Algebraic Reasoning About Timeliness

by Seyed Hossein HAERI12 Peter W. THOMPSON13 Peter VAN ROY4 Magne HAVERAAEN2 Neil J. DAVIES13 Mikhail BARASH2 Kevin HAMMOND1 James CHAPMAN1 (1IOG, 2University of Bergen, 3PNSol, 4UCLouvain)
on 19 Jun 2023

16th Interaction and Concurrency Experience
NOVA University, Lisbon, Portugal
Introduction
Why predict performance?

* Weather forecast of today can’t arrive tomorrow!
* Without performance prediction
 * Performance issues exposed late in design cycle
 * Either:
 * Re-architect the design, with cost and delay, or
 * Allocate excessive resources, with cost and inefficiency.
* With performance prediction
 * Performance issues exposed early in design cycle
 * Re-architect the design before time and money spent, and
 * Control resources, avoiding cost and inefficiency.

See [1, §1.1] for more:

* *Mind Your Outcomes: The \(\Delta QSD \) Paradigm for Quality-Centric Systems Development and Its Application to a Blockchain Case Study.* Computers 11(3): 45 (2022)

Why does IOG fund research on performance?

- Good Starting Point: Kevin Hammond’s Keynote in Lambda Days 2023 https://tinyurl.com/3t42t3wn
- IOG is a prominent blockchain company. https://iohk.io
- The effective operation of the Cardano network depends on a performance aware design.
- The ΔQSD Team on Formalising Performance Aspects
Last Year’s DisCoTec Tutorial by Peter VAN ROY

The ΔQSD Paradigm for System Development

June 13, 2022
DisCoTec Tutorial

Peter Van Roy
Université catholique de Louvain

Neil Davies, Peter Thompson
Predictable Network Solutions Ltd.

Seyed Hossein Haeri
PLWorkz

https://www.youtube.com/watch?v=iBYZEJZwKm0
What's timeliness?

Timeliness is delivering results within the required time bounds (sufficiently often).
Cache Example

* Outcome Diagrams
* Outcome Expressions
* An Algebraic Perspective on Timeliness
* Where is the algebra?
Cache Example

- Outcome Diagrams
- Outcome Expressions
- An Algebraic Perspective on Timeliness
- Where is the algebra?
Big Picture

Block Diagram

Cache Example
Hit or Miss

Note:
- Outcomes: What the System Gains by Performing One of its Tasks
 - NOT System States
 - NOT Subsystems
 - NOT Classes/Objects
- Probabilistic Choice (↔)
Lookup from Main Memory

Note:
* Sequential Composition
* Left-to-Right Causality
Error Correction

- Cache Example

- Algebraic Results

- Q&A

Diagram:

- c-miss
- c-hit
- ECC fail
- main

Probabilities:

- 95%
- 5%
- 10^{-16}
Timeout (1 of 3)

Time-Bounded Network Connection Back & Forth
Timeout (2 of 3)

- Cache Example
- Algebraic Results
- Q&A

![Diagram of cache example with nodes and edges]
Note:

* Any-to-Finish (∃)
Cache Example

- Outcome Diagrams
- Outcome Expressions
- An Algebraic Perspective on Timeliness
- Where is the algebra?
Expression:

\[
\text{main} \xleftrightarrow{1} 10^{-16} \bot
\]

Note:
* “\(\bot\)” is for failure.
Expression:

\[\text{net} \rightarrow\rightarrow (\text{main} \xrightarrow{1} 10^{-16} \perp) \rightarrow\rightarrow \text{net}\]

Note:

* “\(\rightarrow\rightarrow\)” is for sequential composition.
Expression:

\[(\text{net} \\xrightarrow{} \text{main} \xleftrightarrow{1} \text{main} \xrightarrow{10^{-16}} \text{net}) \parallel \exists \text{t-out})\]

Note:

* “\(\parallel \exists\)” is for any-to-finish.
\[
c\text{-hit} \quad [95\%] \Rightarrow (\text{c-miss} \quad \text{miss} \quad \text{net}\quad \text{mread}\quad 1\quad \text{main}\quad \text{mreturn}\quad \text{net} \quad \text{hit} \quad \text{miss}) \quad || \exists \quad \text{t-out})
\]
Cache Example

- Outcome Diagrams
- Outcome Expressions
- An Algebraic Perspective on Timeliness
- Where is the algebra?
What’s a ΔQ?

