
To appear in EPTCS.

Towards Refinable Choreographies∗

Ugo de’Liguoro
Università di Torino, Italy

Hernán Melgratti
ICC - Universidad de Buenos Aires - Conicet, Argentina

Emilio Tuosto
School of Informatics, Leicester, UK - GSSI, L’Aquila, Italy

We investigate refinement in the context of choreographies. We introduce refinable global chore-
ographies allowing for the underspecification of protocols, whose interactions can be refined into
actual protocols. Arbitrary refinements may spoil well-formedness, that is the sufficient conditions
that guarantee a protocol to be implementable. We introduce a typing discipline that enforces well-
formedness of typed choreographies. Then we unveil the relation among refinable choregraphies and
their admissible refinements in terms of an axiom scheme.

1 Introduction

The advent of structured programming [7] is probably behind the widespread use of refinement methods
in computer science. Refinement is paramount in many formal methods, in software engineering, and in
verification, because the possibility of structuring a system into simpler components is crucial to tackle
the complexity of a system.

In this paper we investigate the refinement of choreographies of message-passing systems. In this
domain, a choreography specifies the coordination of distributed components (aka participants or roles)
by disciplining the exchange of messages. We embrace the acceptation of choreographies of W3C [11],
which envisages a choreography as a contract consisting of a global view that can be used as a blueprint
for defining each participant. A global view is basically an application-level protocol realised through
the coordination of the resulting local views, the specifications of participants. This description is the
ground for the so-called top-down engineering represented by the following diagram:

Global
view

Local
view

Local
systems

project comply (1)

where the ‘projection’ operation produces local views from the global ones and the operation ‘comply’
verifies that the behaviour of each participant adheres to the one of the corresponding local view.

Choreographic approaches are appealing because, unlike orchestration, they do not require an ex-
plicit coordinator (see [2] for a deeper discussion). Moreover, global views allow developers to work
independently on different components.

Despite the main advantages discussed above, choreographic approaches suffer a main drawback:
the lack of support for modular development. This shortcoming is present in standards such as BPMN

∗ Research partly supported by the EU H2020 RISE programme under the Marie Skłodowska-Curie grant agreement No
778233. Work partially funded by MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy
Smart Systems). Research partially supported by the UBACyT projects 20020170100544BA and 20020170100086BA, and by
the PIP project 11220130100148CO.
The authors thank the anonymous reviewers for their comments and the interesting discussions on the forum of ICE20.

2 Refinable Choreographies

or in workflow patterns and languages [3] and it has been more recently flagged also for choreographic
programming [4].

We propose a choreographic model of message-passing applications based on point-to-point commu-
nication equipped with a simple refinement mechanism. Let us illustrate this through some simple exam-
ples. This gives us the opportunity to informally use global choreographies [13, 9] (g-choreographies,
for short), the formalisation of global views adopted here for the technical development of the paper.

Consider the g-choreography

C
md
999K S + C

req
999K S;S

done
9999K C (2)

where a client C either sends some meta-data md or a request req to a server S. In the former case the
protocol terminates, while in the latter the server is supposed to send back a response res to C. The
dashed arrows above represent refinable interactions, that is interactions that can be replaced so to refine
the application-level protocol. For instance, to allow S to send C some statistical information in the

second branch of (2) we can refine S
done
9999K C with S

stats−−→C;S done−−→C we obtain

C
md
999K S + C

req
999K S;S stats−−→C;S done−−→C (3)

where the interactions with the solid arrow are now “ground”, namely they cannot be further refined.
This is our simple refinement mechanism: replace a refinable interaction with a more complex com-

plex (refinable) protocol. A key goal here is to provide a mechanism of refinement without spoiling
well-formedness conditions. Basically, well-formedness conditions avoid that the application-level pro-
tocol modelled by the global view is faithfully executed by the participants that comply with the projected
local views. Let us again explain this with an example. Suppose we refine (2) by replacing each refinable

interaction with its ground version but for C
md
999K S, which is replaced by C

md−−→B;B md−−→S, where B is a
brokerage service mediating the exchange of md. We obtain

C
md−−→B;B md−−→S + C

req−−→S;S done−−→C (4)

The g-choreography above is not well-formed because the broker B is oblivious of the second branch.
Namely, if B will be stuck waiting for message md should C opt for the second branch of the choice.

Contributions & Structure We introduce a simple mechanism for refining global views of choreogra-
phies. Firstly, we equip an existing formal language expressing global choreographies (g-choreographies,
for short) with a semantics based on event structures (surveyed in Section 2) and identifying a typing
discipline (Section 3) that checks sufficient conditions for well-formedness. Secondly, we extend g-
choreographies with our refinement mechanism (Section 4). A key design choice of our framework is to
ground refinements on the concept refinable interactions. Inspired by the action refinment mechanism
of process algebra, we consider refinable g-choreographies those where refinable interactions may occur.
Refinable g-choreographies play the role of incomplete specifications where, by repeated replacements
of refinable interactions, one can incrementally attain a fully specified global view.

One problem that may arise in this process is that refinements could spoil well-formedness and hence
compromise realisability of global views. To avoid this we extend the typing discipline for non-refinable
g-choreographies to refinable ones and show that the replacement of a refinable interaction with a g-
choreography typable with the same type ensures realisability.

