Proofs about Network Communication: For Humans and Machines

Wolfgang Jeltsch Javier Díaz

16th Interaction and Concurrency Experience

Lisbon, Portugal
19 June 2023
Concurrent and distributed systems are often safety-critical

Machine-checked proofs can provide a high degree of assurance

Our research program:
- Targets verification of design refinements
- Centers on the Ouroboros blockchain consensus protocols
- Uses the Isabelle proof assistant

Previous achievement:
- A machine-checked correctness proof of broadcast via multicast

Issue with this proof:
- Relies on fundamental but unproved bisimilarity statements

Now we are delivering the missing proofs

And show you how to conduct such proofs so that they are:
- Concise
- Human-friendly
- Machine-checked
The Π-calculus

- A process calculus
- Our language for describing concurrent and distributed systems
 - Protocol specifications
 - Protocol implementations
 - Protocol environments
- Developed by us as part of our research program
- Key properties:
 - General
 - Minimal
 - Suitable for machine-checked proofs
- Similar to the asynchronous π-calculus
- Additional features:
 - Arbitrary data
 - Computation
 - Conditional execution
- Embedded in Isabelle/HOL
The P-calculus in detail

- **Processes:**
 - 0 does nothing
 - $a \triangleleft x$ sends value x to channel a
 - $a \triangleright x. P x$ receives a value x from channel a, performs process $P x$
 - $p \parallel q$ performs processes p and q in parallel
 - $\nu a. P a$ introduces a local channel a, performs process $P a$

- Constructs capture just the key features of process calculi
 - Concurrency
 - Communication

- For other features we utilize the host language (Isabelle/HOL)
 - Using higher-order abstract syntax (HOAS)
 - Name binding
 - Arbitrary data
 - Computation
 - Conditional execution
 - Using coinduction
 - Repetition
Proofs about coinductively defined processes tend to be low-level

Solution:
- Define just a single, general repetition construct via coinduction
- Show fundamental properties of this construct for later use in proofs

Repeated receive:

\[a \triangleright^\infty x. \ P x \] repeatedly receives values \(x \) from channel \(a \), initiates the execution of \(P x \) for each received \(x \)

Definition:

\[a \triangleright^\infty x. \ P x = a \triangleright x. (P x \parallel a \triangleright^\infty x. P x) \]
Repeated receive idempotency

- Repeated receive is idempotent
 - With respect to parallel composition
 - Up to bisimilarity
- Formally:

\[a \triangleright^\infty x. \ P \ x \parallel a \triangleright^\infty x. \ P \ x \sim a \triangleright^\infty x. \ P \ x \]

- This fact is used in our correctness proof of broadcast via multicast
- Its proof exemplifies the proof style we advocate here
Background of the proof of repeated receive idempotency

- **P-calculus transition rules about ∡, ▷, and ∥:**

 \[
 a \triangleleft x \xrightarrow{a \triangleleft x} 0 \quad (\triangleleft)
 \]

 \[
 a \triangleright x. P x \xrightarrow{a \triangleright x} P x \quad (\triangleright)
 \]

 \[
 p \xrightarrow{a \triangleleft x} p' \quad q \xrightarrow{a \triangleright x} q' \quad (\tau_{\rightarrow})
 \]

 \[
 p \parallel q \xrightarrow{\tau} p' \parallel q' \quad (\tau_{\rightarrow})
 \]

 \[
 p \xrightarrow{\alpha} p' \quad (\parallel_1)
 \]

 \[
 p \parallel q \xrightarrow{\alpha} p' \parallel q \quad (\parallel_2)
 \]

- **Definition of repeated receive again:**

 \[
 a \triangleright^\infty x. P x = a \triangleright x. (P x \parallel a \triangleright^\infty x. P x)
 \]
lemma repeated_receive_idempotency:
shows a ▷∞ x. P x || a ▷∞ x. P x ~ a ▷∞ x. P x

proof coinduction case (forward_simulation α s) ⟨...⟩
next case (backward_simulation α s) from ‹a ▷∞ x. P x α −→ s›
obtain x where α = a ▷ x and s = P x || a ▷∞ x. P x
⟨proof⟩ with ‹a ▷∞ x. P x α −→ s›
have a ▷∞ x. P x a ▷ x −−−→ P x || a ▷∞ x. P x
⟨proof⟩ then have a ▷∞ x. P x || a ▷∞ x. P x
a ▷ x −−−→ P x || a ▷∞ x. P x
⟨proof⟩ then show ?case ⟨proof⟩
qed
lemma repeated_receive_idempotency:
 shows $a \triangleright^\infty x. P x \parallel a \triangleright^\infty x. P x \sim a \triangleright^\infty x. P x$

proof coinduction
 case (forward_simulation α s)

next
 case (backward_simulation α s)

qed
lemma repeated_receive_idempotency:
 shows $a \triangleright \infty x. P x \parallel a \triangleright \infty x. P x \sim a \triangleright \infty x. P x$

proof coinduction
 case (forward_simulation α s)
 ⟨...⟩

next
 case (backward_simulation α s)