- Quality Attenuation
- A Measure for Delay (and Failure)
- Represented using a Cumulative Distribution Function (CDF)
- Improper Random Variable (IRV) [2]
Timeliness Semantics

Definition (Haeri et al. [1]): Given a basic assignment $\Delta_\circ[.] : \mathcal{B} \rightarrow \Delta$, define $\Delta Q[.]_{\Delta_\circ} : \mathcal{O} \rightarrow \mathcal{I}$ such that...
Definition (Haeri et al. [1]): Given a basic assignment \(\Delta_\circ[\cdot] : \mathbb{B} \to \Delta \), define \(\Delta_\circ \square[\cdot]_\circ : \square \to \square \) such that

\[
\Delta_\circ \square[\cdot]_\circ = \begin{cases}
1 & \text{when } \Delta_\circ[\cdot] \notin \square \\
\Delta_\circ[\cdot]_\circ & \text{otherwise}
\end{cases}
\]

\[
\Delta_\circ \bigcirc[\circ \rightarrow \circ']_\circ = \Delta_\circ \bigcirc[\circ]_\circ \times \Delta_\circ \bigcirc[\circ']_\circ
\]

\[
\Delta_\circ \bigcirc[\circ \rightleftharpoons \circ']_\circ = \frac{m}{m+m'} \Delta_\circ \bigcirc[\circ]_\circ + \frac{m'}{m+m'} \Delta_\circ \bigcirc[\circ']_\circ
\]

\[
\Delta_\circ \bigcirc[\circ \leftarrow \circ']_\circ = \Delta_\circ \bigcirc[\circ]_\circ \times \Delta_\circ \bigcirc[\circ']_\circ
\]

\[
\Delta_\circ \bigcirc[\circ \leftrightarrow \circ']_\circ = \Delta_\circ \bigcirc[\circ]_\circ + \Delta_\circ \bigcirc[\circ']_\circ - \Delta_\circ \bigcirc[\circ]_\circ \times \Delta_\circ \bigcirc[\circ']_\circ
\]
Definition (Haeri et al. [1]): Given a basic assignment $\Delta_\circ[.] : \mathbb{B} \rightarrow \Delta$, define $\Delta Q[.]_\circ : \mathbb{O} \rightarrow \mathbb{I}$ such that

$$
\Delta Q[[\beta]]_\circ. = \begin{cases}
1 & \text{when } \Delta_\circ[[\beta]] \notin \mathbb{I} \\
\Delta_\circ[[\beta]] & \text{otherwise}
\end{cases}
$$

$$
\Delta Q[[o \rightarrow o']]_\circ. = \Delta Q[[o]]_\circ. \ast \Delta Q[[o']]_\circ.
$$

$$
\Delta Q[[o \rightarrow m o']]_\circ. = \frac{m}{m+m'} \Delta Q[[o]]_\circ. + \frac{m'}{m+m'} \Delta Q[[o']]_\circ.
$$

$$
\Delta Q[[o \parallel o']]_\circ. = \Delta Q[[o]]_\circ. \times \Delta Q[[o']]_\circ.
$$

$$
\Delta Q[[o \parallel o']]_\circ. = \Delta Q[[o]]_\circ. + \Delta Q[[o']]_\circ. - \Delta Q[[o]]_\circ. \times \Delta Q[[o']]_\circ.
$$
» ΔQ of the Cache Example

Given

$$\Delta \supseteq \{\Delta Q_{c\text{-hit}}, \Delta Q_{c\text{-miss}}, \Delta Q_{mem}, \Delta Q_{t\text{-out}}, \Delta Q_{mem}, \Delta Q_{t\text{-out}}\},$$

one calculates:

$$\Delta Q_{obs} = 0.95 \times \Delta Q_{c\text{-hit}} + 0.05 \times (\Delta Q_{c\text{-miss}} \times (\Delta Q_{mem} + \Delta Q_{t\text{-out}} - \Delta Q_{mem} \times \Delta Q_{t\text{-out}})),$$

where

$$\Delta Q_{mem} = \Delta Q_{\text{net}} \times (1 - 10^{-16}) \times \Delta Q_{\text{main}} \times \Delta Q_{\text{net}}.$$
Timeliness for the Cache

