pre-existing
distinctions, we would like to stress that 1. nothing prevents from collapsing our distinction when it is not
needed, 2. additional progresses could be made using it, as we sketch in the next section.

8 Exploiting Context Awareness

We would like to sketch below some possible exploitations of our frame that we believe could benefit the
study and expressivity of some popular concurrent languages.

For CCS, we sketch below two possible improvements, the second being related to security.

Testing for auto-concurrency Auto-concurrency (a.k.a. auto-parallelism) is when a system has two
different transitions—leading to different states—labeled with the same action [58, p. 391, Definition 5].
Systems with auto-concurrency are sometimes excluded as non-valid terms [24, p. 155] or simply not
considered in particular models [59, p. 531], as the definition of bisimulation is problematic for them.
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Consider e.g. the labeled configuration struc-
tures (a.k.a. stable family [79, Section 3.1])
on the right, where the label of the event ex-
ecuted is on the edge and configurations are
represented with ◦. Non-interleaving models of
concurrency [73] distinguishes between them,
as “true concurrency models” would. /0

◦◦

◦

ab

a b

/0

◦◦

◦ ◦

ab

a b

Some forms of “back-and-forth-bisimulations” cannot discriminate between them if a = b [64]. While
not being able to distinguish between those two terms may make sense from an external—user’s—point
of view, we argue that a programmer should have access to an internal mechanism that could answer
the question “Can this process perform two barbs with the same label at the same time?”. Such
an observation—possibly coupled with a testing operator—would allow to distinguish between e.g.
!a.P |!a.P and !a.P, that are generally taken to be bisimilar, and would re-integrate auto-concurrent
systems—that are, after all, unjustifiably excluded—in the realm of comparable systems.

Representing man-in-the-middle One could add to the testing operators an operator ∇a.P, which
would forbid P to act silently on channel a. This novel operator would add the possibility for the
environment to “spy” on a determined channel, as if the environment was controlling (part of) the router
of the tested system. One could then reduce “normally” in a context ∇a[□] if the channel is still secure:

∇a(b.Q | b̄.P)→τ ∇a(Q | P) (If a ̸= b)

But in the case where a = b, the environment could intercept the communication and then decide to
forward, prevent, or alter it. Adding this operator to the set of testing operators would for instance open
up the possibility of interpreting νa(P) as an operation securing the channel a in P, enabling the study
of relations ∼ that could include e.g.

∇a(νa(P|Q)∼ ∇a(νb(P[a/b]|Q[a/b])) (For b not in the free names of P nor Q)

νa(∇a(P|Q))∼ ∇a(P|Q) (Uselessness of securing a hacked channel)

While the first rule enforces that, once secured, channel names are α-equivalent (the process can decide
to migrate to a different channel without being spied on), the second illustrates that, once a channel is
tapped, a process cannot obtain any confidentiality on it anymore.

In π-calculus, all tests are instantiating contexts (in the sense that the term tested needs to be either
already closed, or to be closed by the context), and all instantiating contexts use only construction
operators, and hence are “construction contexts”. This situation corresponds to Situation A in Figure 1.
We believe the picture could be much more general, with tests having access to more constructors, and
not needing to be instantiating—in the sense that completion can be different from closedness—, so
that we would obtain Situation B in Figure 1. While we believe this remark applies to most of the
process algebras we have discussed so far, it is particularly salient in π-calculus, where the match and
mismatch operators have been used “to internalize a lot of meta theory” [30, p. 57], standing “inside” the
“Construction operators” circle while most authors seem to agree that they would prefer not to add it to
the internals of the language5. It should also be noted that the mismatch operator—in its “intuitionistic”
version—furthermore “tried to escape the realm of instantiating contexts” by being tightly connected [40]
to quasi-open bissimilarities [71, p. 300, Definition 6], which is a subtle variation on how substitutions
can be applied by context to the terms being tested.

5To be more precise: while “most occurences of matching can be encoded by parallel composition [. . . ,] mismatching cannot
be encoded in the original π-calculus” [63, p. 526], which makes it somehow suspicious.
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Situation A
Construction context
Instantiating context
Tests

Situation B
Construction context
Instantiating context
Tests

Figure 1: Opening up the testing capacities of π-calculus

Having a notion of “being complete” not requiring closedness could be useful when representing
distributed programming, where “one often wants to send a piece of code to a remote site and execute it
there. [. . . ] [T]his feature will greatly enhance the expressive power of distributed programming[ by ]
send[ing] an open term and to make the necessary binding at the remote site.” [33, p. 250] We believe
that maintaining the possibility of testing “partially closed”—but still complete—terms would enable a
more theoretical understanding of distributed programming and remote compilation.

Distributed π-calculus, could explore the possible differences between two parallelisms: between
threads in the same process—in the Unix sense—and between units of computation. Such a distinction
could be rephrased thanks to two parallel operators, one on processes and the other on systems. Such a
distinction would allow to observationally distinguish e.g. the execution of a program with two threads
on a dual-core computer and the execution of two single thread programs on two single-core computers.

For cryptographic protocols, we could imagine representing encryption of data as a special context
E [□] that would transform a process P into an encrypted system E [P], and make it un-executable unless
“plugged” in an environment D [□] that could decrypt it. This could allow the applied π-calculus [1] to
become more expressive and to be treated as a decoration of the pure π-calculus more effectively. This
could also, as the authors wish, make “the formalization of attackers as contexts [. . . ] continue to play a
role in the analysis of security protocols” [1, p. 35].
Recent progresses in the field of verification of cryptographic protocols [10] hinted in this direction as
well. By taking “[t]he notion of test [to] be relative to an environment” [10, p. 12], a formal development
involving “frames” [10, Definition 2.3] can emerge and give flesh to some ideas expressed in our proposal.
It should be noted that this work also “enrich[. . . ] processes with a success construct” [10, p. 12], that
cannot be used to construct processes, to construct “experiments”.

9 Concluding Remarks

We conclude by discussing related approaches, by casting a new light on a technical issue related to barbed
congruences, by offering the context lemmas a new interpretation, and by coming back to our motivations.

9.1 An Approved and Promising Perspective

We would like to stress that our proposal resonates with previous comments, and should not be treated as
an isolated historical perspective that will have no impact on the future.

In the study of process algebras, in addition to the numerous hints toward our formalism that we
already discussed, there are at least two instances when the power of the “testing suite” was explicitly
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discussed [68, Remark 5.2.21]. In a 1981 article, it is assumed that “by varying the ambiant (‘weather’)
conditions, an experimenter” [50, p. 32] can observe and discriminate better than a simple user could.
Originally, this idea seemed to encapsulate two orthogonal dimensions: the first was that the tester could
run the tested system any number of times, something that would now be represented by the addition of
the replication operator ! to the set of testing operators. The second was that the tester could enumerate
all possible non-deterministic transitions of the tested system. This second dimension gave birth to “a
language for testing concurrent processes” [44, p. 1] that is more powerful than the language used to write
the programs being tested. In this particular example, the tester has access to a termination operator and
probabilistic features that are not available to the programmer: as a result, the authors “may distinguish
non-bisimilar processes through testing” [44, p. 19].

Looking forward, the vibrant field of secure compilation made a clear-cut distinction between “target
language contexts” representing adversarial code and programmers’ “source context” to explore property
preservation of programs [3]. This perspective was already partially at play in the spi calculus for
cryptographic protocols [2, p. 1], where the attacker is represented as the “environment of a protocol”. We
believe that both approaches—coming from the secure compilation, from the concurrency community, but
also from other fields—concur to the same observation that the environment—formally captured by a
particular notion of context—deserves an explicit and technical study to model different interactions with
systems, and need to be detached from “construction” contexts.

9.2 When Should Contexts Come into Play?

The interesting question of when to use contexts when testing terms [72, pp. 116–117, Section 2.4.4] raises
a technical question that is put under a different perspective by our analysis. Essentially, the question is
whether the congruences under study should being defined as congruences (e.g. reduction-closed barbed
congruence [72, p. 116]), or being defined in two steps, i.e. as the contextual closure of a pre-existing
relation (e.g. strong barbed congruence [72, p. 61, Definition 2.1.17], which is the contextual closure of
strong barbed bisimilarity [72, p. 57, Definition 2.1.7])?

Indeed, bisimulations can be presented as an “interaction game” [75] generally played as 1. Pick
an environment for both terms (i.e., complete them, then embed them in the same testing environment),
2. Have them “play” (i.e. have them try to match each other’s step). But a more dynamic version of the
game let picking an environment be part of the game, so that each process can not only pick the next
step, but also in which environment it needs to be performed. This version of the game, called “dynamic
observational congruence” [57], provides a better software modularity and reusability, as it allows to study
the similarity of terms that can be re-configured “on the fly”. Embedding the contexts in the definitions of
the relations is a strategy that was also used to obtain behavioral characterization of theories [38, p. 455,
Proposition 3.24], and that corresponds to open bisimilarities [66, p. 77, Proposition 3.12]

Those two approaches have been extensively compared and studied–still are [1, p. 24]—but to our
knowledge they rarely co-exist, as if one had to take a side at the early stage of the language design,
instead of letting the tester decide later on which approach is best suited for what they wish to observe.
We argue that both approaches are equally valid, provided we acknowledge they play different roles.

This question of when are the terms completed? can be rephrased as what is it that you are trying to
observe?, or even who is completing them?: is the completion provided by the programmer, once and
for all, or is the tester allowed to explore different completions and to change them as the tests unfold?
Looking back at our Java example from Sect. 2, this corresponds to letting the tester repeatedly tweak
the parameter or return type of the wrapping from int to long, allowing them to have finer comparisons
between snippets. In this frame, moving from the static definition of congruence to dynamic one would
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Situation A Process
Write

System

Complete

Test

Compare

Programmer Tester

Situation B Process
Write

System

Complete

Test

Compare

Programmer Tester

Figure 2: Distinguishing between completing strategies

corresponds to going from Situation A to Situation B in Figure 2. This illustrates two aspects worth
highlighting:

1. Playing on the variation “should I complete the terms before or during their comparison?” is not simply
a technical question, but reflects a choice between two different situations equally interesting.

2. This choice can appeal to different notions of systems, completions and tests: for instance, while
completing a process before testing it (Situation A) may indeed be needed when the environment
represents an external deployment platform, it makes less sense if we think of the environment as part of
the development workflow, in charge of providing feedback to the programmer or as a powerful attacker
than can manipulate the conditions in which the process is executed (Situation B).

If completion is seen as compilation, this opens up the possibility of studying how the bindings performed
by the user, on their particular set-up, during a remote compilation, can alter a program. One can
then compare different relations—some comparing source code’s releases, some comparing binaries’
releases—to get a better, fuller, picture of the program.

9.3 Penetrating Context Lemmas’ Meanings

What is generally refereed to as the context lemma6 is actually a series of results stating that considering
all the operators when constructing the context for a congruence may not be needed. For instance, it is
equivalent to define the barbed congruence [72, p. 95, Definition 2.4.5] as the closure of barbed bisimilarity
under all context, or only under contexts of the form [□]σ | P for all substitution σ and term P. In its first
version [65, p. 432, Lemma 5.2.2], this lemma had additional requirements e.g. on sorting contexts, but
the core idea is always the same: “there is no need to consider all contexts to determine if a relation is a
congruence, you can consider only contexts of a particular form”.

The “flip side” of the context lemma is what we would like to call the “anti-context pragmatism”:
whenever a particular type of operator or context prevents a relation from being a congruence, it is tempting
to simply exclude it. For instance, contexts like [□]+0 are routinely removed—as we discussed in Sect. 4—
to define the barbed congruence of π-calculus, or contexts were restricted to what is called harnesses
in the mobile ambients calculus [32] before proving such results. As strong bisimulation [62, p. 514,
Definition 1] is not preserved by input prefix [62, p. 515, Proposition 4] but is by all the other operators, it

6At least, in process algebra, as the same name is used for a different type of meaning in e.g. λ -calculus [48, p. 6].
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is sometimes tempting to simply remove input prefix from the set of constructors allowed at top-level
in contexts, which is what non-input contexts [72, p. 62, Definition 2.1.22] do, and then to establish a
context lemma for this limited notion of context.

Taken together, those two remarks produce a strange impression: while it is mathematically elegant
and interesting to prove that weaker conditions are enough to satisfy an interesting property, it seems to us
that this result is sometimes “forced” into the process algebra by having ahead of time excluded all the
operators that would not fit, hence producing a result that is not only weaker, but also somehow artificial,
or even tautological. Furthermore the criteria of “not adding any discriminating power” should not be
a positive criterion when deciding if a context belongs to the algebra: on the opposite, one would want
contexts to increase the discriminating power—as for the mismatch operator—and not to “conform” to
what substitution and parallel composition have already decided.

Context lemmas seem to embrace an uncanny perspective: instead of being used to prove properties
about tests more easily, they should be considered from the perspective of the ease of use of testing
systems. Stated differently, we believe that the set of testing operators should come first, and then then,
if the language designer wishes to add operators to ease the testers’ life, they can do so providing they
obtain a context lemma proving that those operators do not alter the original testing capacities. Once
again, varying the testing suite is perfectly acceptable, but once fixed, the context lemma is simply present
to show that adding some testing operators is innocent, that it will simply make testing certain properties
easier.

9.4 Embracing the Diversity

Before daring to submit a non-technical paper, we tried to conceive a technical construction that could
convey our ideas. In particular we tried to build a syntactic (even categorical) meta-theory of processes,
systems and tests. We wanted to define congruences in this meta-theory, and to answer the following
question: what could be the minimal requirements on contexts and operators to prove a generic form of
context lemma for concurrent languages?

However, as the technical work unfolded, we realized that the definitions of contexts, observations,
and operators, were so deeply interwoven that it was nearly impossible to extract any general or useful
principle. Context lemmas use specific features of languages, in a narrow sense, as for instance no context
lemma can exist in the “Situation B” of Figure 2 [72, p. 117], and we were not able to find a unifying
framework. This also suggests that context lemmas are often fit for particular process algebras by chance,
and dependent intrinsically of the language considered, for no deep reasons.

This was also liberating, as all the nuances of languages we had been fighting against started to
form a regular pattern: every single language we considered exhibited (at least parts of) the structure we
sketched in the present proposal. Furthermore, our framework was a good lens to read and answer some
of the un-spoken questions suggested in the margin or the footnotes—but rarely upfront—of the multiple
research papers, lecture notes and books we consulted. So, even without mathematical proofs, we consider
this contribution a good way of stirring the community, and to question the traditional wisdom.

It seems indeed to us that there is nothing but benefits in altering the notion of context, as it is
actually routine to do so, even recently [37], and that stating the variations used will only improve the
expressiveness of the testing capacities and the clarity of the exposition.

It is a common trope to observe the immense variety of process calculi, and to sometimes wish there
could be a common formalism to capture them all—to this end, the π-calculus is often considered the best
candidate. Acknowledging this diversity is already being one step ahead of the λ -calculus—that keeps
forgetting that there is more than one λ -calculus, depending on the evaluation strategy and on features
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such as sharing [5]—and this proposal encourages to push the decomposition into smaller languages even
further, as well as it encourages to see whole theories as simple “completion” of standard languages. As
we defended, breaking the monolithic status of context7 will actually make the theory and presentation
follow more closely the technical developments, and liberate from the goal of having to find the process
algebra with its unique observation technique that would capture all possible needs.

Acknowledgements The author wish to thank the organizer of ICE 2021 for organizing this welcoming,
open workshop, as well as the reviewers who kindly shared their comments, suggestions and insights
with us. This paper benefited a lot from them.

7This may be a good place to mention that this monolithicity probably comes in part from the original will of making e.g.
CCS a programming and specification language. The specification was supposed to be the program itself, that would be easy
to check for correctness: the goal was to make it “possible to describe existing systems, to specify and program new systems,
and to argue mathematically about them, all without leaving the notational framework of the calculus” [51, p. 1]. This original
research project slightly shifted—from specifying programs to specifying behaviors—but that original perspective remained.



16 Processes, Systems & Tests

References

[1] Martı́n Abadi, Bruno Blanchet & Cédric Fournet (2018): The Applied Pi Calculus: Mobile Values, New Names,
and Secure Communication. J. ACM 65(1), pp. 1:1–1:41, doi:10.1145/3127586.

[2] Martı́n Abadi & Andrew D. Gordon (1999): A Calculus for Cryptographic Protocols: The spi Calculus. Inf.
Comput. 148(1), pp. 1–70, doi:10.1006/inco.1998.2740.

[3] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco Patrignani & Jérémy Thibault (2019):
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FIFO automata are finite state machines communicating through FIFO queues. They can be used
for instance to model distributed protocols. Due to the unboundedness of the FIFO queues, several
verification problems are undecidable for these systems. In order to model-check such systems,
one may look for decidable subclasses of FIFO systems. Binary half-duplex systems are systems
of two FIFO automata exchanging over a half-duplex channel. They were studied by Cece and
Finkel who established the decidability in polynomial time of several properties. These authors also
identified some problems in generalising half-duplex systems to multi-party communications. We
introduce greedy systems, as a candidate to generalise binary half-duplex systems. We show that
greedy systems retain the same good properties as binary half-duplex systems, and that, in the setting
of mailbox communications, greedy systems are quite closely related to a multiparty generalisation
of half-duplex systems.

1 Introduction

FIFO automata, also known as asynchronous communicating automata (i.e., finite state automata that
exchange messages via FIFO queues) are an interesting formalism for modeling distributed protocols.
In their most general formulation, these automata are Turing powerful, and in order to be able to model
check them it is necessary to reduce their expressiveness.

Binary half-duplex systems, introduced by Cece and Finkel [5], are systems with two participants
and a bidirectional channel formed of two FIFO queues, such that communication happens only in one
direction at a time. The stereotypical half-duplex device is the walkie-talkie (or the CB). In several ap-
plications, in particular when FIFO buffers are bounded and sends may be blocking, half-duplex commu-
nications are considered a good practice to avoid send-send deadlocks. Language support for enforcing
this discipline of communication includes, for instance, binary session types [14, 15] or Sing# channel
contracts [10, 20].

In [5], Cece and Finkel show that (1) whether a system is half-duplex is decidable in polynomial
time, (2) the set of reachable configurations is regular, and (3) properties like progress and boundedness
are decidable in polynomial time. Cece and Finkel also present two possible notions ‘multiparty half-
duplex’ systems generalizing their class to systems of any number of machines for p2p communications
(one FIFO queue per pair of machine).

The first generalisation involves assuming that at most one queue over all queues is non-empty at
any time. This generalisation preserves decidability but is very restrictive. The second generalisation
restricts the communications between each pair of participants to half-duplex communications, that is
only one buffer per bidirectional channel can be used simultaneously. This generalisation however does

*This work has been supported by the French government, through the EUR DS4H Investments in the Future project
managed by the National Research Agency (ANR) with the reference number ANR-17-EURE- 0004.
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not preserve decidability: the systems captured by this definition form a Turing powerful class. In fact,
with just three machines it is possible to mimic the tape of a Turing machine.

It could be believed that these results end the discussion about multi-party half-duplex systems. In
this work, we claim conversely that there is another natural and relevant notion of multi-party half-duplex
communications that allows us to generalise the results of Cece and Finkel. We introduce greedy systems,
which are systems for which all executions can be rescheduled in such a way that all receptions are im-
mediately preceded by their corresponding send. This notion is quite natural, and closely related to other
notions like synchronisability [3], 1-synchronous systems [4], or existentially 1-bounded system [12]
(see Section 6 for a detailed discussion).

In this work, we establish the following results:

1. whether a system is greedy is decidable in polynomial time (when the number of processes is
fixed);

2. for greedy systems, all regular safety properties, which includes reachability, absence of unspe-
cified receptions, progress, and boundedness are decidable in polynomial time.

3. we generalize binary half-duplex systems to multiparty mailbox half-duplex systems and we show
that (1) mailbox half-duplex systems are greedy, and (2) greedy systems without orphan messages,
at least in the binary case, are half-duplex.

The first result follows from techniques developed by Bouajjani et al [4] for k-synchronous systems. The
main challenge here is that we address a more general model of communicating systems that encom-
passes both mailbox and p2p communications, but also allows any form of sharing of buffers among
processes. The second result is based on an approach that, to the best of our knowledge, is new, although
it borrows from some general principles from regular model-checking. The challenge is that, unlike for
binary half-duplex systems, the reachability set of greedy systems is not regular, which complicates how
automata-based techniques can be used to solve regular safety. The third contribution aims at answering,
although incompletely, the question we would like to address with this work: what is a relevant notion
of multi-party half-duplex systems?