qed
Proving repeated receive idempotency

\textbf{lemma} \texttt{repeated_receive_idempotency}:
\begin{align*}
\text{shows } a \triangleright^\infty x. \; P \; x \parallel a \triangleright^\infty x. \; P \; x & \sim a \triangleright^\infty x. \; P \; x \\
\text{proof} \text{ coinduction} & \\
\text{case (forward_simulation } \alpha \; s) & \\
\langle \ldots \rangle \\
\text{next} & \\
\text{case (backward_simulation } \alpha \; s) & \\
\text{from } \langle a \triangleright^\infty x. \; P \; x \xrightarrow{\alpha} s \rangle & \\
\text{obtain } x \; \text{where } \alpha = a \triangleright x \; \text{and } s = P \; x \parallel a \triangleright^\infty x. \; P \; x & \\
\langle \text{proof} \rangle & \\
\text{qed}
\end{align*}
lemma repeated_receive_idempotency:
 shows \(a \triangleright^\infty x. \ P x \parallel a \triangleright^\infty x. \ P x \sim a \triangleright^\infty x. \ P x \)

proof coinduction
 case (forward_simulation \(\alpha \ s \))
 ⟨...⟩

next
 case (backward_simulation \(\alpha \ s \))
 from ⟨\(a \triangleright^\infty x. \ P x \xrightarrow{\alpha} s \)⟩
 obtain \(x \) where \(\alpha = a \triangleright x \) and \(s = P x \parallel a \triangleright^\infty x. \ P x \)
 ⟨proof⟩
 with ⟨\(a \triangleright^\infty x. \ P x \xrightarrow{\alpha} s \)⟩ have \(a \triangleright^\infty x. \ P x \xrightarrow{a \triangleright x} P x \parallel a \triangleright^\infty x. \ P x \)
 ⟨proof⟩

qed
lemma repeated_receive_idempotency:
 shows $a \triangleright^\infty x. \ P x \parallel a \triangleright^\infty x. \ P x \sim a \triangleright^\infty x. \ P x$
proof coinduction
 case (forward_simulation $\alpha \ s$)
 ⟨...⟩
next
 case (backward_simulation $\alpha \ s$)
 from ⟨$a \triangleright^\infty x. \ P x \xrightarrow{\alpha} s$⟩
 obtain x where $\alpha = a \triangleright x$ and $s = P x \parallel a \triangleright^\infty x. \ P x$
 ⟨proof⟩
 with ⟨$a \triangleright^\infty x. \ P x \xrightarrow{\alpha} s$⟩ have $a \triangleright^\infty x. \ P x \xrightarrow{a \triangleright x} P x \parallel a \triangleright^\infty x. \ P x$
 ⟨proof⟩
 then have $a \triangleright^\infty x. \ P x \parallel a \triangleright^\infty x. \ P x \xrightarrow{a \triangleright x} (P x \parallel a \triangleright^\infty x. \ P x) \parallel a \triangleright^\infty x. \ P x$
 ⟨proof⟩
qed
lemma repeated_receive_idempotency:
 shows \(a \triangleright^{\infty} x \cdot P x \parallel a \triangleright^{\infty} x \cdot P x \sim a \triangleright^{\infty} x \cdot P x \)
proof coinduction
 case (forward_simulation \(\alpha s \))
 ⟨...⟩
next
 case (backward_simulation \(\alpha s \))
 from ⟨\(a \triangleright^{\infty} x \cdot P x \xrightarrow{\alpha} s \)⟩
 obtain \(x \) where \(\alpha = a \triangleright x \) and \(s = P x \parallel a \triangleright^{\infty} x \cdot P x \)
 ⟨proof⟩
 with ⟨\(a \triangleright^{\infty} x \cdot P x \xrightarrow{\alpha} s \)⟩ have \(a \triangleright^{\infty} x \cdot P x \xrightarrow{a\triangleright x} P x \parallel a \triangleright^{\infty} x \cdot P x \)
 ⟨proof⟩
then have \(a \triangleright^{\infty} x \cdot P x \parallel a \triangleright^{\infty} x \cdot P x \xrightarrow{a\triangleright x} P x \parallel (a \triangleright^{\infty} x \cdot P x \parallel a \triangleright^{\infty} x \cdot P x) \)
 ⟨proof⟩
qed
Proving repeated receive idempotency

lemma repeated_receive_idempotency:

shows $a \triangleright^\infty x \cdot P x \parallel a \triangleright^\infty x \cdot P x \sim a \triangleright^\infty x \cdot P x$

proof coinduction

case (forward_simulation α s)

⟨...⟩

next

case (backward_simulation α s)

from ⟨$a \triangleright^\infty x \cdot P x \xrightarrow{\alpha} s$⟩

obtain x *where* $\alpha = a \triangleright x$ *and* $s = P x \parallel a \triangleright^\infty x \cdot P x$

⟨proof⟩

with ⟨$a \triangleright^\infty x \cdot P x \xrightarrow{\alpha} s$⟩ *have* $a \triangleright^\infty x \cdot P x \xrightarrow{a\triangleright x} P x \parallel a \triangleright^\infty x \cdot P x$