Δ\text{Q}_\text{req}:

* 10% of queries up to 4ms
* 50% of queries up to 6ms
* 90% of queries up to 14ms
* 10% of queries never
Cache Example

- Outcome Diagrams
- Outcome Expressions
- An Algebraic Perspective on Timeliness
- Where is the algebra?
Expression:

\[c\text{-hit}^{[95\%]} \leftrightarrow (c\text{-miss} \rightarrow \text{main}^{1 \over 10^{-16}} \perp) \]
Algebraic Manipulation

\[
c \quad \text{hit} \ [95\%] \quad (c \quad \text{miss} \quad \rightarrow \quad \text{main} \quad \frac{1}{10^{-16}} \quad \bot) \\
\]

\[
c \quad \text{hit} \ [95\%] \quad ((c \quad \text{miss} \quad \rightarrow \quad \text{main}) \quad \frac{1}{10^{-16}} \quad \bot) \\
\]

\[
(c \quad \text{hit} \quad [\cdot] \quad (c \quad \text{miss} \quad \rightarrow \quad \text{main})) \quad [q] \quad \bot
\]

where \(q = (1 - 0.05 \times 10^{-16}) = 0.999999999999999995 \).

* 17 nines vs 9 nines of Ericsson AXD301

Not a Guarantee for Success!

Just ruling out infeasibility with this level of information.
Benefit of Algebraic Manipulation

$q = (1 - 0.05 \times 10^{-16}) = 0.999999999999999995$

* What if we had already implemented the cache?
* Will simply throwing more hardware at it work?
* Re-architecture from scratch?
Algebraic Results
Algebraic Structures

<table>
<thead>
<tr>
<th>O with</th>
<th>Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇄</td>
<td>magma</td>
</tr>
<tr>
<td>⊏</td>
<td>commutative monoid with (\top) and (\bot) as the identity and absorbing elements</td>
</tr>
<tr>
<td>⊏∧</td>
<td>commutative monoid with (\top) and (\bot) as the identity and absorbing elements</td>
</tr>
<tr>
<td>⊏∃</td>
<td>commutative monoid with (\bot) and (\top) as the identity and absorbing elements</td>
</tr>
</tbody>
</table>

Note: Neither \(\mathbin{\|\wedge}\) nor \(\mathbin{\|\exists}\) nor their combination form the familiar richer algebraic structures.
Equivalences Containing Constant Outcomes

\[
\begin{align*}
\bot & \equiv \bot = \bot \\
\top & \equiv \top = \top \\
\top & \equiv \forall \top = \top \\
\bot & \equiv \exists \bot = \bot \\
\top & \equiv \bot = \bot \\
\top & \equiv \bot = \bot \\
\bot & \equiv \top = \bot \\
\bot & \equiv \bot = \bot \\
\top & \equiv \forall \bot = \bot \\
\bot & \equiv \exists \top = \bot \\
[\rho] & \equiv [\sigma] \top = [\sigma(1-p)] \left[\frac{\rho}{1-q(1-p)} \right] \top \\
\bot & \equiv [\rho] \left(\bot \equiv [\rho] \top \right) = \bot \left[\rho + (1-p)q \right] \top
\end{align*}
\]
» Equivalences Containing Constant Outcomes

\[\bot \iff \bot = \bot \]
\[\top \iff \top = \top \]
\[\bot \iff \bigcirc \rightarrow \bullet \bot = \bot \]
\[\top \iff \bigcirc \rightarrow \bullet \top = \top \]
\[\bot \iff \bigcirc \rightarrow \exists \bullet \top = \top \]

\[o_1 \iff \bigcirc \rightarrow \bullet \bigcirc \iff \bot) = (o_1 \iff \bigcirc \rightarrow \bullet o_2) \iff \bot \]
\[(o_1 \iff \bot) \iff \bigcirc \rightarrow \bullet o_2 = (o_1 \iff \bigcirc \rightarrow \bullet o_2) \iff \bot \]
\[(o_1 \iff \top) \iff \bigcirc \rightarrow \bullet o_2 = (o_1 \iff \bigcirc \rightarrow \bullet o_2) \iff o_2 \]
\[o_1 \iff \bigcirc \rightarrow \bullet (o_2 \iff \top) = (o_1 \iff \bigcirc \rightarrow \bullet o_2) \iff o_1 \]