Outline The paper is organised as follows: Section 2 introduces communicating automata and systems.
Section 3 defines greedy systems and establishes the decidability of the greediness of a system. Section 4
discusses regular safety for greedy systems. Section 5 compares greedy systems and half-duplex systems,
first in the binary setting, then in the multi-party setting, by introducing the notion of mailbox half-duplex
systems. Finally, Section 6 concludes with some final remarks and discusses related works.

2 Preliminaries

For a finite set S, S∗ denotes the set of finite words over S, w1 ·w2 denotes the concatenation of two
words, |w| denotes the length of w, and ε denotes the empty word. We assume some familiarity with
non-deterministic finite state automata, and we write L (A ) for the language accepted by the automaton
A . For two sets S and I, we write b (in bold) for an element of SI , and bi for the i-th component of b, so
that b = (bi)i∈I .

A FIFO automaton is basically a finite state machine equipped with FIFO queues where transitions
are labelled with either queuing or dequeuing actions. More precisely:
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Definition 1 (FIFO automaton). A FIFO automaton is a tuple1 A = (L,V, I,Act,δ , l0) where (1) L is a
finite set of control states, (2) V is a finite set of messages, (3) I is a finite set of buffer identifiers, (4)
Act⊆ I×{!,?}×V is a finite set of actions, (5) δ ⊆ L×Act×L is the transition relation, and (6) l0 ∈ L
is the initial control state. The size |A | of A is |L|+ |δ |.

Actions a=(i,†,v), for †∈{!,?} are also denoted by i†v. Given a FIFO automaton A =(L,V, I,δ , l0),
a configuration of A is a tuple γ = (l,b) ∈ L×VI . The initial configuration is γ0 = (l0,b /0) where for
all i ∈ I, b /0

i = ε . A step is a tuple (γ,a,γ ′) (often written γ a−→
A

γ ′) where γ = (l,b) and γ ′ = (l′,b′) are

configurations and a is an action, such that the following holds:
• (l,a, l′) ∈ δ ,

• if a = i!v, then b′i = bi · v and b′j = b j for all j ∈ I \{i}.
• if a = i?v, then bi = v ·b′i and b′j = b j for all j ∈ I \{i}.
Next, we define systems of FIFO automata. We pick a very general definition, where each FIFO

queue might be queued (resp. dequeued) by more than one automaton, and where an automaton might
‘send a message to itself’. Most of the theory can be done in this general setting without extra cost, but
we merely have in mind either mailbox systems or p2p systems (defined below).

A FIFO system, later called simply a system, is a family S = (Ap)p∈P of FIFO automata such that
all FIFO automata have disjoint sets of actions: for all p 6= q∈ P, Actp∩Actq = /0. Each p∈ P is referred
to as a process. The condition on the disjointness of the sets of actions helps to identify the process that
is responsible for a given action: for an action a, we write process(a) to denote the unique p (when it
exists) such that a ∈ Actp.

Let us now define mailbox and p2p systems. Informally, a p2p system is a system in which each
pair of processes has a dedicated buffer for exchanging messages. Instead, for mailbox communication,
each process receives messages from all other processes in a single buffer. Let us now formally define
these notions. To this aim, it will be useful to identify what are the buffers an automaton queues in (resp.
dequeues from). Hence, for a given FIFO automaton Ap = (Lp,Vp, Ip,Actp,δp, l0,p), and for † ∈ {!,?},
we write I†

p for the set of buffer identifiers i such that there exists v ∈ Vp such that i†v ∈ Actp. A system
S= (Ap)p∈P is p2p if for all p ∈ P, Ip ⊆ P2, I!

p = {p}× (P\{p}), and I?
p = (P\{p})×{p}. A system

S = (Ap)p∈P is a mailbox system if for all p ∈ P, Ip ⊆ P, I!
p = P \ {p} and I?

p = {p}. Thus in a p2p
system with n processes, there are at most n(n− 1) buffers, and in a mailbox system with n processes
there are at most n buffers. A binary system is a system S = (Ap)p∈P such that P = {1,2} and for all
p∈ P, I!

p = {3− p}= I?
3−p; note that a binary system is both p2p and mailbox. We sometimes use a more

handy notation for actions of a mailbox (resp. p2p) system: if process(i!v) = p and process(i?v) = q, we
sometimes write !vp→q instead of i!v and ?vp→q instead of i?v.
Example 1 (FIFO Automata). Figure 1 shows a graphical representation of a FIFO system, borrowed
from [2]. This system represents a protocol between a client, a server and a database logging requests
from the client and the server. In this protocol, a client can log something on the database or send requests
to the server, when those requests are satisfied the server logs them in a database. Each automaton
is equipped with a buffer in which it receives messages from all other participants: this system is an
example of a mailbox system. To improve readability of the graphical representation, we refer to the
buffers with the initial of the automaton to which they are associated. For example, s is the buffer into
which the server can receive messages. This simple system will be used as a running example throughout
the paper.

1Note that FIFO automata do not have accepting states, therefore they are not a special case of non-deterministic finite state
automaton, and there is not such a thing as ”the language of a FIFO automaton”.
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Figure 1: Client/Server/Database protocol

The size |S| of S is the sum of the |Ap|. Note that |P| and |I| are independent from the size of S.
In particular, when we say that an algorithm is in polynomial time, we mean in time O(|S|k) for some k
that may depend on |P| and |I|.

The FIFO automaton product(S) associated with S is the standard asynchronous product auto-
maton: product(S) = (Πp∈PLp,

⋃
p∈PVp,

⋃
p∈P Ip,δ , l0) where l0 = (l0,p)p∈P and δ is the set of triples

(l,a, l′) for which there exists p ∈ P such that (lp,a, l′p) ∈ δp and lq = l′q for all q ∈ P \ {p}. We of-
ten identify S and product(S) and write for instance a−→

S
instead of a−−−−−−→

product(S)
. Similarly, we say that

γ = (l,b) is a configuration of S while we mean that γ is a configuration of product(S). An execution
e = a1 · · ·an ∈ Act∗ is a sequence of actions. As usual e

=⇒ stands for a1−→ ·· · an−→. We write executions(S)

for {e ∈ Act∗ | γ0
e
=⇒
S

γ for some γ}.
Next, we introduce the definition of reachable configuration:

Definition 2 (Reachable configuration). Let S be a system. A configuration γ is reachable if there exists
e ∈ Act∗ such that γ0

e
=⇒
S

γ . The set of all reachable configurations of S is denoted RS(S).

Given an execution e = a1 · · ·an, we say that { j, j′} ⊆ {1, · · · ,n}2 is a matching pair if there exists
a buffer identifier i, a message v and natural number k such that (1) a j = i!v, (2) a j′ = i?v, (3) a j is
the k-th send action on i in e, and (4) a j′ is the k-th receive action on i in e. A communication of e is
either a matching pair { j, j′}, or a singleton { j} such that j does not belong to any matching pair (such
a communication is called unmatched). We write com(e) to denote the set of communications of e.

An execution imposes a total order on the actions. Sometimes, however, it is useful to visualise
only the causal dependencies between actions. Message sequence charts [17] are usually used to this
aim, as they only depict an order between matched pairs of actions and between actions of the same
process. However, message sequence charts do not represent graphically the causal dependencies due
to shared buffers, like the ones found in mailbox systems. Here we define action graphs that depict
all causal dependencies. When considering p2p communications, action graphs and message sequence
charts coincide. We say that two actions a1,a2 commute if process(a1) 6= process(a2) and it is not the
case that a1 and a2 are two actions of the same type on a same buffer: there is no † ∈ {!,?}, i ∈ I and
v1,v2 ∈ V such that a1 = i†v1 and a2 = i†v2.

Definition 3 (Action graph). Given an execution e = a1 · · ·an, the action graph agraph(e) is the vertex-
labeled directed graph ({1, . . . ,n},≺e,λe) where λe( j) = a j and j≺e j′ if (1) j < j′ and (2) either a j,a j′

do not commute, or { j, j′} is a matching pair.
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(a) The action graph agraph(e)
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(b) The conflict graph cgraph(e)

Figure 2: Causal dependencies of an execution of Client/Server/Database protocol

When j≺e j′, we sometimes say that a j happens before a j′ . Note that for an execution e∈ executions(S),

≺∗e is a partial order. Two executions e,e′ are causally equivalent, denoted by e S∼ e′, if their action graphs
are isomorphic. Say differently, e,e′ are causally equivalent if they are two linearisations of a same hap-

pens before partial order. Note that if γ0
e
=⇒
S

γ and e S∼ e′, then γ0
e′
=⇒
S

γ .

Another graphical tool that we will use to talk about equivalent executions is the conflict graph,
which is intuitively obtained from the action graph by merging matching pairs of vertices.

Definition 4 (Conflict graph). Given an execution e = a1 · · ·an, the conflict graph cgraph(e) of the exe-
cution e is the directed graph (com(e),→e) where for all communications c1,c2 ∈ com(e), c1→e c2 if
there is j1 ∈ c1 and j2 ∈ c2 such that j1 ≺e j2.

Example 2 (Action and Conflict Graphs). We go back to the system depicted in Figure 1. One of its
executions is

e = s!req · s?req · c!res · c?res · s!acks · s?acks ·d!logc ·d!logs ·d?logc · c!ackd · c?ackd · s!req ·d?logs

Figure 2(a) shows agraph(e). Actions of the same process are represented vertically between the same
dotted lines. As formally explained in Definition 3, an arc from an action a and another a′ means that a
happens before a′. To ease readability, the arcs that follow from transitivity are omitted. For example, in
a given column, there should be an arc between every pair of actions.

Figure 2(b) shows cgraph(e). To simplify the graph, instead of marking the matching pairs we
simply identify them with the message exchanged. Message req2 represent the second send of req in the
execution above.
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p q

p!v1

q?v2

q!v2

p?v1

(a) The action graph agraph(e) of Example 5

v1 v2

(b) The conflict graph cgraph(e)

Figure 3: Visual representations of a non-greedy execution e

3 Greedy systems

In this section we introduce greedy systems. Those systems aim at mimicking rendez-vous or synchron-
ous communications by checking whether each execution can be rescheduled to an equivalent one where
all receptions immediately follow their corresponding send.

Definition 5 (Greedy system). An execution e is greedy if all matching pairs are of the form { j, j+1}.
A system S is greedy if for all execution e ∈ executions(S), there exists a greedy execution e′ such that

e S∼ e′.

Example 3. The execution s!req · s?req · c!res · c?res · s!acks ·d!logc ·d?logc is greedy, but the execution
s!req · s?req · c!res · c?res · s!acks · d!logc · s?acks is not greedy, although causally equivalent to a greedy
execution.
Example 4 (Greedy system). The system in Figure 1 is greedy. Take for instance execution e of the
example 2. This execution is not greedy as messages logc, logs, and ackd are not received right after
their send. Still since those action can commute and by observing that the conflict graph in Figure 2(b)
does not present any cycle (see Lemma 6) below), there exists an equivalent greedy execution e′:

e′ = s!req · s?req · c!res · c?res · s!acks · s?acks ·d!logc ·d?logc · c!ackd · c?ackd · s!req ·d!logs ·d?logs.

Example 5. Consider a system with two processes p and q each sending a message to the other, and
whose corresponding receptions only happen after the send (see Figure 3). Then the execution e =
p!v1 ·q!v2 · p?v1 ·q?v2 is not causally equivalent to a greedy execution, therefore the whole system is not
greedy.

In the remainder of this section, we show that deciding whether a system is greedy is feasible in
polynomial time. The proof is in three steps: first, we give a graphical characterisation of the executions
that are causally equivalent to greedy executions; second, we show that the non-greediness of a system
is revealed by the existence of ‘bad’ executions of a certain shape, called borderline executions. Finally,
we show that the graphical characterisation can be exploited to show the regularity of the language of
borderline violations, from which we get the decidability of greediness.

Lemma 6. e is causally equivalent to a greedy execution if and only if cgraph(e) is acyclic.

Proof. The left to right implication follows from two observations: first, two causally equivalent ex-
ecutions have isomorphic conflict graphs (because they have isomorphic action graphs), and second,
the conflict graph of a greedy execution is acyclic, because for a greedy execution c1 →e c2 induces
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minc1 < minc2. Conversely, let e = a1 · · ·an, and assume that cgraph(e) is acyclic. Let c1� . . .� cn

be a topological order on com(e), e′ = c1 · · ·cn be the corresponding greedy execution, and σ be the

permutation such that e′ = aσ(1) · · ·aσ(n). The claim is that e S∼ e′. Let j, j′ be two indices of e, and let
us show that j ≺e j′ iff σ( j)≺e′ σ( j′). First, { j, j′} is a matching pair of e if and only if {σ( j),σ( j′)}
is a matching pair of e′, which shows the equivalence in that case. Assume now that { j, j′} is not a
matching pair of e, and let c,c′ be the communications of e containing j and j′ respectively. Assume
also that j ≺e j′, we show that σ( j) ≺e′ σ( j′) (the other implication, similar, is omitted). First, j ≺e j′

implies c→e c′, which entails σ(c)→e′ σ(c′) because e and e′ have the same conflict graph. Moreover,
j ≺e j′ implies that a j and a j′ do not commute, therefore either σ( j) ≺e′ σ( j′) or σ( j′) ≺e′ σ( j). By
contradiction let σ( j′) ≺e′ σ( j); then σ(c′)→e′ σ(c), contradicting the acyclicity of the conflict graph
of e′, which ends the proof.

Definition 7 (Borderline violations). An execution e ∈ executions(S) is a borderline violation if (1) e is
not causally equivalent to a greedy execution, (2) e = e1 · i?v for some greedy execution e1 and receive
action i?v.

Example 6 (Borderline violation). An example of a borderline violation for the system whose unique
maximal execution is the one of Figure 3 is the execution

e =!vp→q
2 ·!vq→p

1 ·?vq→p
1 ·?vp→q

2 .

Figure 3 shows its action and conflict graph. The action graph makes it easy to see that any execution e′

equivalent to e will require both the send actions to be done before the first reception, therefore at least
one reception will not follow its matching send action.

Lemma 8. S is greedy if and only if executions(S) contains no borderline violation.

Proof. Obviously, if executions(S) contains a borderline violation, S is not greedy. Conversely, as-
sume that S is not greedy, and let us show that executions(S) contains a borderline violation. Let
e ∈ executions(S) be an execution that is not causally equivalent to a greedy execution and of minimal
length among all such executions. Then e = e1 · a with e1 causally equivalent to a greedy execution.
Let e′1 be a greedy execution causally equivalent to e1. Then e′ = e′1 · a ∈ executions(S). Moreover, if
a is a send action, then e′ is greedy, contradicting the fact that e is not causally equivalent to a greedy
execution. Therefore, e′ is a borderline violation.

Let Σ = I×{!, !?}×V denote the set of communications, and let Σ? = I×{?}×V be the set of
receive actions. Then a greedy execution can be represented by a word in Σ∗ and a borderline violation is
represented by a word in Σ∗ ·Σ?. So now, we define two non-deterministic finite state automata over Σ∪
Σ?: the first one accepts all greedy executions of a system, and the second one all borderline violations.
We later explain how these automata are used to decide greediness.

Lemma 9. Let S=(Ap)p∈P of size n and V=
⋃

p∈PVp, I =
⋃

p∈P Ip be fixed. There is a non-deterministic
finite state automaton Agr computable in time O(|V||I|22|I|n|P|+2) such that L (Agr) = {e · i?v ∈ Σ∗ ·Σ? |
e · i?v ∈ executions(S) and e is greedy}.

Proof. Let product(S) = (LS,V, I,Act,δS, l0) and let Agr = (Lgr,δgr, lgr,0,Fgr) be the non-deterministic
finite state automaton over Σ with Lgr = LS× ({ε}∪ I× v)×2I ∪{lF}, lgr,0 = (l0,ε, /0), Fgr = {lF}, and
the transitions defined as follows. First, while reading a letter c ∈ Σ,

(
(l,x,S),c,(l′,x′,S′)

)
∈ δgr if

• (l,b) c
=⇒
S

(l′,b′) for some b,b′ such that for all i ∈ I, bi 6= /0 iff i ∈ S, and b′i 6= /0 iff i ∈ S′, and
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• one of the two following holds

– either x = x′,
– or x = ε and x′ = (i,v) and c = i!v and i 6∈ S.

Second, while reading the letter i?v ∈ Σ?,
(
(l,x,S), i?v, lF

)
∈ δgr if x = (i,v) and (l, i?v, l′) ∈ δS for some

l′ ∈ LS. Then L (Agr) is as announced. Moreover, each transition of Agr can be constructed in constant
time, so Agr can be constructed in time as announced.

Lemma 10. There is a non-deterministic finite state automaton Abv computable in time O(|I|3|V|3) such
that L (Abv) = {e ∈ Σ∗ ·Σ? | cgraph(e) contains a cycle}.

Proof. Let Abv = (Lbv,δbv, lbv,0,{lbv,1}) be the non-deterministic finite state automaton over Σ∪Σ? such
that Lbv = {lbv,0, lbv,1}∪Σ?×Σ, and for all c,c′ ∈ Σ, for all a ∈ Σ?, for all i ∈ I, v ∈ V, (1) (lbv,0,c, lbv,0) ∈
δbv (2) (lbv,0, i!v,(i?v, i!v)) ∈ δbv, (3) ((a,c),c′,(a,c)) ∈ δbv (4) ((a,c),c′,(a,c′)) ∈ δbv if process(c)∩
process(c′) 6= /0, and (5) ((i?v,c), i?v, lbv,1) ∈ δbv if process(c)∩process(i?v) 6= /0. Then L (Abv)) = {e ∈
Σ∗Σ? | cgraph(e) contains a cycle}. Moreover, each transition of Abv can be constructed in constant time,
so Abv can be constructed in time as announced.

From the computability of the two previous automata, we deduce the decidability of system greedi-
ness.

Theorem 11. Whether a system S=(Ap)p∈P of size n is greedy is decidable in time O(|I|5|V|42|I|n|P|+2).

Proof. Let Agr and Abv be the two automata defined in Lemmas 9 and 10. By Lemma 6 and by definition
of a borderline violation, the set of borderline violations of S is L (Agr) ·Σ?∩L (Abv). So, by Lemma 8,
S is greedy if and only if L (Agr) ·Σ?∩L (Abv) = /0. The claim then directly follows from the fact that
emptiness testing for a non-deterministic finite state automaton of size n is in time O(n).

4 Model-Checking Greedy Systems

In this section we explore how to verify various safety properties of greedy systems in polynomial time.
Since the reachability set of a greedy system is not regular, it is not obvious that regular safety properties
are always decidable. We show that this problem actually is decidable, with a polynomial time complex-
ity under mild assumptions. Then, we list a few regular safety properties that were also considered in
other works, in particular for approaches based on session types [16, 8, 22].

4.1 Checking Regular Safety Properties

Let S= (Ap)p∈P with I =
⋃

p∈P Ip = {1, . . . , |I|} be a system. We identify a word w= l ·] ·b1 ·] · · ·] ·b|I| ∈
LS · (] ·V∗)|I| with the configuration (l,b1, . . . ,b|I|). We say that a set of configurations P(S) is regular2

if the corresponding set of words coding these configurations is regular. A property is a function P that
associates to every system S a set of configurations P(S). We say that P is regular if P(S) is regular
for all S, and computable in time O( f (n)) if a non-deterministic finite state automaton A accepting
P(S) can be computed in time O( f (|S|)). The P safety problem is whether a system S is such that
RS(S)∩P(S) = /0. Examples of safety problems are discussed below in Section 4.2.

2also called channel recognizable by Cece and Finkel [5, Definition 10]
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Cece and Finkel showed that, for a binary half-duplex system S, RS(S) is regular and computable
in polynomial time [5, Theorem 26]. Since the emptiness of the intersection of two polynomial time
computable regular languages is decidable in polynomial time, for any regular polynomial time property
P, the P safety problem is decidable in polynomial time for binary half-duplex systems.

For greedy systems, however, the situation is a bit different. Indeed, observe that RS(S) may be
non-regular and even context sensitive (it is easy to define a system with one machine and 3 buffers, such
that for some control state l, RS(S)∩ l(]V∗)3 = {lan]bn]cn | n≥ 0}). So it is not obvious how to decide
the emptiness of RS(S)∩P(S).

Still, the P safety problem remains decidable for a computable regular property P.

