Branching pomsets and event structures
(oral communication)

Luc Edixhoven1,2
José Proença3
Sung-Shik Jongmans1,2
Ilaria Castellani4

1Open University of the Netherlands 2CWI
3CISTER, ISEP, Polytechnic Institute of Porto 4INRIA, Université Côte d’Azur

ICE 2023
Branching pomsets for choreographies

Luc Edixhoven1,2 \quad Guillermina Cledou3,4

Sung-Shik Jongmans1,2 \quad José Proença5

1 Open University of the Netherlands \quad 2 CWI

3 HASLab, INESC TEC \quad 4 University of Minho

5 CISTER, ISEP, Polytechnic Institute of Porto

ICE 2022
Some context

Branching pomsets for choreographies

\[[a \rightarrow b:x ; ((b \rightarrow c:x + d \rightarrow e:x) \ || \ c \rightarrow a:x)] \]
Conclusions and future work

Summary

• Branching pomsets
• Compact for both concurrency and choice
• Can express the same behaviour as choreographies

Future work

• Framework improvements: \(n \)-ary choices, partial order, loops
• Static analysis: realisability

https://lmf.di.uminho.pt/b-pomset/
“What about event structures?”
Branching pomsets and event structures
(oral communication)

Luc Edixhoven1,2
José Proença3
Sung-Shik Jongmans1,2
Ilaria Castellani4

1Open University of the Netherlands 2CWI
3CISTER, ISEP, Polytechnic Institute of Porto 4INRIA, Université Côte d'Azur

ICE 2023
Outline

• **Branching pomsets**: a generic model for concurrency
• **Event structures**: a brief overview of the landscape
• **Comparison**: relative expressiveness
Branching pomsets and event structures

Basis: partially ordered multisets / pomsets (Pratt 1986)

- a set of events
 - above: \{a, b, c, d, e, f, g, h\}
- a partial order on the events
 - above: the reflexive and transitive closure of the arrows
- a labelling function from events to some set of labels
 - above: omitted / identity (irrelevant for this talk)
Extension: choices

- expressing choices with pomsets requires a set of pomsets
- with many choices, this set may become exponentially large
- solution: add a representation of choices
Branching pomsets

Choice model: branching structure

- add branching structure; a tree whose leaves are the events above: \(\{a, b, g, h, C_1, C_2\} \), where \(C_1 = \{\{c\}, \{d\}\} \) and \(C_2 = \{\{e\}, \{f\}\} \)

- replace the partial order with a precedence relation, whose reflexive and transitive closure is a partial order above: the arrows
Branching pomsets

For comparison: the corresponding set of pomsets

\[
\begin{array}{c}
 a \rightarrow c \rightarrow e \rightarrow g \\
 b \downarrow \downarrow \downarrow \\
 h
\end{array}
\quad
\begin{array}{c}
 a \\
 b \downarrow \downarrow \downarrow \\
 h
\end{array}
\]

\[
\begin{array}{c}
 a \rightarrow c \\
 b \downarrow \downarrow \\
 f \rightarrow h
\end{array}
\quad
\begin{array}{c}
 a \rightarrow g \\
 b \downarrow \downarrow \\
 f \rightarrow h
\end{array}
\]

\[
\begin{array}{c}
 a \rightarrow e \rightarrow g \\
 b \downarrow \downarrow \downarrow \\
 h
\end{array}
\quad
\begin{array}{c}
 a \\
 b \downarrow \downarrow \downarrow \\
 d \rightarrow f \rightarrow h
\end{array}
\]

\[
\begin{array}{c}
 a \rightarrow g \\
 b \downarrow \downarrow \\
 f \rightarrow h
\end{array}
\quad
\begin{array}{c}
 a \\
 b \downarrow \downarrow \\
 d \rightarrow f \rightarrow h
\end{array}
\]
Semantics: refining \Rightarrow resolving any number of choices
Semantics: enabling (followed by firing) \Rightarrow refining s.t. the chosen event is minimal and top-level, resolving no more than necessary
Semantics: enabling (followed by firing) ⇒ refining s.t. the chosen event is minimal and top-level, resolving no more than necessary
Also: nested choices
Choice model: conflict relation

- add conflict relation; two conflicting events may not occur together in the same execution

above: \{ (c, d), (e, f) \}

- most classes of event structures define variations on causality and/or conflicts
Event structures

Landscape (partial): static and dynamic classes of event structures

Prime → Asymmetric → Growing

Bundle → Extended Bundle

Flow → Stable → Dual ← Shrinking

Dynamic Causality → Resolvable Conflict → HDES

Arrows represent (strict) inclusion in terms of expressiveness

Figure: Arbach, Karcher, Peters and Nestmann, Dynamic causality in event structures (2018)
Event structures

Landscape (partial): static and dynamic classes of event structures

Prime → Asymmetric → Growing

Bundle → Extended Bundle

Flow → Stable → Dual → Shrinking

Dynamic Causality
Resolvable Conflict

HDES

Arrows represent (strict) inclusion in terms of expressiveness

Figure: Arbach, Karcher, Peters and Nestmann, Dynamic causality in event structures (2018)

Most relevant for this talk: growing and shrinking causality ⇒ dynamically adding and removing causalities
Comparison

Prime → Growing

Bundle → Extended Bundle

→ Shrinking

→ Dynamic Causality

→ Resolvable Conflict
Dynamic causality with counters: replaced dynamic causality event structures with a new variant with nice property; the order of events is irrelevant for the resulting causal state

As a result: uniformly defined semantics for all shown classes
Generic proof: inclusion in event structures for resolvable conflict of any class of event structures where the causal state is order-independent, including dynamic counters.
Next up: branching pomsets
Non-inclusion: not all prime event structures expressible as branching pomsets — would need overlapping boxes

```
\[ \begin{array}{ccc}
  & a & c \\
  & \# & \# \\
  b & \# & d \\
\end{array} \] ```
**Non-inclusion**: not all branching pomsets expressible as growing causality event structures — would need disjunctive causality
Comparison

Branching Pomsets

Prime → Growing

Bundle → Extended Bundle

Shrinking

Dynamic Counters

Resolvable Conflict

Non-inclusion: not all branching pomsets expressible as extended bundle event structures — $c$ can be disabled and then re-enabled
Non-inclusion: not all branching pomsets expressible as shrinking causality event structures — $c$ can be disabled and then re-enabled
Consequently: branching pomsets incomparable with prime, growing causality, extended bundle and shrinking causality event structures
Comparison

**Inclusion**: subset of branching pomsets, dubbed *tree-like*, can be expressed as prime event structures.
**Inclusion**: same generic proof as for event structures also holds for branching pomsets; they can all be expressed as event structures for resolvable conflict.
Inclusion conjecture: dynamic causality event structures (with counters) may be powerful enough to express all branching pomsets; no proof yet
Conclusions and future work

Summary

• branching pomsets as a generic model for concurrency
• comparison with various classes of event structures
• interesting behaviour: incomparable with most, included in some more expressive classes of dynamic event structures

Future work

• proving or disproving the dynamic counters conjecture
• study the expressiveness of branching pomsets with overlapping boxes
• expand static analysis of branching pomsets