\[o_1 \[p \] \iff \bigcirc \rightarrow \bullet \bigcirc \iff \bot) = (o_2 \[q \] \iff \top \]
\[(\bot \iff \bigcirc \rightarrow \bullet \top) = (\bot \iff \bigcirc \rightarrow \bullet o \) \iff \bot \[p + (1-p)q] \iff \top \]

[26/32]

» Equivalences Containing Constant Outcomes

\[
\begin{align*}
\bot & \iff \bot = \bot \\
T & \iff T = T \\
\bot & \iff \bot = \bot \\
T & \iff T = T \\
\bot & \iff \bot = \bot \\
T & \iff T = T \\
\end{align*}
\]

\[
\begin{align*}
o_1 & \iff (o_2 \iff \bot) = (o_1 \iff o_2) \iff \bot \\
(o_1 \iff \bot) & \iff o_2 = (o_1 \iff o_2) \iff \bot \\
(o_1 \iff T) & \iff o_2 = (o_1 \iff o_2) \iff o_2 \\
o_1 & \iff (o_2 \iff T) = (o_1 \iff o_2) \iff o_1 \\
o_1 \left[\frac{p}{q}\right] (o_2 \left[\frac{q}{1-p}\right] T) & = o_2 \left[\frac{q(1-p)}{1-q(1-p)}\right] (o_1 \left[\frac{p}{1-q(1-p)}\right] T) \\
\bot \left[\frac{p}{q}\right] (\bot \left[\frac{q}{1-p}\right] o) & = \bot \left[\frac{p+(1-p)q}{1-p}\right] o \\
\end{align*}
\]

ECC followed by a net failure is as timely as failure itself!
Equivalences Containing Constant Outcomes

\[
\begin{align*}
\bot & \iff \bot = \bot \\
T & \implies o = o \\
T & = o \iff T = o \\
\top & \implies \exists o = o \\
\top & \iff \forall o = o
\end{align*}
\]

\[
\begin{align*}
o_1 \implies o_2 = \bot & \iff (o_1 \implies o_2) = \bot \\
(o_1 \iff \bot) & \implies o_2 = (o_1 \implies o_2) = \bot \\
(o_1 \iff \top) & \implies o_2 = (o_1 \implies o_2) = o_2 \\
o_1 \implies (o_2 = \top) & \iff (o_1 \implies o_2) = o_1 \\
o_1 \left[\frac{p}{p}\right] \iff (o_2 \left[\frac{q}{q}\right] \top) & \iff o_2 \left[\frac{q(1-p)}{1-q(1-p)}\right] (o_1 \left[\frac{p}{1-q(1-p)}\right] \top) \\
\bot \left[\frac{p}{p}\right] \iff (\bot \left[\frac{q}{q}\right] o) & \iff \bot \left[\frac{p+(1-p)q}{p+(1-p)q}\right] o
\end{align*}
\]

Seen at the Algebraic Manipulation of the Cache Example
Distributivity

Let $o_1, o_2, o_3 \in$ and $p \in \{\rightarrow, \forall, \exists\}$. Then,

- $\circ \circ \ time \models o_1 \ p \ (o_2 \leftrightarrow o_3) = (o_1 \ p \ o_2) \leftrightarrow (o_1 \ p \ o_3),$
 and

- $\circ \circ \ time \models (o_1 \leftrightarrow o_2) \ p \ o_3 = (o_1 \ p \ o_3) \leftrightarrow (o_2 \ p \ o_3).$

Bad News! Only 3 Out of the Possible 15
Summary

* Formalisation of ΔQSD – Ongoing Project
* Algebraic Manipulations \Rightarrow Tool Support
* Properisation
 * Ordinary $\Delta Q[\ldots]$ doesn’t work!
 * The First IRV Body of Theorems Ever!
Questions?
» Thank you very much!