Theorem 12. Let P be a computable regular property. Then, for a given greedy system S = (Ap)p∈P,
the P safety problem is decidable. Moreover, if P is computable in time O(|S|k) for some k≥ 0, then the
problem is decidable in time O(|S|k+|P|+2).

Proof. Let S be fixed, with product(S) = (LS,V, I,Act,δS, lS,0). Let A = (LA ,δA , lA ,0,FA ) be the
polynomial time computable non-deterministic finite state automaton over alphabet LS ∪{]}∪V such
that L (A ) = P(S). We define an automaton AP = (LP,δP,LP,0,FP) over the alphabet Σ of communic-
ations such that for all greedy execution e ∈ executions(S), e ∈L (AP) iff there is γ ∈ P(S) such that
γ0

e
=⇒
S

γ .

Before defining Ap formally, let us give some intuitions about how it works on an example. Assume
that Ap reads e = 1!a · 2!?b · 2!c · 1!d, and that the final configuration γ is l]ad]c. While reading e, Ap

should check the existence of an accepting run of A on γ . When AP reads a communication, there are
two cases. Either the communication is a matched send (like 2!?b) and therefore it does not contribute
to the final configuration, so Ap merely ignores it. Or the communication is an unmatched send, and it
contributes to a piece of the accepting run of γ on A . However, these pieces of the accepting run of A
are not necessarily consecutive. For instance, in the above execution, a and d are consecutive in the run
of A , but Ap reads c in between, although c contributes only later to the run of A . To correctly check
the existence of a run of A on γ , Ap uses for each buffer a distinguished ”pebble” placed on a state of
A . Every time Ap reads an unmatched send i!v, it moves the i-th pebble along an v transition of A . So
each pebble checks for a piece of the accepting run of the whole word coding the final configuration. Ap

therefore also needs to make sure that all of these pieces of runs can be concatenated to form a run of
A . Therefore, at the beginning, Ap guesses an initial control state li and a final control state l′i for each
pebble, and ensures that (l′i , ], li+1) ∈ δA . While doing so, going back to our example, Ap ensures that
ad#c can be read by A . It remains also to deal with the control state: indeed, A should accept l]ad]c.
So AP guesses before reading e that the control state will be l after executing e, and while reading e, it
computes the current control state of S. In the end, it checks that this control state actually is l.

Now that we presented the intuitions about Ap, let us define it formally. Let us start with the set
of control states. Let LP = LS × LS × L|I|A × L|I|A . Intuitively, the control state (lS, lF , lA , lI) of Ap

corresponds to a situation where: (1) the current control state of S is lS, (2) the guessed final control
state of S is lF , (3) the i-th pebble currently is on state lA ,i of A , and (4) lI is a copy of the initial
positions of the pebbles and will be checked against their final positions in the end to ensure that all
pieces of runs can be concatenated.

Let us now define the set LP,0 of initial control states of AP. Let us set that (lS, lF , lA , lI ∈ LP,0 if
(1) lA = lI , (2) lA ,1 ∈ δ ∗A (lA ,0, lF · ]), and (3) lS = lS,0. Intuitively, a control state is initial if (1) lI is a
copy of lA , (2) the position of the pebble of buffer 1 is on a state that is reachable in A after reading lF]
and (3) lS is the initial control state of S.
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Similarly, let us now define the set FP of final control states of AP. Let us set (lS, lF , lA , lI) ∈ FP if
(1) lS = lF , (2) for all i = 1, . . . , |I|− 1, (lA ,i, ], lA ,i+1) ∈ δA , and (3) lA ,|I| ∈ FA . Intuitively, a control
state is final if (1) the current control state of S corresponds to the guessed final one, (2) the i-th pebble
can be moved along a ] transition so as to reach the initial position of pebble i+1, and (3) the pebble of
the last buffer reached an accepting state of A .

Let us now define the set δP of transitions of Ap. Let us set that
(
(lS, lF , lA , lI), c, (l′S, l

′
F , l
′
A , l′I)

)
∈ δP

if (1) lF = l′F , (2) lI = l′I , (3) l′S ∈ δ ∗S(lS,c), (4.1) if c = i!?v, then lA = l′A , and (4.2) if c = i!v, then
(lA ,i,v, l′A ,i) ∈ δA and lA , j = l′A , j for all j 6= i. Intuitively, when it reads a matched send i!?v, Ap only
updates lS according to the sequence of actions i!?v, while when it reads an unmatched send i!v it also
updates the position of the i-th token.

Now that AP is defined, observe that RS(S)∩P(S) = /0 iff L (Ap)∩L (Agr) = /0, where Agr is the
automaton defined in Lemma 9. The emptiness of this intersection is decidable in time O(|AP| · |Agr|),
which shows the claim.

4.2 Examples of Regular Safety Problems

In this section we review a few properties of systems that are polynomial-time computable regular prop-
erties and showcase some applications of Theorem 12.

Reachability The control state reachability problem is to decide, given a system S and a control state
l ∈ LS, whether there exists b ∈ (V∗)I and e ∈ Act∗ such that γ0

e
=⇒
S

(l,b). The configuration reachability

problem, on the other hand, is to decide, given a system S and a configuration γ , whether γ ∈ RS(S).
Both problems are safety problems for a regular property P computable in polynomial time (and even
constant time): P(S) = l · (] ·V∗)|I| for the control state reachability problem, and P(S) = {γ} for the
configuration reachability problem.

Unspecified reception Unspecified receptions is one of the errors that session types usually forbid.
This error makes more sense for mailbox systems, so let us assume for now that S is a mailbox system.
A configuration is an unspecified reception if one of the participants is in a receiving state, and none of
its outgoing transitions can receive the first message in its buffer.

Let us define these notions more formally. A control state lp of process p is a receiving state if for
all a, l′ such that (lp,a, l′) ∈ δp, a is a receive action. The set {v | (lp, p?v, l′) ∈ δp for some l′} is called
the ready set of lp.

A configuration (l,b) is said an unspecified reception configuration if there is p ∈ P such that (1)
lp is a receiving state, (2) bp = vb′ for some v ∈ V and b′ ∈ V∗, and (3) v is not in the ready set of lp.
It can be observed that the set UR(S) of unspecified receptions of S defines a regular property that is
computable in polynomial time.

Progress Another property that is central in session types is progress. A global control state l of S is
final if there is no action a and global control state l′ such that (l,a, l′) ∈ δS. A configuration γ = (l,b)
of S satisfies progress if either l is final or there is a configuration γ ′ and an action a such that γ a−→

S
γ ′. A

system satisfies progress if all reachable configurations satisfy progress. It can be observed that the set
NP(S) of configurations that do not satisfy progress is regular and polynomial time computable.
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4.3 Boundedness

There are other examples of properties that are regular and polynomial time, but some interesting ones
are not safety properties. To conclude this section, we consider one of these properties.
Definition 13 (Boundedness). Let S be a system and k ≥ 0. A channel i ∈ I is k-bounded if for all
(l,b) ∈ RS(S) |bi| ≤ k. S is k-bounded if for all i ∈ I, i is k-bounded.
Theorem 14. Whether there exists k ≥ 0 such that a greedy system S is k-bounded is decidable in
polynomial time. Moreover, k is computable in polynomial time.

Proof. Let Σ! ⊆ Σ be the set of unmatched communications, and σ : Σ∗→ Σ∗! the morphism that erase
all matched communications. By Lemma 9, and by the closure of regular languages under morphisms,
there is a polynomial time computable non-deterministic finite state automaton A such that L (A ) =
{σ(e) | e ∈ executions(S) is greedy}. Then S is k-bounded for some k if and only if L (A ) is finite, or
equivalently if and only if A , once pruned (removing states that are not reachable from the initial state
and co-reachable from a final state), is acyclic.This is decidable in time O(|A |), and the maximal length
k of a word of L (A ) also is computable in time O(|A |).

5 Mailbox Half-Duplex Systems

Binary half-duplex systems, (called simply half-duplex by Cece and Finkel [5]) are binary systems such
that all reachable configurations (l1, l2,b1,b2) are such that either b1 = ε or b2 = ε . In the previous
sections, we established that greedy systems enjoy the same decidability and complexity results as binary
half-duplex systems. In this section, we defend the claim that greedy systems could also merit the name
of multiparty half-duplex systems.

First, observe that binary half-duplex systems are greedy (see [5, Lemma 20]). The converse does not
hold in general: some binary greedy systems are not half-duplex. However, under an extra hypothesis,
both are equivalent. A system is called without orphan messages if for all reachable configuration con-
taining a message in a buffer, it is possible to reach a configuration where this message has been received.
This property is also enforced by session types and is very natural in communicating systems. Then ob-
serve that, for a given a binary system S without orphan messages, the following two are equivalent: (1)
S is binary half-duplex, and (2) S is greedy.

Let us now consider multiparty systems. Cece and Finkel proposed two notions of multiparty half-
duplex systems, but conclude that they were not well behaved (one being too restrictive, and the other
Turing powerful). Both of these generalisations relied on peer-to-peer communication. We propose to
consider mailbox communication instead.
Definition 15 (Half-duplex execution). Fix a mailbox system S. An execution e = (l0,b0)

a1−→ (l1,b1)−→
·· · an−→ (ln,bn) is half-duplex if for all j = 1, . . . ,n, if a j is a send action, then bi−1

p = ε , where p =
process(a j).

Intuitively, an execution is half-duplex if every process empties its queue of messages before sending.
Definition 16 (Mailbox half-duplex system). A mailbox system S is mailbox half-duplex if for all exe-
cution e ∈ executions(S), there is a half-duplex execution e′ such that e S∼ e′.
Example 7. The system in Figure 1 is half-duplex. Indeed even if execution e of Example 2 is not
half-duplex, by considering one of its greedy equivalents e′′:

e′′ = s!req · s?req · c!res · c?res · s!acks · s?acks ·d!logc ·d?logc · c!ackd · c?ackd ·d!logs ·d?logs · s!req
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we obtain a half-duplex execution. Notice that execution e′ of Example 4 is greedy but not half-duplex
as the send of message logs is done when the buffer of the Server is filled with message req.

Note that a binary system is mailbox half-duplex if and only if it is binary half-duplex. In the
remainder, we therefore sometimes say simply half-duplex instead of binary half-duplex or mailbox
half-duplex.

Theorem 17. Mailbox half-duplex systems are greedy.

Proof. We reason by contradiction. Assume that S is not greedy, we show that S is not half-duplex. Let
e ∈ executions(S) be any execution that is not causally equivalent to a greedy execution (for instance,

take for e a borderline violation). We claim that for all e′ such that e S∼ e′, e′ is not half-duplex. Since e′

is not causally equivalent to a greedy execution, we get, by Lemma 6, that cgraph(e′) contains a cycle of
communications c1→e′ c2→e′ . . .→e′ cn→e′ c1 where for all i = 1, . . .n, either ci = { ji,ki} is a matching
pair, or ci = { ji} is an unmatched send. We assume that ji < ki, i.e. ji is the index of the send action
and ki the index of the receive action. Up to a circular permutation, we can also assume, without loss of
generality, that j1 is the first send among them in e′, i.e. j1 < j` for all ` = 2, . . . ,n. Now, let us reason
by case analysis on the nature of the conflict edge cn→e′ c1.

• case “cn
SS−→ c1”: jn ≺e′ j1. Then jn < j1, contradicts the minimality of j1. Impossible.

• case “cn
RS−→ c1”: kn ≺e′ k1. Then jn < kn < j1, impossible.

• case “cn
RR−→ c1”: kn ≺e′ k1. Then kn < k1 and either (1) process(akn) = process(ak1) or (2) there is

i ∈ I, v,v′ ∈V such that akn = i?v and ak1 = i?v′. Because of the mailbox semantics, (1) and (2) are
equivalent, so (2) is granted. But then a jn = i!v and a j1 = i!v′. Since e′ is a FIFO execution, and
kn < k1, we get that jn < j1, and again the contradiction.

• case “cn
SR−→ c1”: jn ≺e′ k1. Then jn < k1, and process(a jn) = process(ak1). Moreover, j1 < jn

by the minimality of j1. To sum up, let p,q,r,v1,v2 be such that a j1 =!vp→q
1 , ak1 =?vp→q

1 , and
a jn =!vq→r

2 . Then we just showed that e′ = . . .!vp→q
1 . . .!vq→r

2 . . .?vp→q
1 . . ., so e′ is not a half-duplex

execution.

Notice that the converse of Theorem 17 does not hold: being greedy is
not a sufficient condition to be half-duplex. Indeed, an unmatched send can
fill the buffer of a process willing to send. More precisely, consider the action
graph on the right. It depicts a greedy system that is not half-duplex: in fact
the buffer for q is not empty when v2 is sent. We conjecture that this is the only
pathological situation, and that, like in the binary setting, if a system is greedy
and has no orphan messages, then it is half-duplex.

p q

q!v1

p?v2q!v2

Example 8. To finish this section we present another small example of a half-duplex system: the classic
Client/Seller/Bank protocol. This system is shown in Figure 4. In this protocol a client can ask the price
of an item to the seller (ask price message), and receive the answer. Whenever the client agrees on a
price it can place an order (via the message buy). Receiving this message the seller initiates a transaction
with the bank. The bank asks the client for its credentials, and when it receives them it either authorizes
or refuses the transaction, and notifies the seller accordingly. The seller then confirms or cancels the
transaction, sending a message to the client.
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Figure 4: Client/Seller/Bank

6 Conclusion

We have introduced greedy systems, a new class of communicating systems, generalising the notion
of half-duplex systems to any number of processes, and to an arbitrary model of FIFO communication
(encompassing both p2p and mailbox communications). We have shown that the greediness of a system is
decidable in polynomial time, and that for greedy systems regular safety properties, such as reachability,
progress, and boundedness are decidable in polynomial time. Finally, we defined mailbox half-duplex
systems and showed that greedy systems are intimately related to mailbox half-duplex systems.

Still, the picture is a bit incomplete: we did not address liveness properties nor more general temporal
properties, and we also did not propose a notion of p2p half-duplex systems that would enjoy all desirable
properties. Also, we did not report on experimental evaluation. We leave these questions for future work.

Pachl gave a general decidability result for systems of communicating finite state machines whose
reachability set is regular [21]. Although the algorithm is rather brute-force, the MCSCM tool illustrates
that it is amenable to an efficient CEGAR optimization [13]. Beyond regularity, and relying on visibly
pushdown languages, La Torre et al [26] established that bounded context-switch reachability is also
decidable in time exponential in the number of states and doubly exponential in the number of switch.
We conjecture that bounded context-switch reachability is complete for greedy systems with a number
of switch polynomial in the size of the system.

Several authors considered communicating systems where queues are not plain FIFO but may over-
approximate a FIFO behaviour. A representative example of this approach is lossy channels, introduced
independently in [6] and [1]. Another example is the bag semantics of buffers where messages are
received without loss but out of order. Examples of uses of bag buffers can be found in [25]. Both for
lossy and bag systems the reachability problem is decidable but with a high complexity: non primitive
recursive for lossy [23, 24]. The exact complexity seems unknown for bag systems, but by reduction to
Petri nets it is non-elementary [7].
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Aside bounded context-switch model-checking, another form of bounded model-checking has been
promoted by Muscholl et al.: the notions of universally and existentially bounded message sequence
charts [19]. This leads to two notions of universally/existentially bounded systems (both having unfor-
tunately the same name), depending whether only the MSCs leading to final stable configurations are
considered [12] or all MSCs [18]. For the latter definition, reachability and membership are decidable
in PSPACE. Greedy systems are existentially 1-bounded, but the converse does not hold (for instance,
the system of Example 5) is existentially 1-bounded). A system is k-synchronous [4] if the message se-
quence charts of the system are formed of blocks of k messages. In particular, a system is 1-synchronous
if the message lines never cross. For systems with p2p communications, greediness is the same as 1-
synchronizability. However, for mailbox communications, some subtle examples are 1-synchronous but
not greedy (see e.g. [9, Example 1.2]). For k-synchronous systems, reachability is decidable in PSPACE.
Finally, greedy system are synchronizable in the sense of Basu and Bultan [3], but synchronizability
is not decidable [11]. We believe that greediness is the notion that Basu and Bultan were aiming at
with the notion of synchronizability. It might be wondered if greedy systems were not implicit in Cece
and Finkel’s work. Actually, some of their arguments rely on the fact that for half-duplex systems,
every execution is ‘reachability equivalent’ to a synchronous execution. This is not exactly the notion of
greedy systems we introduced, and our notion of greedy systems is closer to Bouajjani et al notion of
1-synchronous systems, although, as we just explained, they are not the same in some corner cases.

Session types are intimately related to half-duplex systems in the binary setting [20]. Several multi-
party extensions of session types have been proposed, the last proposal being [22]. It seems there are
also some similarities between multiparty session types and greedy systems. For instance, the notion of
greedy execution shares some similarities with the notion of alternation in [8]. The study of the exact
relationship between greedy systems and multi-party session typed systems is left for future work.

We would like to thank all the ICE reviewers for their comments that greatly improved the present
paper.
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Abstract. We propose a component-based semantic model for Cyber-
Physical Systems (CPSs) wherein the notion of a component abstracts
the internal details of both cyber and physical processes, to expose a uni-
form semantic model of their externally observable behaviors expressed
as sets of sequences of observations. We introduce algebraic operations on
such sequences to model different kinds of component composition. These
composition operators yield the externally observable behavior of their
resulting composite components through specifications of interactions of
the behaviors of their constituent components, as they, e.g., synchro-
nize with or mutually exclude each other’s alternative behaviors. Our
framework is expressive enough to allow articulation of properties that
coordinate desired interactions among composed components within the
framework, also as component behavior. We demonstrate the usefulness
of our formalism through examples of coordination properties in a CPS
consisting of two robots interacting through shared physical resources.

1 Introduction

Compositional approaches in software engineering reduce the complexity of spec-
ification, analysis, verification, and construction of software by decomposing it
down into (a) smaller parts, and (b) their interactions. Applied recursively, thus,
compositional methods reduce software complexity by breaking the software and
its parts down into ultimately simple modules, each with a description, proper-
ties, and interactions of manageable size. The natural tendency to regard each
physical entity as a separate module in a Cyber-Physical System (CPS) makes
compositional methods particularly appealing for specification, analysis, verifica-
tion, and construction of CPSs. However, the distinction between discrete versus
continuous transformations in modules representing cyber versus physical pro-
cesses complicates the semantics of their specification and their treatment by
requiring: (1) distinct formalisms to model discrete and continuous phenomena;
(2) distinct formalisms to express composition and interactions of cyber-cyber,
cyber-physical, and physical-physical pairs of modules; and (3) when to use which
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formalism to express composition and interactions of hybrid cyber-physical mod-
ules.

Contribution

– we propose a semantic model of interacting cyber and physical processes
based on sequences of observations,

– we define an algebraic framework to express interactions between time sen-
sitive components,

– we give a general mechanism, using a co-inductive construction, to define
algebraic operations on components as a lifting of some constraints on ob-
servations,

– we introduce two classes of properties on components, trace properties and
behavior properties, and demonstrate their application in an example.

Our approach differs from more concrete approaches (e.g., operational mod-
els, executable specifications, etc.) in the sense that our operations on compo-
nents model operations of composition at the semantic level.

We first intuitively introduce some key concepts and an example in Section 2.
We provide in Section 3 formal definitions for components, their composition,
and their properties. We describe a detailed example in Section 4. We present
some related and our future work in Section 5, and conclude the paper in Sec-
tion 6.

2 Coordination of energy-constrained robots on a field

In this work, we consider a cyber-physical system as a set of interacting pro-
cesses. Whether a process consists of a physical phenomenon (sun rising, electro-
chemical reaction, etc.) or a cyber phenomenon (computation of a function, mes-
sage exchanges, etc.), it exhibits an externally observable behavior resulting from
some internal non-visible actions. Instead of a unified way to describe internals
of cyber and physical processes, we propose a uniform description of what we
can externally observe of their behavior and interactions.