⟨proof⟩

then *have* $a \triangleright^\infty x \cdot P x \parallel a \triangleright^\infty x \cdot P x \xrightarrow{a\triangleright x} (P x \parallel a \triangleright^\infty x \cdot P x) \parallel a \triangleright^\infty x \cdot P x$

⟨proof⟩

qed
Proving repeated receive idempotency

lemma repeated_receive_idempotency:

shows $a \triangleright^\infty x. \ P \ x \ || \ a \triangleright^\infty x. \ P \ x \sim a \triangleright^\infty x. \ P \ x$

proof (coinduction rule: up_to_rule [where $\mathcal{F} = \{\sim\} \sim \mathcal{M}$])

- case (forward_simulation $\alpha \ s$)

 ⟨...⟩

- next

 case (backward_simulation $\alpha \ s$)

 from $\langle a \triangleright^\infty x. \ P \ x \xrightarrow{\alpha} s \rangle$

 obtain x where $\alpha = a \triangleright x$ and $s = P \ x \ || \ a \triangleright^\infty x. \ P \ x$

 ⟨proof⟩

 with $\langle a \triangleright^\infty x. \ P \ x \xrightarrow{\alpha} s \rangle$ have $a \triangleright^\infty x. \ P \ x \xrightarrow{a\triangleright x} P \ x \ || \ a \triangleright^\infty x. \ P \ x$

 ⟨proof⟩

 then have $a \triangleright^\infty x. \ P \ x \ || \ a \triangleright^\infty x. \ P \ x$ $\xrightarrow{a\triangleright x}$ $(P \ x \ || \ a \triangleright^\infty x. \ P \ x) \ || \ a \triangleright^\infty x. \ P \ x$

 ⟨proof⟩

qed
proving repeated receive idempotency

Lemma repeated_receive_idempotency:

shows $a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x$

Proof (coinduction rule: up_to_rule [where $\mathcal{F} = [\sim] \dashv \mathcal{M}$])

- case (forward_simulation αs)

 ⟨...⟩

next

- case (backward_simulation αs)

 from ⟨$a \triangleright^{\infty} x. P x \xrightarrow{\alpha} s$⟩

 obtain x where $\alpha = a \triangleright x$ and $s = P x \parallel a \triangleright^{\infty} x. P x$

 ⟨proof⟩

 with ⟨$a \triangleright^{\infty} x. P x \xrightarrow{\alpha} s$⟩ have $a \triangleright^{\infty} x. P x \xrightarrow{a \triangleright x} P x \parallel a \triangleright^{\infty} x. P x$

 ⟨proof⟩

 then have $a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \xrightarrow{a \triangleright x} (P x \parallel a \triangleright^{\infty} x. P x) \parallel a \triangleright^{\infty} x. P x$

 ⟨proof⟩

QED respectful
lemma repeated_receive_idempotency:
 shows \(a \xrightarrow{\infty} x. P x \parallel a \xrightarrow{\infty} x. P x \sim a \xrightarrow{\infty} x. P x \)
proof (coinduction rule: up_to_rule [where \(F = [\sim] \circ M \)])
 case (forward_simulation \(\alpha s \))
 ⟨...⟩
next
 case (backward_simulation \(\alpha s \))
from ⟨\(a \xrightarrow{\infty} x. P x \xrightarrow{\alpha} s \)⟩
obtain x where \(\alpha = a \xrightarrow{\infty} x \) and \(s = P x \parallel a \xrightarrow{\infty} x. P x \)
 ⟨proof⟩
with ⟨\(a \xrightarrow{\infty} x. P x \xrightarrow{\alpha} s \)⟩ have \(a \xrightarrow{\infty} x. P x \xrightarrow{a\xrightarrow{\infty}x} P x \parallel a \xrightarrow{\infty} x. P x \)
 ⟨proof⟩
then have \(a \xrightarrow{\infty} x. P x \parallel a \xrightarrow{\infty} x. P x \xrightarrow{a\xrightarrow{\infty}x} (P x \parallel a \xrightarrow{\infty} x. P x) \parallel a \xrightarrow{\infty} x. P x \)
 ⟨proof⟩
then show ?case
 ⟨proof⟩
qed respectful
Tools for bisimulation proofs for humans and machines

- The Isabelle/Isar proof language
 - Closer to usual mathematics than proof terms and tactics scripts
 - Still precise and amenable to machine-checking
- A formalized algebra of “up to” methods
 - Concise bisimulation proofs that are machine-checked
 - Simple construction of custom “up to” methods
- Isabelle’s coinduction proof method
 - Structured coinductive proofs
 - Integration of “up to” methods via custom coinduction rules
- Higher-order abstract syntax
 - Less dealing with boring technicalities in proofs
Follow the development

- https://github.com/input-output-hk/equivalence-reasoner
- https://github.com/input-output-hk/transition-systems
- https://github.com/input-output-hk/thorn-calculus