In this section, we introduce some concepts that we will formalize later. An
event may describe something like the sun-rise or the temperature reading of 5◦C.
An event occurs at a point in time, yielding an event occurrence (e.g., the sun-rise
event occurred at 6:28 am today), and the same event can occur repeatedly at
different times (the sun-rise event occurs every day). Typically, multiple events
may occur at “the same time” as measured within a measurement tolerance
(e.g., the bird vacated the space at the same time as the bullet arrived there;
the red car arrived at the middle of the intersection at the same time as the
blue car did). We call a set of events that occur together at the same time an
observable. A pair (O, t) of a set of observable events O together with its time-
stamp t represents an observation. An observation (O, t) in fact consists of a set
of event occurrences: occurrences of events in O at the same time t. We call an
infinite sequence of observations a Timed-Event Stream (TES). A behavior is a
set of TESs. A component is a behavior with an interface.
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Consider two robot components, each interacting with its own local battery
component, sharing a field resource. The fact that the robots share the field
through which they roam, forces them to somehow coordinate their (move) ac-
tions. Coordination is a set of constraints imposed on the otherwise possible
observable behavior of components. In the case of our robots, if nothing else,
at least physics prevents the two robots from occupying the same field space at
the same time. More sophisticated coordination may be imposed (by the robots
themselves or by some other external entity) to restrict the behavior of the robots
and circumvent some undesirable outcomes, including hard constraints imposed
by the physics of the field. The behaviors of components consist of timed-event
streams, where events may include some measures of physical quantities. We
give in the sequel a detailed description of three components, a robot (R), a
battery (B), and a field (F), and of their interactions. We use SI system units to
quantify physical values, with time in seconds (s), charging status in percentage
(%), distance in meters (m), speed in meters per second (m s−1).

Table 1. Each column displays a segment of a timed-event stream for a robot, a
battery, and a field component, where observables are singleton events. For t ∈ R+, we
use R(t), B(t), and F (t) to respectively denote the observable at time t for the TES in
the Robot, the Battery, and the Field column. An explicit empty set is not mandatory
if no event is observed.

Robot (R) Battery (B) Field (F )
Robot-Battery-

Field
1s {(read(loc, R); (0; 0))} {(loc(i); (0; 0))} R(1) ∪ F (1)
2s {(move(R); (N, 1m s−1))} {(discharge(B); 1%)} {(move(I); (N, 0.5))} R(2) ∪B(2) ∪ F (2)
3s {(read(loc, R); (0; 1))} {(loc(I); (0; 1))} R(3) ∪ F (3)
4s {(read(bat , R); 92%)} {(read(B); 92%)} R(4) ∪B(4)
... ... ... ... ...

A robot component, with identifier R, has two kinds of events: read events
(read(bat , R); b) that measures the level b of its battery or (read(loc, R); l) that
obtains its position l, and a move event (move(R); (d, v)) when the robot moves
in the direction d with speed v. The TES in the Robot column in Table 1 shows
a scenario where robot R reads its location and gets the value (0; 0) at time 1s,
then moves north at one meter per second at time 2s, reads its location and gets
(0; 1) at time 3s, and reads its battery value and gets 92% at time 4s, ....

A battery component, with identifier B, has three kinds of events: a charge
event (charge(B); η2), a discharge event (discharge(B); η1), and a read event
(read(B); s), where η1 and η2 are respectively the discharge and charge factor of
the battery, and s is the current charge status. The TES in the Battery column
in Table 1 shows a scenario where the battery discharged at a rate of 1% per
second at time 2s, and reported its charge-level of 92% at time 4s, ....

A field component, with identifier F , has two kinds of events: a position
event (loc(I); p) that obtains the position p of an object I, and a move event
(move(I); (d, η)) of the object I in the direction d with a friction factor η. The
TES in the Field column in Table 1 shows a scenario where the field has the
object I at location (0; 0) at time 1s, then the object I moves in the north
direction with a friction coefficient of 0.5 at time 2s, subsequently to which the
object I is at location (0; 1) at time 3s, ....
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When components interact with each other, in a shared environment, behav-
iors in their composition must also compose with a behavior of the environment.
For instance, a battery component may constrain how many amperes it delivers,
and therefore restrict the speed of the robot that interacts with it. We spec-
ify interaction explicitly as an exogenous binary operation that constrains the
composable behaviors of its operand components.

The robot-battery interaction imposes that a move event in the behavior of a
robot coincides with a discharge event in the behavior of the robot’s battery, such
that the discharge factor of the battery is proportional to the speed of the robot.
The physicality of the battery prevents the robot from moving if the energy level
of the battery is not sufficient (i.e., such an anomalous TES would not exist in
the battery’s behavior, and therefore cannot compose with a robot’s behavior).
Moreover, a read event in the behavior of a robot component should also coincide
with a read event in the behavior of its corresponding battery component, such
that the two events contain the same charge value.

The robot-field interaction imposes that a move event in the behavior of a
robot coincides with a move event of an object on the field, such that the friction
coefficient on the field is proportional to the speed of the robot. A read event
in the behavior of a robot coincides with a position event of the corresponding
robot object on the field, such that the two events contain the same position
value. Additional interaction constraints may be imposed by the physics of the
field. For instance, the constraint “no two robots can be observed at the same
location” would rule out every behavior where the two robots are observed at
the same location.

A TES for the composite Robot-Battery-Field system collects, in sequence,
all observations from a TES in a Robot, a Battery, and a Field component
behavior, such that at any moment the interaction constraints are satisfied. The
column Robot-Battery-Field in Table 1 displays the first elements of such a TES.

3 Components, composition, and properties

3.1 Notations

An event is a simplex (the most primitive form of an) observable element. An
event may or may not have internal structure. For instance, the successive ticks
of a clock are occurrences of a tick event that has no internal structure; succes-
sive readings of a thermometer, on the other hand, constitute occurrences of a
temperature-reading event, each of which has the internal structure of a name-
value pair . Similarly, we can consider successive transmissions by a mobile sensor
as occurrences of a structured event, each instance of which includes geoloca-
tion coordinates, barometric pressure, temperature, humidity, etc. Regardless of
whether or not events have internal structures, in the sequel, we regard events
as uninterpreted simplex observable elements.

Notation 1 (Events) We use E to denote the universal set of events.
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An observable is a set of event occurrences that happen together and an
observation is a pair (O, t) of an observable O and a time-stamp t ∈ R+.1 An
observation (O, t) represents an act of atomically observing occurrences of events
in O at time t. Atomically observing occurrences of events in O at time t means
there exists a small ε ∈ R+ such that during the time interval [t− ε, t+ ε]:

1. every event e ∈ O is observed exactly once2, and
2. no event e 6∈ O is observed.

We write 〈s0, s1, ..., sn−1〉 to denote a finite sequence of size n of elements
over an arbitrary set S, where si ∈ S for 0 ≤ i ≤ n − 1. The set of all finite
sequences of elements in S is denoted as S∗. A stream3 over a domain S is a
function σ : N→ S. We use σ(i) to represent the i+1st element of σ, and given a
finite sequence s = 〈s0, ..., sn−1〉, we write s · σ to denote the stream τ ∈ N→ S
such that τ(i) = si for 0 ≤ i ≤ n− 1 and τ(i) = σ(i− n) for n ≤ i. We use σ′ to
denote the derivative of σ, such that σ′(i) = σ(i+ 1) for all i ∈ N.

A Timed-Event Stream (TES) over a set of events E and a set of time-stamps
R+ is a stream σ ∈ N→ (P(E)× R+) where, for σ(i) = (Oi, ti):

1. for every i ∈ N, ti < ti+1, [i.e., time monotonically increases] and
2. for every n ∈ N, there exists i ∈ N such that ti > n [i.e., time is non-Zeno

progressive].

Notation 2 (Time stream) We use OS(R+) to refer to the set of all mono-
tonically increasing and non-Zeno infinite sequences of elements in R+.

Notation 3 (Timed-Event Stream) We use TES (E) to denote the set of all
TESs whose observables are subsets of the event set E with elements in R+ as
their time-stamps.

Given a sequence σ = 〈(O0, t0), (O1, t1), (O2, t2), ...〉 ∈ TES (E), we use the
projections pr1(σ) ∈ N → P(E) and pr2(σ) ∈ N → R+ to denote respectively
the sequence of observables 〈O0, O1, O2, ...〉 and the sequence of time stamps
〈t0, t1, t2, ...〉.

3.2 Components

The design of complex systems becomes simpler if such systems can be decom-
posed into smaller sub-systems that interact with each other. In order to sim-
plify the design of cyber-physical systems, we abstract from the internal details
of both cyber and physical processes, to expose a uniform semantic model. As
a first class entity, a component encapsulates a behavior (set of TESs) and an
interface (set of events).

1 Any totally ordered dense set would be suitable as the domain for time (e.g., positive
rationals Q+). For simplicity, we use R+, the set of real numbers r ≥ 0 for this
purpose.

2 A finer time granularity may reveal some ordering relation on the occurrence of
events in the same set of observation.

3 The set N denotes the set of natural numbers n ≥ 0.
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Definition 1 (Component). A component is a tuple C = (E,L) where E ⊆ E
is a set of events, and L ⊆ TES (E) is a set of TESs. We call E the interface
and L the externally observable behavior of C.

More particularly, Definition 1 makes no distinction between cyber and phys-
ical components. We use the following example to describe some cyber and phys-
ical aspects of components.

Example 1. Consider a component encapsulating a continuous function f : (D0×
R+) → D, where D0 is a set of initial values, and D is the codomain of values
for f . Such a function can describe the evolution of a physical system over time,
where f(d0, t) = d means that at time t the state of the system is described by
the value d ∈ D if initialized with d0. We define the set of all events for this
component as the range of function f given an initial parameter d0 ∈ D0. The
component is then defined as the pair (D,Lf ) such that:

Lf = {σ ∈ TES (D) | ∃d0 ∈ D0. ∀i ∈ N. pr1(σ)(i) = {f(d0, pr2(σ)(i))}}

Observe that the behavior of this component contains all possible discrete sam-
plings of the function f at monotonically increasing and non-Zeno sequences of
time stamp. Different instances of f would account for various cyber and physical
aspects of components. �

3.3 Composition

A complex system typically consists of multiple components that interact with
each other. The example in Section 2 shows three components, a robot , a battery ,
and a field , where: a move observable of a robot must coincide with a move
observable of the field and a discharge observable of its battery.

We express such constraints on behaviors using relations4. It is sometimes
necessary to relate TESs of two components to express what must not, but
otherwise may, happen. Sometimes whether or not a pair of observations in two
TESs can compose, depends on the events involved in those observations. To
capture this notion, we introduce a generalized notion of a composability relation
as a parametrized relation that takes as argument a pair of carrier sets of events
and relates pairs of TESs over those event sets.

Definition 2 (Composability relation on TESs). A composability relation
is a parametrized relation R such that for all E1, E2 ⊆ E, we have R(E1, E2) ⊆
TES (E1)× TES (E2).

Definition 3 (Symmetry). A parametrized relation Q is symmetric if, for all
(x1, x2) and for all (X1, X2): (x1, x2) ∈ Q(X1, X2) ⇐⇒ (x2, x1) ∈ Q(X2, X1).

4 Also non binary relations could be considered, i.e., constraints imposed on two com-
ponents.
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A composability relation on TESs serves as a necessary constraint for two TESs
to compose. We give in Section 3.4 some examples of useful composability rela-
tions on TESs that, e.g., enforce synchronization or mutual exclusion of observ-
ables. We define composition of TESs as the act of forming a new TES out of
two TESs.

Definition 4. A composition function ⊕ on TES is a function ⊕ :TES (E)2→
TES (E).

We define a binary product operation on components, parametrized by a com-
posability relation and a composition function on TESs, that forms a new com-
ponent. Intuitively, the newly formed component describes, by its behavior, the
evolution of the joint system under the constraint that the interactions in the
system satisfy the composability relation. Formally, the product operation re-
turns another component, whose set of events is the union of sets of events of
its operands, and its behavior is obtained by composing all pairs of TESs in the
behavior of its operands deemed composable by the composability relation.

Definition 5 (Product). Let (R,⊕) be a pair of a composition function and a
composability relation on TESs, and Ci = (Ei, Li), i ∈ {1, 2}, two components.
The product of C1 and C2, under R and ⊕, denoted as C1 ×(R,⊕) C2, is the
component (E,L) where E = E1 ∪ E2 and L is defined by

L = {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ R(E1, E2)}

Definition 5 presents a generic composition operator, where composition is
parametrized over a composability relation and a composition function.

Lemma 1. Let ⊕1 and ⊕2 be two composition functions on TESs, and let R1

and R2 be two composability relations on TESs. Then:

– if R1 is symmetric, then ×(R1,⊕1) is commutative if and only if ⊕1 is com-
mutative;

– if, for all Ei ⊆ E and σi ∈ TES (Ei) with i ∈ {1, 2, 3}, we have

(σ1, σ2 ⊕2 σ3) ∈ R1(E1, E2 ∪ E3) ∧ (σ2, σ3) ∈ R2(E2, E3) ⇐⇒
(σ1, σ2) ∈ R1(E1, E2) ∧ (σ1 ⊕1 σ2, σ3) ∈ R2(E1 ∪ E2, E3)

then ×(R1,⊕1) and ×(R2,⊕2) are associative if and only if σ1⊕1 (σ2⊕2 σ2) =
(σ1 ⊕1 σ2)⊕2 σ3

– if for all E ⊆ E and σ, τ ∈ TES (E), we have (σ, τ) ∈ R1(E,E) =⇒ σ = τ ,
then ×(R1,⊕1) is idempotent if and only if ⊕1 is idempotent.

The generality of our formalism allows exploration of other kinds of opera-
tions on components, such as division. Intuitively, the division of a component
C1 by a component C2 yields a component C3 whose behavior contains all TESs
that can compose with TESs in the behavior of C2 to yield the TESs in the
behavior of C1.



8 Benjamin Lion, Farhad Arbab, and Carolyn Talcott

Definition 6 (Division). Let R be a composability relation on TESs, and ⊕ a
composition function on TESs. The division of two components C1 = (E1, L1)
and C2 = (E2, L2) under R and ⊕, denoted as C1/(R,⊕)C2, is the component
C = (E1, L) such that:

L = {σ ∈ TES (E1) | ∃σ2 ∈ L2. (σ, σ2) ∈ R(E1, E2) ∧ σ ⊕ σ2 ∈ L1}

If the dividend is C1 = C ′1×(R,⊕)C ′2, and the divisor is an operand of the product,
e.g., C2 = C ′2, then the behavior of the result of the division, C, contains all TESs
in the behavior of the other operand (i.e., C ′1) composable with a TES in the
behavior of C2.

Lemma 2. Let C1 = (E1, L1) and C2 = (E2, L2) be two components. Let
(C1 ×(R,⊕) C2)/(R,⊕)C2 = (E3, L3), with (R,⊕) a pair of a composability re-
lation and a composition function on TESs. Then,

{σ1 ∈ L1 | ∃σ2 ∈ L2. (σ1, σ2) ∈ R(E1 ∪ E2, E2) ∩R(E1, E2)} ⊆ L3

Corollary 1. In the case where R = > (see Definition 10) then L1 ⊆ L3.

3.4 A co-inductive construction for composability relations

In this section, we provide a co-inductive construction for composability rela-
tions on TESs. We show how some constraints on observations can be lifted to
constraints on TESs, and give weaker conditions for Lemma 1 to hold.

Intuitively, the lifting of a composition function from observables to TESs
compares element wise the observations of two TESs, and distinguishes three
cases. Two symmetric cases occur when the first observation of the two TESs
do not occur at the same time: the earliest observation is added in sequence to
the resulting TES. In the case where the first observations of the two TESs have
the same time stamp, a newly formed observation is added to the resulting TES,
whose time stamp is the same and whose observable is obtained by composition
of the two observables.

Definition 7 (Lifting - composition function). Let + : P(E)2 → P(E)
be a composition function on observables. The lifting of + to TESs is [+] :
TES (E)2 → TES (E) s.t., for σi ∈ TES (E) where σi(0) = (Oi, ti) with i ∈ {1, 2}:

σ1[+]σ2 =





〈σ1(0)〉 · (σ′1[+]σ2) if t1 < t2

〈σ2(0)〉 · (σ1[+]σ′2) if t2 < t1

〈(O1 ⊕O2, t1)〉 · (σ′1[+]σ′2) otherwise

Definition 7 requires two observations to have the exact same time stamp to
compose. Alternative definitions are also possible where the timing constraint is
relaxed to time intervals instead of exact times.

Similarly, we introduce composability relations on observations, and give a
mechanism to lift such composability relations to relate TESs.
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Definition 8 (Composability relation on observations). A composability
relation on observations is a parametrized relation κ s.t. for all pairs (E1, E2) ∈
P(E)2, we have κ(E1, E2) ⊆ (P(E1)× R+)× (P(E2)× R+)

Definition 9 (Lifting- composability relation). Let κ be a composability
relation on observations, and let Φκ : P(E)2 → (P(TES (E)2) → P(TES (E)2))
be such that, for any R ⊆ TES (E)2:

Φκ(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E1, E2)∧
(pr2(τ1)(0) = t1 ∧ pr2(τ2)(0) = t2)∧
(t1 < t2 ∧ (τ ′1, τ2) ∈ R ∨ t2 < t1 ∧ (τ1, τ

′
2) ∈ R∨

t2 = t1 ∧ (τ ′1, τ
′
2) ∈ R)}

The lifting of κ on TESs, written [κ], is the parametrized relation obtained by
taking the fixed point of the function Φκ(E1, E2) for arbitrary pair E1, E2 ⊆ E,
i.e., the relation [κ](E1, E2) =

⋃
R⊆TES(E)×TES(E){R | R ⊆ Φκ(E1, E2)(R)}.

Lemma 3 (Correctness of lifting). For any E1, E2 ⊆ E, the function Φκ is
monotone, and therefore has a greatest fixed point.

Lemma 4. If κ is a composability relation on observations, then the lifting [κ]
is a composability relation on TESs. Moreover, if κ is symmetric (as in Defini-
tion 3), then [κ] is symmetric.

We give three examples of composability relation on TESs, where Defini-
tion 11 and Definition 12 are two examples that construct co-inductively the
composability relation on TESs from a composability relation on observations.
For the following examples, let C1 = (E1, L1) and C2 = (E2, L2) be two compo-
nents, and ⊕ be a composition function on TESs.

Definition 10 (Free composition). We use > for the most permissive com-
posability relation on TESs such that, for any σ, τ ∈ TES (E), we have (σ, τ) ∈ >.

The behavior of component C1×(>,⊕)C2 contains every TES obtained from the
composition under ⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2 of TESs. This product
does not impose any constraint on event occurrences of its operands.

Definition 11 (Synchronous composition). Let u ⊆ P(E)2 be a compos-
ability relation on observables. We define two observations to be synchronous
under the composability relation u according to the following two conditions:

1. every observable that can compose (under u) with another observable must
occur simultaneously with one of its composable observables; and

2. only an observable that does not compose (under u) with any other observable
can occur independently, i.e., at a different time.

A synchronous composability relation on observations κsync,u(E1, E2) satisfies
the two conditions above. For any two observations (Oi, ti) ∈ P(Ei) × R+ with
i ∈ {1, 2}, ((O1, t1), (O2, t2)) ∈ κsync,u(E1, E2) if and only if:

(t1 < t2 ∧ ¬(∃O′2 ⊆ E2. (O1, O
′
2) ∈ u)) ∨ (t2 < t1 ∧ ¬(∃O′1 ⊆ E1. (O′1, O2) ∈ u)) ∨

t2 = t1 ∧ ((O1, O2) = (O′1 ∪O′′1 , O′2 ∪O′′2 ) ∧ (O′1, O
′
2) ∈ u ∧

(∀O ⊆ E2. (O′′1 , O) 6∈ u) ∧ ∀O ⊆ E1. (O,O′′2 ) 6∈ u)) ∨ (O1, O2) = (∅, ∅))
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Example 2. Let E1 = {a, b} and E2 = {c, d} with u = {({a}, {c})}. Thus,
(({a}, t1), ({d}, t2)) ∈ κsync,u if and only if t2 < t1. Alternatively, we have
(({a}, t1), ({c}, t2)) ∈ κsync,u if and only if t1 = t2.

The lifting [κsync,u], written ./u, defines a synchronous composability relation
on TESs. The behavior of component C1×(./u,⊕)C2 contains TESs obtained from
the composition under ⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2 of TESs that are
related by the synchronous composability relation ./u which, depending on u,
may exclude some event occurrences unless they synchronize. 5

Definition 12 (Mutual exclusion). Let u ⊆ P(E)2 be a composability rela-
tion on observables. We define two observations to be mutually exclusive under
the composability relation u if no pair of observables in u can be observed at the
same time. The mutually exclusive composability relation κexcl,u on observations
allows the composition of two observations (O1, t1) and (O2, t2), i.e., ((O1, t1),
(O2, t2)) ∈ κexcl,u(E1, E2), if and only if

(t1 < t2) ∨ (t2 < t1) ∨ (¬(O1 uO2) ∧ t1 = t2)

Example 3. Let E1 = {a, b} and E2 = {c, d} with u = {({a}, {c})}. Thus,
(({a}, t1), ({c}, t2)) 6∈ κexcl,u for any t2 = t1, and {a} and {c} are two mutually
exclusive observables.

Similarly as in Example 11, the lifting [κexcl,u] of κexcl,u, written ∦u, defines
a mutual exclusion composability relation on TESs. The behavior of component
C1 ×(∦u,⊕) C2 contains TESs resulting from the composition under ⊕ of every
pair σ1 ∈ L1 and σ2 ∈ L2 of TESs that are related by the mutual exclusion com-
posability relation ∦u which, depending on u, may exclude some simultaneous
event occurrences.

Besides the product instances detailed in Definitions 10, 11, 12, the definition
of composability relation or composition function as the lift of some relations on
observations or function on observables allows weaker sufficient conditions for
Lemma 1 to hold.

Lemma 5. Let +1 and +2 be two composition functions on observables and let
κ1 and κ2 be two composability relations on observations. Then,

– ×([κ1],[+1]) is commutative if κ1 is symmetric and +1 is commutative;
– ×([κ1],[+1]) and ×([κ2],[+2]) are associative if, for all Ei ⊆ E and for any

triple of observations oi = (Oi, ti) ∈ P(Ei)× R+ with i ∈ {1, 2, 3}, we have
(O1 +1 O2) +2 O3 = O1 +1 (O2 +2 O3) and

((o1, o2) ∈ κ(E1, E2) ∧ (ι1(o1, o2), o3) ∈ κ(E1 ∪ E2, E3)) ⇐⇒
((o2, o3) ∈ κ(E2, E3) ∧ (o1, ι2(o2, o3)) ∈ κ(E1, E2 ∪ E3))

5 If we let ⊕ be the element wise set union, define an event as a set of port assign-
ments, and in the pair (./u,⊕) let u be true if and only if all common ports get the
same value assigned, then this composition operator produces results similar to the
composition operation in Reo [4].
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with ιk((O, t), (P, l)) =





(O, t) if t < l

(P, l) if l < t

(O +k P, t)

, where k ∈ {1, 2}.

– ×([κ1],[+1]) is idempotent if +1 is idempotent and, for all E ⊆ E we have
((O1, t1), (O2, t2)) ∈ κ1(E,E) =⇒ (O1, t1) = (O2, t2).

3.5 Properties

We distinguish two kinds of properties: properties on TESs that we call trace
properties, and properties on sets of TESs that we call behavior properties, which
correspond to hyper-properties in [6]. The generality of our model permits to
interchangeably construct a component from a property and extract a property
from a component. As illustrated in Example 5, when composed with a set of
interacting components, a component property constrains the components to
only expose desired behavior (i.e., behavior in the property). In Section 4, we
provide more intuition for the practical relevance of these properties.

Definition 13. A trace property P over a set of events E is a subset P ⊆
TES (E). A component C = (E,L) satisfies a property P , if L ⊆ P , which we
denote as C |= P .

Example 4. A trace property is similar to a component, since it describes a
set of TESs, except that it is a priori not restricted to any interface. A trace
property P can then be turned into a component, by constructing the smallest
interface EP such that, for all σ ∈ P , and i ∈ N, pr1(σ)(i) ⊆ EP . The component
CP = (EP , P ) is then the componentized-version of property P . �

Lemma 6. Let E be a set of events, and let u be the smallest relation such
that for all non empty O ⊆ E, (O,O) ∈ u. Given a property P over E, its
componentized-version CP (see Example 4), the product ./u as in Definition 11,
and a component C = (E,L), then C |= P if and only if C ×(./u,[∪]) CP = C.

Example 5. We use the term coordination property to refer to a property used
in order to coordinate behaviors. Given a set of n components Ci = (Ei, Li),
i ∈ {1, ..., n}, a coordination property Coord ranges over the set of events E =
E1 ∪ ... ∪ En, i.e., Coord ⊆ TES (E).

Consider the synchronous interaction of the n components, with u a sym-
metric composability relation on observables, ⊕ an associative and commutative
composition function on TESs, and let C = ((C1 ×(./u,⊕) C2)...×(./u,⊕) Cn) be
their synchronous product (see Corollary 2 in Appendix 7 for associativity of
×(./u,⊕)). Typically, a coordination property will not necessarily be satisfied by
the composite component C, but some of the behavior of C is contained in the
coordination property. The coordination problem is to find (e.g., synthesize) an
orchestrator component Orch = (EO, LO) such that C ×(./u,⊕) Orch |= Coord .
The orchestrator restricts the component C to exhibit only the subset of its
behavior that satisfies the coordination property. In other words, in their com-
position, Orch coordinates C to satisfy Coord . The coordination problem can
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be made even more granular by changing the composability relations or the
composition functions used in the construction of C.

As shown in Example 4, since Coord ranges over the same set E that is the
interface of component ((C1×(./u,⊕)C2)...×(./u,⊕)Cn), a coordination property
can be turned into an orchestrator by building its corresponding component. �

Trace properties are not sufficient to fully capture the scope of interesting
properties of components and cyber-physical systems. Some of their limitations
are highlighted in Section 4. To address this issue, we introduce behavior prop-
erties, which are strictly more expressive than trace properties, and give two
illustrative examples.

Definition 14. A behavior property φ over a set of events E is a hyper-property
φ ⊆ P(TES (E)). A component C = (E,L) satisfies a hyper-property φ if L ∈ φ,
which we denote as C ||= φ.

Example 6. A component C = (E,L) can be oblivious to time. Any sequence
of time-stamps for an acceptable sequence of observables is acceptable in the
behavior of such a component. This “obliviousness to time” property is not a
trace property, but a hyper-property, defined as:

φshift(E) := {Q ⊆ TES(E) | ∀σ ∈ Q.∀t ∈ OS(R+).∃τ ∈ Q.pr1(σ) = pr1(τ)∧pr2(τ) = t}

Intuitively, if C ||= φshift(E), then C is independent of time. �

Example 7. We use φinsert(X,E) to denote the hyper-property that allows for
arbitrary insertion of observations in X ⊆ P(E) into every TES at any point in
time, i.e., the set defined as:

{Q ⊆ TES(E) | ∀σ ∈ Q.∀i ∈ N.∃τ ∈ Q.∃x ∈ X.(∀j < i. σ(j) = τ(j)) ∧
(∃t ∈ R+. τ(i) = (x, t)) ∧
(∀j ≥ i. τ(j + 1) = σ(j)) }

Intuitively, elements of φinsert(X,E) are closed under insertion of an observation
O ⊆ X at an arbitrary time. �

4 Application

This section is inspired from the work on soft-agents [19, 10], and elaborates on
the more intuitive version presented in Section 2. We show in subsections 4.1
and 4.2 some expressions that represent interactive cyber-physical systems, and
in subsection 4.3 we formulate some trace and behavior properties on those
systems.

4.1 Description of components

We give, in order, a description for a robot, a battery, and a field component.
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Robot. A robot component R is a tuple (ER, LR) with:

ER = {(read( loc, R); l), (read(bat , R); b), (move(R); (d, v)), (charge(R); s) |
l ∈ [0, 20]2, 0 ≤ b ≤ 100%, d ∈ {N,E,W,S}, v ∈ R+, s ∈ {ON,OFF}}

LR = {σ ∈TES(ER) | ∀i ∈ N.∃e ∈ ER. pr1(σ)(i) = {e}}

where the read of the position, the read of the battery, the move, and the charge
events contain respectively the position of the robot as a pair of coordinates on
a [0, 20]2 grid; the battery level as a percentage; the move direction as pair of a
cardinal direction and a positive number for speed; and the charge status as ON
or OFF. Note that the set of TESs LR enforces no timing constraints.

Battery. A battery component B is a tuple (EB , LB) with:

EB = {(read(B); l), (discharge(B); η1), (charge(B); η2) | 0 ≤ l ≤ 100%, η2 ∈ [0, 1],

η1 : R+ → [0, 1]}
LB = {σ ∈ TES(EB) | ∀i ∈ N.∃e ∈ EB . pr1(σ)(i) = {e} ∧ PB(σ)}

where the read, the charge, and the discharge events respectively contain the
current charge percentage, the discharge factor, and the charge factor. PB is a
safety property that enforces every behavior of the battery to satisfy a physical
constraint. In our case, the property PB requires every read event occurrence
to return a value that depends on the time stamp of the observation and the
previous sequence of observables. The property PB assumes that initially at
t = 0 the battery is at 100% charge, that the battery level decreases after each
discharge event, increases after each charge event proportionally, respectively
by the discharge and the charge factors, and prevents a discharge event from
occurring if the level of the battery is 0%.

Field. A field component F (l0) contains a single object that we identify as I
initially at location l0, has a fixed size of [0, 20]2, and contains a charging station
at location (5; 5). A field component is a tuple (EF , LF ) with:

EF = {(loc(I); p), (move(I); (d, η)) | p ∈ [0, 20]2, d ∈ {N, S,E,W}, η : R+ → [0, 1]}
LF = {σ ∈ TES(EF ) | ∀i ∈ N.∃e ∈ EF . pr1(σ)(i) = {e} ∧ PF (σ)}

where the loc and the move events respectively contain the position of object I
and the pair of friction η and direction d of the move of object I. The friction
factor η is proportional to the speed at which an object moves, and reflects the
physical aspect of a field component. PF is a safety property that enforces every
TES to respect the physics of the field component. PF models the case where the
object I is initially at position (0, 0) and every move event changes continuously
the location of the object on the field according to the direction d, the speed v
of the object, and the friction η. A move event has no effect if it occurs while
the position of I is on the boundary of the field: it simulates the case of a fence,
where moving against the fence would have the same observable as not moving.
Alternatively, one can imagine a different structure for the field component, and
change PF accordingly.
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Robots R1 and R2 are two instances of the robot component, where all occur-
rences of R have been renamed respectively to R1 and R2 (e.g., (read(loc, R), l)
becomes (read(loc, R1), l) for the robot instance R1, etc.). Similarly, we consider
B1 and B2 to be two instances of the battery component B, and F1((0; 0)) and
F2((5; 0)) to be two instances of the field component F parametrized by the ini-
tial location for the object I, where the objects in fields F1 and F2 are renamed
to I1 and I2, and respectively initialized at position (0; 0) and (5; 0).

4.2 Interaction

We detail three points of interactions on observables among a robot and its
battery, a robot and a field on which it moves, and two instances of a field
component.

Robot-battery. Interactions between a robot component and its battery are such
that, for instance, every occurrence of a move event at the robot component
must be simultaneous with a discharge event of the battery, with the discharge
factor proportional to the speed of the robot. Given a robot component R and a
battery component B, we define the symmetric composability relation uRB on
the set ER ∪ EB to be the smallest relation such that:

{(read(bat , R); b)} uRB {(read(B); b)} for all 0 ≤ b ≤ 100%
{(move(R); (d, v))} uRB {(discharge(B); η1(v))} for all d ∈{N, S,W,E}, v ∈ R+

{(charge(R);ON)} uRB {(charge(B); η2)}

Robot-field. Interactions between a robot component and a field component are
such that, for instance, every move event of the robot component must be si-
multaneous with a move event of the object I on the field, with a friction factor
proportional to the speed of the robot. Given a robot component R and a field
component F , we define the symmetric composability relation uRF on the set
ER ∪ EF to be the smallest relation such that:

{(read(loc, R); l)} uFR {(loc(I); l)} for all l ∈ [0, 20]2

{(move(R); (d, v))} uFR {(move(I); (d, η(v)))} for all d ∈ {N,W,E,S}, v ∈ R+

{(charge(R);ON)} uFR {(loc(I); (5, 5))}

Observe that a robot can charge only if it is located at the charging station.

Field-field. We add also interaction constraints between two fields, such that
no observation can gather two read events containing the same position value.
Thus, given two fields F1 and F2, let uF12

be the smallest symmetric mutual ex-
clusion composability relation on the set EF1

∪ EF2
such that: {(loc(I1); l)} uF12

{(loc(I2); l)} for all l ∈ [0, 20]2. Observe that we interpret uF12
as a mutual exclu-

sion relation.

Product. We use set union as composition function on observables: given two
observables O1 and O2, we define O1⊕O2 to be the observable O1 ∪O2. We use
the synchronous and mutual exclusion composability relations on TESs intro-
duced in Definition 11 and Definition 12. We represent the cyber-physical system
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consisting of two robots R1 and R2 with two private batteries B1 and B2, and
individual fields F1 and F2, as the expression:

F1F2 ×(./uFR12
,[∪]) (R1B1 ×(>,[∪]) R2B2) (1)

where F1F2 := (F1 ×(∦uF12
,[∪]) F2), RiBi := (Ri ×(./uRiBi

,[∪]) Bi), and uFR12 :=

(uF1R1 ∪ uF2R2), with i ∈ {1, 2}.

4.3 Coordination

Let E = ER1
∪ ER2

∪ EB1
∪ EB2

∪ EF1
∪ EF2

be the set of events for the
composite system in Equation 1. We formulate the coordination as described in
Section 2 in terms of a satisfaction problem involving a safety property on TESs
and a behavior property on the composite system. We first consider two safety
properties:

Penergy = {σ ∈ TES(E) | ∀i ∈ N.{(read(B1), 0%), (read(B2), 0%)} ∩ pr1(σ)(i) = ∅}
Pno−overlap = {σ ∈ TES(E) | ∀i ∈ N.∀l ∈ [0, 20]2, {(loc(I1), l), (loc(I2), l)} * pr1(σ)(i)}

The property Penergy collects all behaviors that never observe a battery value
of 0%. The property Pno−overlap describes all behaviors where the two robots are
never observed together at the same location. Observe that, while both Penergy

and Pno−overlap specify some safety properties, they are not sufficient to ensure
the safety of the system. We illustrate some scenarios with the property Penergy .
If a component never reads its battery level, then the property Penergy is triv-
ially satisfied, although effectively the battery may run out of energy. Also, if a
component reads its battery level periodically, each of its readings may return
an observation agreeing with the property. However, in between two read events,
the battery may run out of energy (and somehow recharge). To circumvent those
unsafe scenarios, we add an additional hyper-property.

Let Xread = {(read(B1); l), (read(B2); l) | l ∈ [0, 20]2} be the set of reading
events for battery components B1 and B2. The property φinsert(Xread , E), as
detailed in Example 6, defines a class of component behaviors that are closed
under insertion of read events for the battery component. Therefore, the system
denoted as C, defined in Equation 1 is energy safe if C |= Penergy and its behavior
is closed under insertion of battery read events, i.e., C ||= φinsert(Xread , E). In
that case, every run of the system is part of a set that is closed under insertion,
which means all read events that the robot may do in between two events observe
a battery level greater than 0%. The behavior property enforces the following
safety principle: had there been a violating behavior (i.e., a run where the battery
has no energy), then an underlying TES would have observed it, and hence the
hyperproperty would have been violated.

5 Related and future work

Our work offers a component-based semantics for cyber-physical systems [12,
11]. In [2], a similar aim is pursued by defining an algebra of components using
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interface theory. Our component-based approach is inspired by [4, 5], where a
component exhibits its behavior as a set of infinite timed-data streams. More
details about co-algebraic techniques to prove component equivalences can be
found in [16].

In [8], the authors describe an algebra of timed machines and of networks
of timed machines. A timed machine is a state based description of a set of
timed traces, such that every observation has a time stamp that is a multiple
of a time step δ. The work differs from our current development in several
respects. We focus in this paper on different algebraic operations on sets of
timed-traces (TESs), and abstract away any underlying operational model (e.g.,
timed-automata). In [8], the authors explain how algebraic operations on timed
machines approximate the intersection of sets of timed-traces. In our case, inter-
action is not restricted to input/output composition, but depends on the choice
of a composability constraint on TESs and a composition function on observ-
ables. The work in [8] denotes an interesting class of components (closed under
insertion of silent observation - r-closed) that deserves investigation.

Cyber-physical systems have also been studied from an actor perspective,
where actors interact through events [18]. Problems of building synchronous
protocols on top of asynchronous means of interaction are presented in [17].

Recent work has shown plenty of interest in studying the satisfaction problem
of hyper-properties and the synthesis of reactive systems [9]. Some works focus
more particularly on using hyper-properties for cyber-physical design [14].

The extension of hybrid automata [13] into a quantized hybrid automata is
presented in [15], where the authors apply their model to give a formal semantics
for data flow models of cyber-physical systems such as Simulink.

Compared to formalisms that model cyber-physical systems as more concrete
operational or state-based mechanisms, such as automata or abstract machines,
our more general abstract formalism is based only on the observable behavior
of cyber-physical components and their composition into systems, regardless of
what more concrete models or mechanisms may produce such behavior.

For future work, we want to provide a finite description for components, and
use our current formalism as its formal semantics. In fact, we first started to
model interactive cyber-physical systems as a set of finite state automata in
composition, but the underlying complexity of automata interaction led us to
introduce a more abstract component model to clarify the semantics of those
interactions. Moreover, we want to investigate several proof techniques to show
equivalences of components. We expect to be able to reason about local and
global coordination, by studying how coordinators distribute over our different
composition operators. Finally, our current work serves as a basis for defining a
compositional semantics for a state-based component framework [1] written in
Maude [7], a programming language based on rewriting logic. We will focus on
evaluating the robustness of a set of components with respect to system require-
ments expressed as trace or hyper-properties. The complexity of the satisfaction
problem requires some run-time techniques to detect deviations and produce
meaningful diagnosis [10], a topic that we are currently exploring.
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6 Conclusion

This paper contains three main contributions. First, we introduce a component
model for cyber-physical systems where cyber and physical processes are uni-
formly described in terms of sequences of observations. Second, we provide ways
to express interaction among components using algebraic operations, such as a
parametric product and division, and give conditions under which product is as-
sociative, commutative, or idempotent. Third, we provide a formal basis to study
trace and hyper-properties of components, and demonstrate the application of
our work in an example describing several coordination problems.
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7 Appendix

7.1 Examples

Example 8. Consider a set of two events E = {0, 1}, and restrict our observa-
tions of E to {1} and {0}. A component whose behavior contains TESs with
alternating observations of {1} and {0} is defined by the tuple (E,L) where

L = {σ ∈ TES (E) | ∀i ∈ N. (pr1(σ)(i) = {0} =⇒ pr1(σ)(i+ 1) = {1})∧
(pr1(σ)(i) = {1} =⇒ pr1(σ)(i+ 1) = {0})}

Note that this component is oblivious to time, and any stream of monotonically
increasing non-Zeno real numbers would serve as a valid stream of time stamps
for any such sequence of observations. �

Example 9. We distinguish the usual safety and liveness properties [3, 6], and
recall that every property can be written as the intersection of a safety and a
liveness property. Let X be an arbitrary set, and P be a subset of N → X.
Intuitively, P is safe if every bad stream not in P has a finite prefix every
completion of which is bad, hence not in P . A property P is a liveness property
if every finite sequence in X∗ can be completed to yield an infinite sequence in
P .
For instance, the property of terminating behavior for a component with interface
E is a liveness property, defined as:

Pfinite(E) = {σ ∈ TES(E) | ∃n ∈ N.∀i > n. pr1(σ)(i) = ∅}

Pfinite(E) says that, for every finite prefix of any stream in TES (E), there exists
a completion of that prefix with an infinite sequence of silent observations ∅ in
Pfinite(E). �

The next two examples present with more details the constraints imposed by
the battery and the field components introduced in Section 4.

Example 10 (Field). A detailed example for the constraint PF would be such
that, for each sequence of observations, the output value of the read event cor-
responds to the current position of the robot given its previous moves. We will
use a function called pos to determine the position of the robot after a se-
quence of observations. Let s = 〈s0, s′〉 ∈ (P(E) × R+)∗ be a finite sequence
observations. The position of the object I after a sequence of events is given by
pos(〈s0, s′〉) = pos(s0) + pos(s′) where, for s0 = (O, t):

pos((O, t)) =





(0, η) if (move(I); (N, η)) ∈ O
(0,−η) if (move(I); (S, η)) ∈ O
(η, 0) if (move(I); (E, η)) ∈ O
(−η, 0) if (move(I); (W, η)) ∈ O
(0, 0) otherwise
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PF (σ) is defined to accept all TESs such that all read events return the current
position of the robot on the field, in accordance with the position function. Given
σ ∈ TES (EF ), PF (σ) is true if and only if

∀i ∈ N. (loc(I); p) ∈ pr1(σ)(i) =⇒ p = |pos(σ(0)....σ(i))|[−20,20]

with |(x, y)|[−20,20] = (min(max(x,−20), 20),min(max(y,−20), 20)).
PF models the case where the robot starts in position (0, 0) and every move

event changes the location of the robot on the field. Note that the move event
has no effect if it occurs while the position is on the boundary of the field: it
simulates the case of a fence, where moving against the fence would have the
same observable as not moving.

�

Example 11 (Battery). An example for the structural constraints PB is such that
every read event instance returns the battery level as a function of the number
of prior move events. We introduce the lev function, that takes a sequence of
observations s ∈ (P(E)× R+)∗ and returns the current charging level: lev(s) =
lev(〈s(0), s(1)〉) + lev(〈s(1)...s(i)〉), where

lev(〈(O1, t1), (O2, t2)〉) =

{
η1 + (t2 − t1)ηI if discharge(B; η1) ∈ O1

(t2 − t1)ηI otherwise

where ηI triggers a discharge linearly proportional to the time spent between
two observations, and η1 is a discharge coefficient proportional to the speed of
the robot with whom the battery interact (see Section 4). The battery predicate
Pbattery is defined such that all read(B; s) events return the current battery level
of the robot, in accordance with the lev function, i.e., for all σ ∈ TES (E):

∀i ∈ N.pr1(σ)(i) = read(B; c) =⇒ c = max(100− lev(〈σ(0), ..., σ(i)〉), 0)

The constraint PB models the case where the battery initially starts at an energy
level of 100, decreases after each move event, and has a linear discharge factor
over time. Remark that different predicates PB account for different model of bat-
teries. Alternatively, the discharge factor could depend on external parameters
(temperature, discharge level, etc), adding a non-linear side to the model. Our
model allows for such specification, where the function lev takes an additional
sequence of parameters in R+, and where discharge coefficients are parametric,
i.e., η1, ηI : R+ → [0, 1]. Then, given a finite sequence of observations s ∈ (P(E)×
R+)∗ and a finite sequence of parameters p ∈ R∗+, we extend lev to the func-
tion lev∗: lev∗(s, p) = lev∗(〈s(0), s(1)〉, p(0)) + lev∗(〈s(1)...s(i)〉, 〈p(1), ...., p(i)〉),
where

lev∗(〈(O1, t1), (O2, t2)〉, p) =

{
η1(p) + (t2 − t1)ηI(p) if discharge(B; η1) ∈ O1

(t2 − t1)ηI(p) otherwise

�
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7.2 Lemma

The following lemma gives some sufficient condition on a composability relation
on observations to lift to an associative composability relation on TESs. Intu-
itively, those conditions stipulate that the composability relation is transitive,
and satisfies other closure conditions. We use Lemma 7 to prove associativity of
./u in Corollary 2.

Lemma 7. Let + be an associative composition function, and let κ be a com-
posability relation on observations such that, for any a = (o1, t1) ∈ P(E1)×R+,
b = (o2, t2) ∈ P(E2)× R+, and c(o3, t3) ∈ P(E3)× R+:

1. if t1 < t2, then
((a, b) ∈ κ(E1, E2) ∧ (a, d) ∈ κ(E1, E3)) =⇒ (b, d) ∈ κ(E2, E3)

2. if t3 < t2, then
((a, d) ∈ κ(E1, E3) ∧ (b, d) ∈ κ(E2, E3)) =⇒ (a, b) ∈ κ(E1, E2)

3. if t2 < t1 or t2 < t3, then
((a, b) ∈ κ(E1, E2) ∧ (b, d) ∈ κ(E2, E3)) =⇒ (a, d) ∈ κ(E1, E3)

4. if t2 < t3, then
(a, b) ∈ κ(E1, E2) ⇐⇒ (a, b) ∈ κ(E1, E2 ∪ E3)

5. if t1 < t2 or t3 < t2, then
(a, d) ∈ κ(E1, E3) ⇐⇒ ((a, d) ∈ κ(E1 ∪ E2, E3) ∧ (a, d) ∈ κ(E1, E2 ∪ E3))

6. if t2 < t1, then
(b, d) ∈ κ(E2, E3) ⇐⇒ (b, d) ∈ κ(E1 ∪ E2, E3)

7. if t1 = t2, then
((o1 + o2, t), c) ∈ κ(E1 ∪ E2, E3) ⇐⇒ ((o1, t), c) ∈ κ(E1, E3) ∧ ((o2, t), c) ∈
κ(E2, E3))

8. if t2 = t3, then
(a, (o2 + o3, t)) ∈ κ(E1, E2 ∪E3) ⇐⇒ (a, (o2, t)) ∈ κ(E1, E2) ∧ (a, (o3, t)) ∈
κ(E1, E3))

Then, ×([κ],[+]) is associative.

Corollary 2. We fix the set union ∪ as composition function on observables.
Let u ⊆ P(E)× P(E) be a relation on observables. Let ./u be the composability
relation defined in Definition 11, and let κ′sync,u be such that, for any (O1, t1) ∈
P(E1)× R+ and (O2, t2) ∈ P(E2)× R+:

((O1, t1), (O2, t2)) ∈ κ′sync,u(E1, E2) ⇐⇒
(t1 = t2 ∧ ((O1, t1), (O2, t2)) ∈ κsync,u(E1, E2))

We write ./′u for the lifting of κ′sync,u. Then:

– ×(./u,[∪]) is commutative if u is symmetric,
– ×(./′u,[∪]) is associative if u be the smallest relation such that, for all O1, O2,

and O3 ∈ E, (O1 ∪ O2, O3) ∈ u ⇐⇒ ((O1, O3) ∈ u ∧ (O2, O3) ∈ u) and
(O1, O2 ∪O3) ∈ u ⇐⇒ ((O1, O3) ∈ u ∧ (O2, O3) ∈ u).

– ×(./u,[∪]) is idempotent if u is the smallest relation such that, for all non
empty O ⊆ E, (O,O) ∈ u.
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7.3 Proofs

Proof (Lemma 1). Commutativity. Let C1 = (E1, L1) and C2 = (E2, L2) be two
components, and (R,⊕) be a pair of a composability relation and composition
function on TESs. We write C = (E,L) = C1 ×(R,⊕) C2 and C ′ = (E′, L′) =
C2 ×(R,⊕) C1. We first observe that E = E1 ∪ E2 = E′. The condition for the
product of two components to be commutative reduces to showing that L = L′,
also equivalently written as:

L = L′ ⇐⇒ {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ R(E1, E2)}
= {σ2 ⊕ σ1 | σ1 ∈ L1, σ2 ∈ L2, (σ2, σ1) ∈ R(E2, E1)}

If R is symmetric (as in Definition 3) and ⊕ is commutative, then L = L′. Hence,
if R is symmetric and ⊕ is commutative, then ×(R,⊕) is commutative.

Oppositely, if R is symmetric and L = L′, we show that ⊕ is commutative.
We take the symmetric relation R(E1, E2) such that (σ1, σ2) ∈ R(E1, E2) for
any σ1 ∈ TES (E1) and σ2 ∈ TES (E2). Let Cσ be the component (Eσ, {σ})
where Eσ =

⋃{σ(i) | i ∈ N}. Thus, for any σ1 ∈ TES (E1) and σ2 ∈ TES (E2),
Cσ1
×(R,⊕) Cσ2

= (Eσ1
∪Eσ2

, {σ1 ⊕ σ2}. A necessary condition for ×(R,⊕) to be
commutative is that {σ1 ⊕ σ2} = {σ2 ⊕ σ1}, which imposes commutativity on
⊕.

Associativity. Let (R1,⊕1) and (R2,⊕2) be two pairs of a composability
relation and a composition function on TESs. We consider three components
Ci = (Li, Ei), with i ∈ {1, 2, 3}.

The set of events for component ((C1 ×(R1,⊕1) C2) ×(R2,⊕2) C3) is the set
E1 ∪ E2 ∪ E3, which is equal to the set of events for component (C1 ×(R1,⊕1)

(C2 ×(R2,⊕2) C3)).
Let L′ and L′′ respectively be the behaviors of components (C1 ×(R1,⊕1)

C2)×(R2,⊕2) C3 and C1 ×(R1,⊕1) (C2 ×(R2,⊕2) C3). We show some sufficient con-
ditions for L′ = L′′, also written as

{(σ1 ⊕1 σ2)⊕2 σ3 | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3. (σ1, σ2) ∈ R1(E1, E2)∧
(σ1 ⊕1 σ2, σ3) ∈ R2(E1 ∪ E2, E3)}

= {σ1 ⊕1 (σ2 ⊕2 σ3) | σ1 ∈ L1, σ2 ∈ L2, σ3 ∈ L3. (σ2, σ3) ∈ R2(E2, E3)∧
(σ1, σ2 ⊕2 σ3) ∈ R1(E1, E2 ∪ E3)}

We first observe that if σ1 ⊕1 (σ2 ⊕2 σ3) = (σ1 ⊕1 σ2)⊕2 σ3 then a sufficient
condition for L′ to be equal to L′′ is that

(σ1, σ2) ∈ R1(E1, E2) ∧ (σ1 ⊕1 σ2, σ3) ∈ R2(E1 ∪ E2, E3) ⇐⇒
(σ2, σ3) ∈ R2(E2, E3) ∧ (σ1, σ2 ⊕2 σ3) ∈ R1(E1, E2 ∪ E3)

for every (σ1, σ2, σ3) ∈ L1 × L2 × L3. Assuming that R1 and R2 satisfies the
following constraint for every (σ1, σ2, σ3) ∈ L1 × L2 × L3:

(σ1, σ2) ∈ R1(E1, E2) ∧ (σ1 ⊕1 σ2, σ3) ∈ R2(E1 ∪ E2, E3) ⇐⇒
(σ2, σ3) ∈ R2(E2, E3) ∧ (σ1, σ2 ⊕2 σ3) ∈ R1(E1, E2 ∪ E3)
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we show that ×(R1,⊕1) and ×(R2,⊕2) are associative if and only if σ1 ⊕1 (σ2 ⊕2

σ3) = (σ1⊕1 σ2)⊕2 σ3 for every (σ1, σ2, σ3) ∈ L1×L2×L3. The proof is similar
to the case of commutativity, i.e. showing that Cσ1

×(R1,⊕1) (Cσ2
×(R2,⊕2)Cσ3

) =
(Cσ1

×(R1,⊕1) Cσ2
) ×(R2,⊕2) Cσ3

implies that σ1 ⊕1 (σ2 ⊕2 σ3) = (σ1 ⊕1 σ2) ⊕2

σ3. Thus, if R1 and R2 satisfies the constraint as written above, ×(R1,⊕1) and
×(R2,⊕2) are associative if and only if ⊕1 and ⊕2 are associative.

Idempotency. We show that if for all E1 ⊆ E, and σ, τ ∈ TES (E1), we have
that (σ, τ) ∈ R1(E1, E1) =⇒ σ = τ , then ×(R1,⊕1) is idempotent if and only
if ⊕1 is idempotent. We first observe that, given a component C = (E,L), the
component C ×(R1,⊕1) C = (E,L′) has the same set of events, E.

We show that (σ1, σ2) ∈ R(E1, E1) =⇒ σ1 = σ2 and ⊕1 idempotent is a
sufficient condition for having L′ = L. Indeed,

L′ = {σ1 ⊕1 σ2 | σ1, σ2 ∈ L, (σ1, σ2) ∈ R1(E1, E1)}
= {σ1 ⊕1 σ1 | σ1 ∈ L}
= L1

Similar to the previous cases, if for all E1 ⊆ E, and σ, τ ∈ TES (E1), we have
that (σ, τ) ∈ R1(E1, E1) =⇒ σ = τ then ×(R,⊕1) is idempotent if and only if
⊕1 is idempotent. The proof is similar to the case of commutativity, i.e. showing
that Cσ1

×(R1,⊕1) Cσ1
= Cσ1

implies that σ1 ⊕1 σ1 = σ1.
ut

Proof (Lemma 2). Let (R,⊕) be a pair of a composability relation and a compo-
sition function on TESs. For any components C1 = (E1, L1) and C2 = (E2, L2),
let (C1×(R,⊕)C2) = (E1∪E2, L

′) and (C1×(R,⊕)C2)/(R,⊕)C2 = (E,L). The set
L is such that, for any σ ∈ TES (E1 ∪ E2):

σ ∈ L ⇐⇒ ∃σ2 ∈ L2, σ
′ ∈ L′. (σ, σ2) ∈ R(E1 ∪ E2, E2) ∧ σ′ = (σ ⊕ σ2)

By construction, the existence of σ′ ∈ L′ is equivalent to the existence of σ′1 ∈ L1

and σ′2 ∈ L2 such that

(σ′1, σ
′
2) ∈ R(E1, E2) ∧ σ′ = (σ′1 ⊕ σ′2)

Thus, for any σ ∈ TES (E1 ∪ E2):

σ ∈ L ⇐⇒ ∃σ′1 ∈ L1, σ
′
2 ∈ L2, σ2 ∈ L2.

(σ, σ2) ∈ R(E1 ∪ E2, E2) ∧ σ ⊕ σ2 = σ′1 ⊕ σ′2 ∧ (σ′1, σ
′
2) ∈ R(E1, E2)

⇐= σ ∈ L1 ∧ ∃σ2 ∈ L2.(σ, σ2) ∈ R(E1 ∪ E2, E2) ∧ (σ, σ2) ∈ R(E1, E2)

The last implication concludes the proof that

{σ ∈ L1 | ∃σ2 ∈ L2.(σ, σ2) ∈ R(E1 ∪ E2, E2) ∧ (σ, σ2) ∈ R(E1, E2)} ⊆ L

ut
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Proof (Lemma 3). Let κ be a composability relation on observations, and let
E1, E2 ⊆ E. We recall that Φκ(E1, E2) is such that, for any R ⊆ TES (E)2:

Φκ(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E1, E2)∧
(pr2(τ1)(0) = t1 ∧ pr2(τ2)(0) = t2)∧
(t1 < t2 ∧ (τ ′1, τ2) ∈ R ∨ t2 < t1 ∧ (τ1, τ

′
2) ∈ R∨

t2 = t1 ∧ (τ ′1, τ
′
2) ∈ R)}

Let R1,R2 ⊆ TES (E)2 such that R1 ⊆ R2. We show that Φκ(E1, E2)(R1) ⊆
Φκ(E1, E2)(R2). For any (τ1, τ2) ∈ TES (E)2,

(τ1, τ2) ∈ Φκ(E1, E2)(R1) ⇐⇒ (τ1(0), τ2(0)) ∈ κ(E1, E2)∧
(pr2(τ1)(0) = t1 ∧ pr2(τ2)(0) = t2)∧
(t1 < t2 ∧ (τ ′1, τ2) ∈ R1 ∨ t2 < t1 ∧ (τ1, τ

′
2) ∈ R1∨

t2 = t1 ∧ (τ ′1, τ
′
2) ∈ R1)

=⇒ (τ1(0), τ2(0)) ∈ κ(E1, E2)∧
(pr2(τ1)(0) = t1 ∧ pr2(τ2)(0) = t2)∧
(t1 < t2 ∧ (τ ′1, τ2) ∈ R2 ∨ t2 < t1 ∧ (τ1, τ

′
2) ∈ R2∨

t2 = t1 ∧ (τ ′1, τ
′
2) ∈ R2)

=⇒ (τ1, τ2) ∈ Φκ(E1, E2)(R2)

Therefore, R1 ⊆ R2 implies that Φκ(E1, E2)(R1) ⊆ Φκ(E1, E2)(R2), and we
conclude that Φκ(E1, E2) is monotonic. By the greatest fixed point theorem,
Φκ(E1, E2) has a greatest fixed point P = Φκ(E1, E2)(P ) such that:

P =
⋃
{R | R ⊆ Φκ(E1, E2)(R)}

ut
Proof (Lemma 4). We first note that, given a composability relation κ on observ-
ables, the lifting [κ] is a composability relation on TESs. Indeed, for any pair of
interfaces E1, E2 ⊆ E, any (σ, τ) ∈ [κ](E1, E2) is a pair in TES (E1)×TES (E2).

If κ is symmetric (as in Definition 3), we show that [κ] is also symmetric.
Given a setR ⊆ TES (E)×TES (E), we use the notationR to denote the smallest
set such that (σ, τ) ∈ R ⇐⇒ (τ, σ) ∈ R.

If κ is symmetric, then for R ⊆ TES (E)× TES (E),

Φκ(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E1, E2)∧
(pr2(τ1)(0) = t1 ∧ pr2(τ2)(0) = t2)∧
(t1 < t2 ∧ (τ ′1, τ2) ∈ R ∨ t2 < t1 ∧ (τ1, τ

′
2) ∈ R∨

t2 = t1 ∧ (τ ′1, τ
′
2) ∈ R)}

= {(τ1, τ2) | (τ2(0), τ1(0)) ∈ κ(E2, E1)∧
(pr2(τ1)(0) = t1 ∧ pr2(τ2)(0) = t2)∧
(t1 < t2 ∧ (τ ′1, τ2) ∈ R ∨ t2 < t1 ∧ (τ1, τ

′
2) ∈ R∨

t2 = t1 ∧ (τ ′1, τ
′
2) ∈ R)}

= {(τ1, τ2) | (τ2(0), τ1(0)) ∈ κ(E2, E1)∧
(pr2(τ1)(0) = t1 ∧ pr2(τ2)(0) = t2)∧
(t1 < t2 ∧ (τ2, τ

′
1) ∈ R ∨ t2 < t1 ∧ (τ ′2, τ1) ∈ R∨

t2 = t1 ∧ (τ ′2, τ
′
1) ∈ R)}

= {(τ1, τ2) | (τ2, τ1) ∈ Φκ(E2, E1)(R)} (1)
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which shows that [κ] is symmetric since, for any E1, E2 ⊆ E, [κ](E1, E2) =⋃
R⊆TES(E)×TES(E){R | R ⊆ Φκ(E1, E2)(R)}, and

(σ, τ) ∈ [κ](E1, E2) ⇐⇒ ∃R. (σ, τ) ∈ R ∧R ⊆ Φκ(E1, E2)(R)
⇐⇒ ∃R. (τ, σ) ∈ R ∧R ⊆ Φκ(E2, E1)(R)
⇐⇒ (τ, σ) ∈ [κ](E2, E1)

where the first equivalence is given by the fact that [κ](E1, E2) is a post fixed
point of Φκ(E1, E2), the second equivalence is obtained from equality (1), and
the third equivalence is given by the fact that [κ](E2, E1) is the greatest post
fixed point.

ut

Proof (Lemma 5). Commutativity. From Lemma 4, if κ is symmetric, then its
lifting [κ] is also symmetric. Therefore, it is sufficient for κ to be symmetric
and for + to be commutative in order for [κ] to be symmetric and [+] to be
commutative, and therefore ×([κ],[+]) to be commutative.

Associativity. A sufficient condition for the products×([κ1],[+1]) and×([κ2],[+2])

to be associative is that, for every σi ∈ TES (Ei) for i ∈ {1, 2, 3}, we have that
σ1[+1](σ2[+2]σ3) = σ1[+1](σ2[+2]σ3) and

P1 := (σ1, σ2) ∈ [κ1](E1, E2) ∧ (σ1[+1]σ2, σ3) ∈ [κ2](E1 ∪ E2, E3) ⇐⇒
(σ2, σ3) ∈ [κ2](E2, E3) ∧ (σ1, σ2[+2]σ3) ∈ [κ1](E1, E2 ∪ E3)

Let κ1 and κ2 be such that, for any oi ∈ (P(Ei)× R+) with i ∈ {1, 2, 3} we
have

P2 := ((o1, o2) ∈ κ(E1, E2) ∧ (ι1(o1, o2), o3) ∈ κ(E1 ∪ E2, E3)) ⇐⇒
((o2, o3) ∈ κ(E2, E3) ∧ (o1, ι2(o2, o3)) ∈ κ(E1, E2 ∪ E3))

with k ∈ {1, 2} and ιk((O, t), (P, l)) =





(O, t) if t < l

(P, l) if l < t

(O +k P, t)
We show that P2 =⇒ P1. We introduce the function

Ψκ1,κ2
(E1, E2, E3)(R) = { (σ1, σ2, σ3) | (σ1(0), σ2(0)) ∈ κ1(E1, E2)∧

((σ1[+1]σ2)(0), σ3(0)) ∈ κ2(E1 ∪ E2, E3)∧
pr2(σ1)(0) = t1 ∧ pr2(σ2)(0) = t2 ∧ pr2(σ3)(0) = t3∧
(t1 < t2 ∧ t1 < t3 ∧ (σ′1, σ2, σ3) ∈ R ∨
t2 < t1 ∧ t2 < t3 ∧ (σ1, σ

′
2, σ3) ∈ R ∨

t3 < t2 ∧ t3 < t1 ∧ (σ1, σ2, σ
′
3) ∈ R ∨

t1 = t2 ∧ t1 < t3 ∧ (σ′1, σ
′
2, σ3) ∈ R ∨

t2 = t3 ∧ t2 < t1 ∧ (σ1, σ
′
2, σ
′
3) ∈ R ∨

t1 = t3 ∧ t1 < t2 ∧ (σ′1, σ2, σ
′
3) ∈ R ∨

t1 = t3 ∧ t1 = t2 ∧ (σ′1, σ
′
2, σ
′
3) ∈ R)}

The function Ψκ1,κ2(E1, E2, E3) is monotone, and we use Γ to denote its greatest
post fixed point. Let Γ1,2 = {(σ1, σ2) | (σ1, σ2, σ3) ∈ Γ}. Due to the construction
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of Ψκ1,κ2(E1, E2, E3), we have that Γ1,2 ⊆ [κ1](E1, E2). Similarly, let Γ1+12,3 =
{(σ1[+1]σ2, σ3) | (σ1, σ2, σ3) ∈ Γ}, we have Γ1+12,3 ⊆ [κ2](E1 ∪ E2, E3). Thus,
for any triple (σ1, σ2, σ3) ∈ Γ , the left hand side of predicate P1 is true, i.e.
(σ1, σ2) ∈ [κ1](E1, E2) ∧ (σ1[+1]σ2, σ3) ∈ [κ2](E1 ∪ E2, E3) is true.

Alternatively, let

Ξ = {(σ1, σ2, σ3) | (σ1, σ2) ∈ [κ1](E1, E2) ∧ (σ1[+1]σ2, σ3) ∈ [κ2](E1 ∪ E2, E3)}

We show that Ξ ⊆ Γ , by showing that Ξ ⊆ Ψκ1,κ2
(E1, E2, E3)(Ξ). By con-

struction, any triple (σ1, σ2, σ3) ∈ Ξ satisfies the condition (σ1(0), σ2(0)) ∈
κ1(E1, E2)∧((σ1[+1]σ2)(0), σ3(0)) ∈ κ2(E1∪E2, E3) of Ψκ1,κ2

(E1, E2, E3). More-
over, given (σ1, σ2, σ3) ∈ Ξ, with pr2(σ1)(0) = t1∧pr2(σ2)(0) = t2∧pr2(σ3)(0) =
t3, we split cases based on time and show that Ξ ⊆ Ψκ1,κ2(E1, E2, E3)(Ξ).
As an example, if t1 < t2 ∧ t1 < t3, we have that (σ′1, σ2) ∈ [κ1](E1, E2) ∧
(σ′1[+1]σ2, σ3) ∈ [κ2](E1 ∪ E2, E3) and therefore (σ′1, σ2, σ3) ∈ Ξ.

Therefore, Ξ ⊆ Ψκ1,κ2
(E1, E2, E3)(Ξ), and Ξ ⊆ Γ . Then,

(σ1, σ2, σ3) ∈ Γ ⇐⇒ (σ1, σ2) ∈ [κ1](E1, E2)∧(σ1[+1]σ2, σ3) ∈ [κ2](E1∪E2, E3)

In the case where P2 is true, using a similar constuction, we can show that

(σ1, σ2, σ3) ∈ Γ ⇐⇒ (σ2, σ3) ∈ [κ2](E2, E3)∧(σ1, σ2[+2]σ3) ∈ [κ1](E1, E2∪E3)

We conclude that if P2 is true, then P1 is true.

We show that if (O1 +1 O2) +2 O3 = O1 +1 (O2 +2 O3) for every Oi ∈ P(Ei)
with i ∈ {1, 2, 3}, then σ1[+1](σ2[+2]σ3) = (σ1[+1]σ2)[+2]σ3 for every σi ∈ Li
with i ∈ {1, 2, 3}.

We split cases, and we write σi(0) = (Oi, ti):

σ1[+1](σ2[+2]σ3) =





〈(O1, t1)〉 · (σ′1[+1](σ2[+2]σ3) if t1 < t2 ∧ t1 < t3

〈(O2, t2)〉 · (σ1[+1](σ′2[+2]σ3) if t2 < t1 ∧ t2 < t3

〈(O3, t3)〉 · (σ1[+1](σ2[+2]σ′3) if t3 < t2 ∧ t3 < t1

〈(O1 +1 O2, t1)〉 · (σ′1[+1](σ′2[+2]σ3) if t1 = t2 ∧ t1 < t3

〈(O2 +2 O3, t2)〉 · (σ1[+1](σ′2[+2]σ′3) if t2 = t3 ∧ t2 < t1

〈(O1 +1 O3, t1)〉 · (σ′1[+1](σ2[+2]σ′3) if t1 = t3 ∧ t1 < t2

〈(O1 +1 (O2 +2 O3), t1)〉 · (σ′1[+1](σ′2[+2]σ′3) if t1 = t3 ∧ t1 = t2

The only case that differs from (σ1[+1]σ2)[+2]σ3 is when t1 = t3 = t2,
which gives ((O1 +1 O2) +2 O3, t1). Thus, if ((O1 +1 O2) +2 O3, t1) = (O1 +1

(O2 +2 O3), t1) for every Oi ∈ P(Ei) with i ∈ {1, 2, 3}, then σ1[+1](σ2[+2]σ3) =
σ1[+1](σ2[+2]σ3) for every σi ∈ Li with i ∈ {1, 2, 3}.

Idempotency. Let +1 be idempotent, then the lifting [+1] is also idempotent.

We show that, for all E ⊆ E and o1, o2 ∈ P(E) × R+ we have (o1, o2) ∈
κ1(E,E) =⇒ o1 = o2, then for all σ, τ ∈ TES (E), (σ, τ) ∈ [κ1](E,E) =⇒ σ =
τ , which is a sufficient condition for ×([κ1],[+1]) to be idempotent.
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By definition [κ1](E,E) is the greatest fixed point of the function:

Φκ1
(E,E)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ1(E,E)∧

(pr2(τ1)(0) = t1 ∧ pr2(τ2)(0) = t2)∧
(t1 < t2 ∧ (τ ′1, τ2) ∈ R ∨ t2 < t1 ∧ (τ1, τ

′
2) ∈ R

t2 = t1 ∧ (τ ′1, τ
′
2) ∈ R)}

⊆ {(τ1, τ2) | τ1(0) = τ2(0) ∧ (τ ′1, τ
′
2) ∈ R}

Therefore, we conclude that [κ1](E,E) ⊆ {(σ, σ) | σ ∈ TES (E)}.
That concludes the proof. ut

Proof (Lemma 6). Since CP = (E,LP ) has the same interface as the component
C = (E,L), and given that u satisfies the condition for using corollary 2, the
product ×(./u,[∪]) is idempotent. Let C×(./u,⊕)CP = (E,L′). If (σ, τ) ∈ L′ then
σ = τ . Thus, L′ ⊆ L ∩ LP .

Alternatively, let σ ∈ L ∩ LP . We observe that at any point n ∈ N, we have
(σ(n), σ(n)) ∈./u (E,E), since, given σ(n) = (On, tn) and the assumption on u,
we have (On, On) ∈ u or On = ∅. Therefore, (σ, σ) ∈./u.

We conclude that L ∩ LP = L′. ut

Proof (Lemma 7). Let κ be a composability relation on observations and + a
composition function on observations. We state the following assumptions on
κ, for any a = (O1, t1) ∈ P(E1) × R+, b = (O2, t2) ∈ P(E2) × R+, and c =
(O3, t3) ∈ P(E3)× R+:

1. if t1 < t2, then
((a, b) ∈ κ(E1, E2) ∧ (a, d) ∈ κ(E1, E3)) =⇒ (b, d) ∈ κ(E2, E3)

2. if t3 < t2, then
((a, d) ∈ κ(E1, E3) ∧ (b, d) ∈ κ(E2, E3)) =⇒ (a, b) ∈ κ(E1, E2)

3. if t2 < t1 or t2 < t3, then
((a, b) ∈ κ(E1, E2) ∧ (b, d) ∈ κ(E2, E3)) =⇒ (a, d) ∈ κ(E1, E3)

4. if t2 < t3, then
(a, b) ∈ κ(E1, E2) ⇐⇒ (a, b) ∈ κ(E1, E2 ∪ E3)

5. if t1 < t2 or t3 < t2, then
(a, d) ∈ κ(E1, E3) ⇐⇒ ((a, d) ∈ κ(E1 ∪ E2, E3) ∧ (a, d) ∈ κ(E1, E2 ∪ E3))

6. if t2 < t1, then
(b, d) ∈ κ(E2, E3) ⇐⇒ (b, d) ∈ κ(E1 ∪ E2, E3)

7. if t1 = t2, then
((O1+O2, t), c) ∈ κ(E1∪E2, E3) ⇐⇒ ((O1, t), c) ∈ κ(E1, E3)∧((O2, t), c) ∈
κ(E2, E3))

8. if t2 = t3, then
(a, (O2+O3, t)) ∈ κ(E1, E2∪E3) ⇐⇒ (a, (O2, t)) ∈ κ(E1, E2)∧(a, (O3, t)) ∈
κ(E1, E3))

We show that

((a, b) ∈ κ(E1, E2) ∧ (ι1(a, b), c) ∈ κ(E1 ∪ E2, E3)) ⇐⇒
((b, c) ∈ κ(E2, E3) ∧ (a, ι2(b, c)) ∈ κ(E1, E2 ∪ E3))
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where, for o = (O, t), p = (P, l), and k ∈ {1, 2}, ιk(o, p) =





o if t < l

p if l < t

(O +k P, t)

Let oi = (Oi, ti) ∈ TES (Ei) with i ∈ {1, 2, 3}. We split cases based on time:

– if t1 < t2, then, using assumption 5 and 1,

(o1, o2) ∈ κ(E1, E2) ∧ (o, o3) ∈ κ(E1 ∪ E2, E3)
⇐⇒ (o1, o2) ∈ κ(E1, E2) ∧ (o1, o3) ∈ κ(E1 ∪ E2, E3)
⇐⇒ (o1, o2) ∈ κ(E1, E2) ∧ (o1, o3) ∈ κ(E1, E3)
⇐⇒ (o1, o2) ∈ κ(E1, E2) ∧ (o1, o3) ∈ κ(E1, E3) ∧ (o2, o3) ∈ κ(E2, E3)

– if t1 = t2, then, using assumption 7,

(o1, o2) ∈ κ(E1, E2) ∧ (o, o3) ∈ κ(E1 ∪ E2, E3)
⇐⇒ (o1, o2) ∈ κ(E1, E2) ∧ (o1, o3) ∈ κ(E1, E3) ∧ (o2, o3) ∈ κ(E2, E3)

– if t2 < t1, then, using assumption 6 and 3,

(o1, o2) ∈ κ(E1, E2) ∧ (o, o3) ∈ κ(E1 ∪ E2, E3)
⇐⇒ (o1, o2) ∈ κ(E1, E2) ∧ (o2, o3) ∈ κ(E1 ∪ E2, E3)
⇐⇒ (o1, o2) ∈ κ(E1, E2) ∧ (o2, o3) ∈ κ(E2, E3)
⇐⇒ (o1, o2) ∈ κ(E1, E2) ∧ (o1, o3) ∈ κ(E1, E3) ∧ (o2, o3) ∈ κ(E2, E3)

Similarly, using the set of assumptions {2, 4, 5, 3, 8}, the same result can be
established about the condition (o2, o3) ∈ κ(E2, E3) ∧ (o1, o

′) ∈ κ(E1, E2 ∪ E3),
i.e.

(o2, o3) ∈ κ(E2, E3) ∧ (o1, o
′) ∈ κ(E1, E2 ∪ E3)

⇐⇒ (o1, o2) ∈ κ(E1, E2) ∧ (o1, o3) ∈ κ(E1, E3) ∧ (o2, o3) ∈ κ(E2, E3)

We conclude, based on Lemma 5, that the conditions enumerated are suffi-
cient for ×([κ],[+]) to be associative. ut

Proof (Corollary 2). We show the proof for ×(./u,[∪]), and the proof is similar
for ×(∦u,[∪]). We fix the set union ∪ as composition function on observables. Let
u ⊆ P(E) × P(E) be a relation on observables. Let ./u be the composability
relation defined in Definition 11, and let κ′sync,u be such that, for any (O1, t1) ∈
P(E1)× R+ and (O2, t2) ∈ P(E2)× R+:

((O1, t1), (O2, t2)) ∈ κ′sync,u(E1, E2) ⇐⇒
(t1 = t2 ∧ ((O1, t1), (O2, t2)) ∈ κsync,u(E1, E2))

We write ./′u for the lifting of κ′sync,u.
Commutativity. We first show that if u is a symmetric relation on observ-

ables, then κsync,u is a symmetric composability relation on observables. Indeed,
given the definition of κsync,u in Definition 11 the synchronous composability
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relation is such that for any (O1, t1) ∈ P(E1)× R+ and (O2, t2) ∈ P(E2)× R+,
((O1, t1), (O2, t2)) ∈ κsync,u(E1, E2), if and only if:

t1 < t2∧ ¬(∃O′2 ⊆ E2. (O1, O
′
2) ∈ u) ∨

t2 < t1∧ ¬(∃O′1 ⊆ E1. (O′1, O2) ∈ u) ∨
t2 = t1∧ ((O1, O2) = (O′1 ∪O′′1 , O′2 ∪O′′2 ) ∧ (O′1, O

′
2) ∈ u ∧

(∀O ⊆ E2. (O′′1 , O) 6∈ u) ∧ (∀O ⊆ E1. (O,O′′2 ) 6∈ u) ∨ (O1, O2) = (∅, ∅))

Given u symmetric, we have ((O1, t1), (O2, t2)) ∈ κsync,u(E1, E2), if and only if:

t1 < t2 ∧ ¬(∃O′2 ⊆ E2. (O′2, O1) ∈ u) ∨
t2 < t1 ∧ ¬(∃O′1 ⊆ E1. (O2, O

′
1) ∈ u) ∨

t2 = t1 ∧ ((O1, O2) = (O′1 ∪O′′1 , O′2 ∪O′′2 ) ∧ (O′2, O
′
1) ∈ u ∧

(∀O ⊆ E2. (O,O′′1 ) 6∈ u) ∧ (∀O ⊆ E1. (O′′2 , O) 6∈ u) ∨ (O1, O2) = (∅, ∅))

which is equivalent to ((O2, t2), (O1, t1)) ∈ κsync,u(E2, E1). Thus, if u is sym-
metric, then κsync,u is symmetric.

Associativity. Let u be the smallest relation such that, for all O1, O2, O3 ∈ E,
(O1 ∪ O2, O3) ∈ u ⇐⇒ ((O1, O3) ∈ u ∧ (O2, O3) ∈ u) and (O1, O2 ∪ O3) ∈
u ⇐⇒ ((O1, O3) ∈ u ∧ (O2, O3) ∈ u). We show that the constraint for u
are sufficient to make κ′sync,u satisfying the assumptions in Lemma 7. We first
observe that κ′sync,u enforces observations to have the same time. Therefore, it
is sufficient to prove that κ′sync,u satisfies assumption 7 and 8 of Lemma 7 to
conclude for the associativity of ×(./′u,[∪]).

We show that assumption 7 is satisfied. In the case where O1 = O2 = O3 = ∅,
the assumption 7 is trivially satisfied. For any non empty observations a =
(O1, t1) ∈ P(E1)× R+, b = (O2, t2) ∈ P(E2)× R+, and c = (O3, t3) ∈ P(E3)×
R+, if ((O1 ∪O2, t1), (O3, t3)) ∈ κ′(sync,u)(E1 ∪E2, E3), then we know that there

existsO andO′ such thatO1∪O2 = O∪O′ andO′3 andO′′3 such thatO3 = O′3∪O′′3
with:

– (O,O′3) ∈ u
– ∀P ⊆ E3. (O′, P ) 6∈ u, and

– ∀Q ⊆ E1 ∪ E2. (Q,O′′3 ) 6∈ u

using assumption on u, we have:

– (O,O′3) ∈ u implies that (O ∩O2, O
′
3) ∈ u,

– ∀P ⊆ E3. (O′, P ) 6∈ u implies that ∀P ⊆ E3. (O′ ∩O2, P ) 6∈ u, and

– ∀Q ⊆ E1 ∪ E2. (Q,O′′3 ) 6∈ u implies that ∀Q ⊆ E2. (Q,O′′3 ) 6∈ u

as a consequence, ((O2, t2), (O3, t3)) ∈ κ′(sync,u)(E2, E3).

The proof is similar for assumption 8, and we can conclude that κ′(sync,u)
satisfies the sufficient condition for the product ×(./′u,[∪]) to be associative.

Idempotency. Let u be the smallest relation such that for all non empty
observables O ⊆ E, (O,O) ∈ u. We show that (σ, τ) ∈ κsync,u(E,E) =⇒ σ = τ .
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Indeed, ((O1, t1), (O2, t2)) ∈ κsync,u(E,E) if and only if

t1 < t2 ∧ ∀O′2 ⊆ E. (O1, O
′
2) 6∈ u ∨

t2 < t1 ∧ ∀O′1 ⊆ E. (O′1, O2) 6∈ u ∨
t2 = t1 ∧ ((O1, O2) = (O′1 ∪O′′1 , O′2 ∪O′′2 ) ∧ (O′1, O

′
2) ∈ u ∧

((∀O ⊆ E. (O′′1 , O) ∈ u) ∧ (∀O ⊆ E. (O,O′′2 ) ∈ u)) ∨ (O1, O2) = (∅, ∅))

First, observe that the constraints imposed on u implies that for any non empty
observable O ⊆ E there exists O such that (O,O) ∈ u. Hence, the two first
disjuncts are necessarily false, and ((O1, t1), (O2, t2)) ∈ κsync,u(E,E) implies
that t1 = t2. Then, the only case where the third disjunct is true is when
O′′1 = O′′2 = ∅, in which case O1 = O2. ut
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4 CNRS-LIX, École Polytechnique de Paris, France
5 Pontificia Universidad Javeriana Cali, Colombia

Abstract. We describe a model for polarization in multi-agent systems based on Esteban and Ray’s standard
measure of polarization from economics. Agents update their beliefs/opinions based on an underlying influence
graph, as in the standard DeGroot model for social learning, but under confirmation bias: discounting the opinions
of agents with dissimilar views. We investigate the conditions where polarization does or does not converge to zero.
This work is presented in greater detail at https://arxiv.org/abs/2104.11538. It has been accepted at FORTE 2021.

1 Introduction

Social networks facilitate the exchange of opinions by providing users with information from influencers, friends,
or other users with similar or sometimes opposing views [2]. This may allow a healthy exposure to diverse perspec-
tives. On the other hand but social networks may lead users to the problems of cognitive biases, misinformation and
radicalization of opinions. It has become evident that a better understanding of social networks is crucial, and there
is a growing interest in the development of models for the analysis of polarization and social influence in networks
[3–5, 7, 9–12, 14, 15, 17–19].

The Model. We presented our multi-agent model for polarization in [1], inspired by linear-time models of concur-
rency where the state of the system evolves in discrete time units (in particular [13, 16]). At each time unit, the agents
update their beliefs about the proposition of interest taking into account the beliefs of their neighbors in an underlying
weighted influence graph. The belief update gives more value to the opinion of agents with higher influence (authority
bias) and to the opinion of agents with similar views (confirmation bias). Furthermore, the model is equipped with a
polarization measure based on the seminal work in economics by Esteban and Ray [8]. The polarization is measured
at each time unit and it is 0 if all agents’ beliefs fall within an interval of agreement about the proposition.

In the current paper we study the network conditions, subject to confirmation bias, under which polarization van-
ishes or remains forever, and prove these results. The main goal of this paper is identifying how networks and beliefs
are structured, for agents subject to confirmation bias, when polarization does not disappear. Our results provide insight
into the phenomenon of polarization, and are a step toward the design of robust computational models and simulation
software for human cognitive and social processes.

2 The Model

Here we refine the polarization model introduced in [1], composed of static and dynamic elements. We presuppose
basic knowledge of calculus and graph theory [6, 20].

? Mário S. Alvim and Bernardo Amorim were partially supported by CNPq, CAPES and FAPEMIG. Santiago Quintero and Frank
Valencia were partially supported by the ECOS-NORD project FACTS (C19M03).



Static Elements of the Model Static elements of the model represent a snapshot of a social network at a given point
in time. They include a set A of agents, a proposition p of interest, about which agents can hold beliefs, and a belief
configuration B:A→[0, 1] s.t. Bi is the current confidence of agent i∈A in proposition p. 0 and 1 represent a firm
belief in, respectively, the falsehood or truth of p.

A polarization measure ρ:[0, 1]A→R maps belief configurations to real numbers.
We use Esteban-Ray Polarization [8], denoted ρER(π, y) where π and y represent the current belief state. This

value indicates how polarized the belief configuration is; the higher the value of ρER(π, y), the more polarized distri-
bution (π, y) is. Details may be found in the full version of the paper.

When there is consensus about the proposition p of interest, i.e., when all agents in belief configuration hold the
same belief value, we have ρ(B)=0.

Dynamic Elements of the Model Dynamic elements formalize the evolution of agents’ beliefs as they interact over
time and are exposed to different opinions. They include:

– A weighted directed graph I:A×A→[0, 1]. The value Ii,j , represents the direct influence that agent i has on agent
j, orthe trust or confidence that j has in i.

– An update function µ:(Bt, I) 7→Bt+1 mapping belief configuration Bt at time t and influence graph I to new
belief configuration Bt+1 at time t+1. This function models the evolution of agents’ beliefs over time.

Now we define our specific update function, based on the idea that agents use confirmation bias: each agent is most
influenced by other agents whose beliefs are close to the beliefs that agent already holds. In earlier work we studied
other methods of belief update.

Definition 1 (Confirmation-bias). Let Bt be a belief configuration at time t∈T , and I be an influence graph. The
confirmation-bias update-function is the map µCB:(Bt, I) 7→ Bt+1 withBt+1 given byBt+1

i = Bt
i+1/|Ai|

∑
j∈Ai

βt
i,j Ij,i (Bt

j−
Bt

i ), for every agent i∈A, where Ai = {j∈A | Ij,i>0} is the set of neighbors of i and βt
i,j=1−|Bt

j−Bt
i | is the

confirmation-bias factor of i w.r.t. j given their beliefs at time t.

The confirmation-bias factor is βt
i,j ∈ [0, 1]. The lower its value, the more agent i discounts the opinion provided

by agent j when incorporating it. It is maximum when agents’ beliefs are identical, and minimum when they are
extremely different.

2.1 Running Example and Simulations

We now present a running example and several simulations that motivate our theoretical results.

Example 1 (Vaccine Polarization). Consider the sentence “vaccines are safe” as the proposition of interest, p. Assume
a set A of 6 agents that is initially extremely polarized about p: agents 0 and 5 are absolutely confident, respectively,
in the falsehood or truth of p, whereas the others are equally split into strongly in favour and strongly against p.

Consider the situation in Fig. 1a. Nodes 0, 1 and 2 represent anti-vaxxers, whereas the rest are pro-vax. In particular,
although initially in total disagreement about p, Agent 5 carries a lot of weight with Agent 0. In contrast, Agent 0’s
opinion is very close to that of 1 and 2, even if they do not have any direct influence over him. Hence the evolution of
Agent 0’s beliefs will be mostly shaped by that of Agent 5. As can be observed in the evolution of agents’ opinions
in Fig. 1d, Agent 0 moves from being strongly against to being fairly in favour of p around time step 8. Moreover,
polarization eventually vanishes around time 20, as agents reach the consensus of being fairly against p.

Now consider the influence graph in Fig. 1b, which is similar to Fig. 1a, but with reciprocal influences (i.e., the
influence of i over j is the same as the influence of j over i). Now Agents 1 and 2 do have direct influences over Agent
0, so the evolution of Agent 0’s belief will be partly shaped by initially opposed agents: Agent 5 and the anti-vaxxers.
But since Agent 0’s opinion is very close to that of Agents 1 and 2, the confirmation-bias factor will help keeping
Agent 0’s opinion close to their opinion against p. In particular, in contrast to the situation in Fig. 1d, Agent 0 never
becomes in favour of p. The evolution of the agents’ opinions and their polarization is shown in Fig. 1e. Notice that
polarization vanishes around time 8 as the agents reach consensus but this time they are more positive about (less
against) p than in the first situation.
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(a) Influence graph I for Ex. 1. (b) Adding inverse influences to Fig. 1a. (c) Inversion of I0,1 and I2,4 in Fig. 1a.

(d) Beliefs and pol. for Fig. 1a. (e) Beliefs and pol. for Fig. 1b. (f) Belief and pol. for Fig. 1c.

Fig. 1: Influence graphs and evolution of beliefs and polarization for Ex. 1.

Finally, consider the situation in Fig. 1c obtained from Fig. 1a by inverting the influences of Agent 0 over Agent 1
and Agent 2 over Agent 4. Notice that Agents 1 and 4 are no longer influenced by anyone though they influence others.
Thus, as shown in Fig.1f, their beliefs do not change over time, which means that the group does not reach consensus
and polarization never disappears though it is considerably reduced. ut

The above example illustrates complex non-monotonic, overlapping, convergent, and non-convergent evolution of
agent beliefs and polarization even in a small case with n=6 agents. In the full paper, we present simulations for
several influence graph topologies with n=1000 agents, which illustrate more of this complex behavior emerging
from confirmation-bias interaction among agents. Our theoretical results in the next sections bring insight into the
evolution of beliefs and polarization depending on graph topologies.

3 Belief and Polarization Convergence

Polarization diminishes as agents approximate a consensus, i.e., as they (asymptotically) agree upon a common belief
value for the proposition of interest6. Here and in Section 4 we consider meaningful families of influence graphs that
guarantee consensus under confirmation bias. We relate influence with the notion of flow in flow networks, and use it
to identify necessary conditions for polarization not converging to zero.

3.1 Convergence under Confirmation Bias in Strongly Connected Influence

We now introduce the family of strongly-connected influence graphs, which includes cliques, that describes scenarios
where each agent has an influence, possibly indirect, over each other agent.

Definition 2 (Influence Paths). LetC ∈ (0, 1].We say that i has a direct influenceC over j, written i C→j, if Ii,j = C.
An influence path is a finite sequence of distinct agents fromA where each agent in the sequence has a direct influ-

ence over the next one. Let p be an influence path i0i1 . . . in. The size of p is |p|=n. We also use i0
C1→ i1

C2→ . . .
Cn→ in

6 In the extended version of this paper, we discuss one unusual situation where this does not occur, but in all normal situations
polarization diminishes as agents approach consensus.
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to denote p with the direct influences along this path. We write i0
C p in to indicate that the product influence of i0

over in along p is C=C1× . . .×Cn.
We often omit influence or path indices from the above arrow notations when they are unimportant or clear from

the context. We say that i has an influence over j if i j.

The next definition is akin to the graph-theoretical notion of strong connectivity.

Definition 3 (Strongly Connected Influence). We say that an influence graph I is strongly connected if for all i,
j∈A such that i 6=j, i j.

Remark 1. For technical reasons we assume that, initially, there are no two agents i, j∈A such that B0
i =0 and B0

j=1.

This implies that for every i, j∈A: β0
i,j>0 where β0

i,j is the confirmation bias of i towards j at time 0 (See Def. 1).
Nevertheless, at the end of this section we will address the cases in which this condition does not hold.

Definition 4 (Radical Beliefs). An agent i∈A is called radical if Bi=0 or Bi=1. A belief configuration B is radical
if every i∈A is radical.

Theorem 1 (Confirmation-Bias Belief Convergence). In a strongly connected influence graph and under the confirmation-
bias update-function, if B0 is not radical then for all i, j∈A, limt→∞Bt

i= limt→∞Bt
j . Otherwise for every i∈A,

Bt
i=B

t+1
i ∈{0, 1}.

We conclude this section by emphasizing that belief convergence is not guaranteed in non strongly-connected
graphs. Fig. 1c from the vaccine example shows such a graph where neither belief convergence nor zero-polarization
is obtained.

4 Conditions for Polarization

We identify necessary conditions under confirmation bias for polarization to persist, one of our main contributions.

Balanced Influence: Circulations The following is inspired by the circulation problem for directed graphs [6].

Definition 5 (Balanced Influence). We say that I is balanced (or a circulation) if every i ∈ A satisfies the constraint∑
j∈A Ii,j=

∑
j∈A Ij,i.

Cliques and circular graphs, where all (non-self) influence values are equal, are balanced. The graph of our vaccine
example (Fig. 1) is a circulation that it is neither a clique nor a circular graph.

Next we use a fundamental property from flow networks describing flow conservation for graph cuts [6]. Inter-
preted in our case it says that any group of agents A⊆A influences other groups as much as they influence A.

Proposition 1 (Group Influence Conservation). Let I be balanced and {A,B} be a partition ofA. Then
∑

i∈A

∑
j∈B Ii,j =∑

i∈A

∑
j∈B Ij,i.

We now define weakly connected influence. Recall that an undirected graph is connected if there is path between
each pair of nodes.

Definition 6 (Weakly Connected Influence). Given an influence graph I, define the undirected graph GI=(A, E)
where {i, j}∈E if and only if Ii,j>0 or Ij,i>0. An influence graph I is called weakly connected if the undirected
graph GI is connected.

Weakly connected influence relaxes its strongly connected counterpart. However, every balanced, weakly con-
nected influence is strongly connected as implied by the next lemma. Intuitively, circulation flows never leaves strongly
connected components.

Lemma 1. If I is balanced and Ii,j>0 then j i.
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(a) Regular and reciprocal influence. (b) Beliefs and pol. for Fig. 2a.

Fig. 2: Influence and evolution of beliefs and polar.

Conditions for Polarization We now have all elements to identify conditions for permanent polarization.

Theorem 2 (Conditions for Polarization). Suppose that limt→∞ ρ(Bt)6=0. Then either: (1) I is not balanced; (2)
I is not weakly connected; or (3) B0 is radical; or (4) for some borderline value v, limt→∞Bt

i=v for each i∈A7 .

Hence, at least one of the four conditions is necessary for the persistence of polarization. If (1) then there must be at
least one agent that influences more than he is influenced (or vice versa). This is illustrated in Fig. 1c from the vaccine
example, where Agent 2 is such an agent. If (2) then there must be isolated subgroups of agents; e.g., two isolated
strongly-connected components the members of the same component will achieve consensus but the consensus values
of the two components may be very different. Condition (3) can be ruled out if there is an agent that is not radical, like
in all of our examples and simulations. (4) depends on technical details of the polarization measure and rarely arises.

Reciprocal and Regular Circulations The notion of circulation allowed us to identify potential causes of polariza-
tion. In this section we will also use it to identify meaningful topologies whose symmetry can help us predict the exact
belief value of convergence.

A reciprocal influence graph is a circulation where the influence of i over j is the same as that of j over i, i.e,
Ii,j=Ij,i. Also a graph is (in-degree) regular if the in-degree of each nodes is the same; i.e., for all i, j∈A, |Ai|=|Aj |.

As examples of regular and reciprocal graphs, consider a graph I where all (non-self) influence values are equal.
If I is circular then it is a regular circulation, and if I is a clique then it is a reciprocal regular circulation. Also we
can modify slightly our vaccine example to obtain a regular reciprocal circulation as shown in Fig. 2.

Theorem 3 (Consensus Value). Suppose that I is regular and weakly connected. If I is reciprocal and the be-
lief update is confirmation-bias, or if the influence graph I is a circulation and the belief update is classical, then
limt→∞Bt

i = 1/|A|
∑

j∈AB
0
j for every i∈A.

5 Conclusions and Future Work

We proposed a model for polarization and belief evolution for multi-agent systems under confirmation-bias. We
showed that whenever all agents can directly or indirectly influence each other, their beliefs always converge, and
so does polarization as long as the convergence value is not a borderline point. We also identified necessary conditions
for polarization not to disappear, and the convergence value for some important network topologies. As future work
we intend to extend our model to model evolution of beliefs and measure polarization in situations in which agents
hold opinions about multiple propositions of interest.

7 This case refers to the unusual and technical conditions under which polarization can persist, even when agents’ beliefs converge.
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Abstract

We present work in progress on modelling social networks which in-
clude agents with quantitative beliefs about multiple issues, including in-
terconnections between an agent’s own beliefs, and the effects of these
interconnections on the evolution of the system as a whole. This work
refines the formal models for social networks presented in [1, 2].

1 Introduction

As social networks become ubiquitous in our lives and have unpredicted and
unprecedented effects on communication and public opinion, it is crucial to
develop accurate formal models to better understand them. In [1, 2], a formal
model of social networks was developed, including a quantitative measure of
agents’ beliefs about a single issue, their change over time, and the overall
polarization of the social network at each time step. Here, we present work in
progress aimed at refining this model by allowing agents to have beliefs about
multiple issues, and examining the influence between an agent’s belief about
one issue and a related issue.

2 Contribution

Although the previous model provided a way to simulate the state of single
belief, it cannot capture many of the nuances present in those interactions.
This was cause to develop a new flexible update function that was able to fill
in the gaps and provide a more accurate model.

This model provides a major improvement over the previous one in terms of
functionality. The first component is the transition to a multiple belief update
system to represent a wide spectrum of interconnected beliefs. Similarly to
before, each belief will represent an agent’s view or stance on the corresponding
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topic. However, in real interactions, one’s beliefs are rarely independent, and
instead often depend on each other to form an overall narrative or stance.

Implementing this factor can be done through aggregation of related beliefs.
This is done through the use of a belief influence table. This table causes each
belief to affect the expression of others and establish a credibility measure
for each of an agent’s beliefs. This allows for situations where multiple similar
beliefs may support each other, therefore increasing the expression of that be-
lief; as well as situations where contradicting beliefs limit an agent’s influence.
This credibility measurement replaces the influence multiplier from the previous
model. We also add a fortitude multiplier, used to resist incoming credibility,
and therefore resist being influenced.

Credibility of a belief k, denoted as C[k] is established as follows:

C[k] =
n∑

i=1

B[i] ∗ T [k, i]

where,

n is the number of beliefs in the system,

B is the list of an agent’s beliefs,

C is the list of an agent’s credibilites, and

T is the influence table, with T [k, i] representing the percentage of belief i that
applies to belief k.

The existing update method does not support this credibility measurement, so
we need to replace it with something that does. Due to its nature, this new func-
tion remaps beliefs from [0,1] to [-1,1] and has multiple useful properties:

1. An agent with a credibility of 0 exerts no influence.

2. An agent with a neutral belief of 0 exerts no influence

3. A polarized agent is less receptive to opposing influence

4. A polarized agent more easily becomes increasingly polarized

The function to calculate hk, the change in an agent a1’s belief k when influenced
by agent ai is defined as follows:

hk =
x1 + 3

√
cx2 − x3

1

s

where,
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x1 = Ba1
[k],

x2 = Bai [k],

f = ai’s fortitude multiplier, or resistance to influence,

c = Ca2
[k] ∗ f , and

s is an arbitrary scalar.

Agent a1’s new belief N [k] from this step is then incremented by h1 + x1. This
update function is run for every influencing agent in the population, then the
agent’s beliefs x1 are set to the average of the new beliefs, N

n .

With these new functions, a simulation can be run to model the changes in be-
liefs across a system of agents. Each update step consists of the following:

1. Apply the update function on each agent.

2. Average the agent’s new beliefs based on the number of influencing agents.

3. Overwrite each agent’s old beliefs with their new ones.

4. Calculate the credibility of each agent’s beliefs.

After each update step, a snapshot of the system’s polarization can be stored.

3 Example

Let’s consider one influence system, containing just a few beliefs.

1. A pivot belief that will be the focus of the simulation,

2. A tethered belief that is mostly or entirely affected by the pivot belief,

3. A strong external belief that is used for constant, immutable influence
on the pivot, and

4. A side belief that is able to affect the pivot better than the ”external
belief.

Suppose we have a system with a balanced population composed of agents hold-
ing only mildly strong, opposing pivot beliefs who can all slightly influence each
other. Over time, their polarization will remain constant, as each agent has just
as much reinforcement as it does opposition.

Now, let’s add a single incredibly influential agent to the population. This could
be someone such as a family member or politician. In general, this will represent
someone with a strong influence that is difficult or impossible to change. This
represents our external belief and can be conceptualized with something such
as agreement with a news station.
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Without resistance, the influential agent will align the other agents’ external
beliefs to match their own, in turn causing the pivot and the tether beliefs to
follow. This results in a polarized system.

However, if we add just a single opposing agent, possessing a side belief, one
that the influential agent cannot affect, the situation changes. At first, it begins
the same as before with agents converging to the influential agent’s belief. How-
ever, as the side belief spreads, it eventually overpowers the external belief,
causing the pivot to flip and bringing the agents to the opposite belief.

This technique is one that is often used in discussion of difficult or controver-
sial topics. Instead of directly discussing a topic that will cause both parties
to become upset or reluctant to listen, the conversation can more safely be di-
rected toward a common ground of a related topic. As a result, heated and
divisive subjects can still be discussed without as easily resorting to bias or
being restricted behind polarized views.

To facilitate expansion and simulation of the model, the previous simulation was
rewritten using C# and then expanded upon to incorporate the new systems.
The current program contains high level structures for creating, manipulating,
and simulating large populations of agents with various influence maps and
beliefs. This tool was used to run a simulation of the system described above
and track how it behaves over time.

The initial population is as follows:

“politician” agent with beliefs [1, 1, 1, 0], fortitude 1

“citizen” agents with beliefs [1, 1, 0, 0], fortitude 0

“citizen” agents with beliefs [-1, -1, 0, 0], fortitude 0

“citizen” agent with beliefs [-1, -1, 0, -0.3], fortitude 0

The influence table:

- b1out b2out b3out b4out

b1in 0 0 0.2 0.8
b2in 0.5 0 0 0
b3in 0 0 0.2 0
b4in 0 0 0 0.1

Where belief 1 is the pivot, belief 2 is the tether, belief 3 is the external, and
belief 4 is the side. As you can see, belief 3, the external belief, and belief
4, the side belief both affect the pivot belief, 1, though belief 4 has a much
greater effect.

For the first 50 steps, beliefs 1 and 2 remain highly polarized, as there are no
significant influences acting to change them. During this time however, belief
3 gradually becomes less polarized as agents are influenced by the politician’s
external belief. By step 130, all agents are in consensus with the politician
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on belief 3, causing the pivot to follow suit. During this time, belief 4 is very
slowly spreading throughout the system.

After some time, around step 480, the agents are nearly in consensus with
the politician on the pivot belief, and the tether belief, belief 2, is following
closely behind. However, it is at this point that belief 4 has built up enough to
suddenly flip the pivot back around. The agents reverse their beliefs and the
pivots are now in line with that of the original agent holding the side belief.
The tether belief then follows.By step 510, the pivot belief has stabilized, and
by step 570, the tether has done the same. After this point, the system remains
unchanged.

4 Related Work

There is a great deal of work on social networks, in various fields. Here we
briefly discuss the most closely related work involving formal models of social
networks.

DeGroot Models The closest related work is DeGroot models [3]. These are
the standard linear models for social learning whose analysis can be carried out
by linear techniques from Markov chains, and are a similar approach to that
of [2, 1]. In the current work we extend this class of models by analyzing the
effects of interacting beliefs about multiple issues for each agent.

Other Formal Models Ŝırbu et al. [5] use a formal model of social networks
that updates probabilistically to investigate the effects of algorithmic bias on
polarization by counting the number of opinion clusters, interpreting a single
opinion cluster as consensus. Leskovec et al. [4] simulate social networks and
observe group formation over time.

5 Conclusion and Future Work

Formal models of social networks are important, in order to better understand
and predict the effects of social networks on widespread opinions and beliefs.
Here, we have presented work in progress on formal models where agents may
have multiple, interdependent, quantitative beliefs about a variety of topics.
This is valuable for making our formal models more realistic and representative
of reality.

Future Work Our immediate plans are to further refine our parameters and run
more simulations, in order to improve our model and its ability to model realistic
situations. Then we will be able to understand and prove general properties in
our models, and compare them to real-world data about social networks.
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