We discuss related work and draw some conclusions in Section 5.

U. de’ Liguoro, H. Melgratti, E. Tuosto 3

2 Background

We recall basic notions of event structures, which we use in Section 3 to give semantics to refinable
choreographies. Event structures model concurrency in terms of partial order of labelled events. We
focus our attention of event structures of communication events. Let P be a set of participants (ranged
over by A, B, etc.) and M be a set of messages (ranged over by m, x, etc.). We take P and M disjoint.
Let

C = (P×P)\{(A,A)
∣∣ A ∈P} L ! = C ×{!}×M L ? = C ×{?}×M

be the sets of channels, output labels, and input labels respectively. We write AB!m ∈L ! and AB?m ∈
L ? instead of ((A,B), !,m) ∈ L ! and ((A,B),?,m) ∈ L ?. The subject of a label l, written sbj l, is
defined as sbj AB!m = sbj BA?m = {A}. The elements of L = L ! ∪L ? (ranged over by l) will be
used to label the events of our event structures. The co-action of l ∈L is defined as co(AB!m) =AB?m
and co(AB?m) = AB!m and extends element-wise on sets of actions.

Definition 1 (Event structures). An event structure labelled over L (shortly event structure) is a tuple
E = (E,≤,#,λ) where

• E a set of events

• ≤ ⊆ E×E a partial order, the causality relation

• # ⊆ E×E a symmetric and irreflexive relation, the conflict relation,

• λ : E→L a labelling mapping.

are such that

• each event has only finitely many predecessors, namely ∀e ∈ E. {e′ ∈ E | e′ ≤ e} is finite, and

• conflicts are hereditary, namely ∀e,e′,e′′ ∈ E. e#e′ & e′ ≤ e′′ =⇒ e#e′′

If E = (E,≤,#,λ) is an event structure then min(E),max(E) ⊆ E are the minimal and the maximal
elements in the poset (E,≤). We define ε = (/0, /0, /0, /0) as the empty event structure, where λ /0 = /0 is the
empty mapping.

Notice that if E 6= ε then minimal elements do exists, while this is not necessarily the case for
maximal ones. We depict event structures following the customary representation of the literature as the
diagram (5) below; instead of events though, we prefer to use their labels, for instance:

l1 l3

l2 l4

l5

l7

l6

#

(5)

represents an event structure with events e1 . . .e7 (not represented in the diagram above) and labelled
respectively by l1, . . . , l7 where

• the event e1 precedes e2 (i.e., e1 ≤ e2 in the partial order of the event stracture)

• events e1 and e3 are in conflict; recall that the conflict relation is hereditary, hence e1 and e2 are in
conflict with all other events but e7

4 Refinable Choreographies

• events e2 and e6 are maximal; the latter follows both e5 and e7

• events e5 and e7 are independent of each other (actually, e7 is independent of any event but e6).

In our diagrams we adopt the implicit assumption that each occurrence of a label correspond to a different
event; for instance, in the diagram (5), even if two labels, say l1 and l7 were equal, the corresponding
events would be distinct (i.e., e1 6= e7). An event structure induces natural order and conflict relations on
the events performed by each participant. More precisely, the projection of an event structure
E = (E,≤,#,λ) on a participant A ∈P is the structure

E � A= (E � A,≤� A,# � A,λ � A)

where

E � A= {e ∈ E | sbj λ (e) = A}
≤� A=≤ ∩(E � A)2 and # � A= #∩ (E � A)2

λ � A= λ
∣∣
E�A, namely the restriction of λ to E � A

Trivially, the induced relations form an event structure.

Lemma 1. If E is an event structure and A ∈P then E � A is an event structure.

Proof. Immediate since ≤� A⊆≤ and # � A⊆ #.

We now define a few operations instrumental to our technical development. Let E0 = (E0,≤0,#0,λ0)
and E1 = (E1,≤1,#1,λ1) be labelled event structures.

The product operation ⊗ yields the disjoint union of event structures preserving their orders, con-
flicts, and labellings; it is define as

E0⊗E1 = (E0]E1,≤,#,λ)

where writing ιi : E i→ E0]E1 for the injections, we set

ιie≤ ι je′ ⇐⇒ i = j & e≤i e′ ιie#ι je′ ⇐⇒ i = j & e#ie′ λ (ιie) = λi(e)

The sum ∑i∈I Ei yields the disjoint union of a family {Ei}i∈I of event structures Ei = (E i,≤i,#i,λi) pre-
serving their orders and labellings while introducing conflicts among events of different members of
the family; it is defined as the event structure (

⊎
i∈I E i,≤,#,λ) where, writing ιi : E i →

⊎
i∈I E i for the

injections, the following hold:

ιie≤ ι je′ ⇐⇒ i = j & e≤i e′ ιie#ι je′ ⇐⇒ i 6= j ∨ (i = j & e#ie′) λ (ιie) = λi(e)

In particular we write

E0 +E1 = ∑
i∈{0,1}

Ei and ∑
i∈I

E = ∑
i∈I

Ei where Ei = E for all i ∈ I.

Lemma 2. If E0,E1 are event structures and {Ei}i∈I is a family of event structures then

E0⊗E1 and ∑
i∈I

Ei are event structures.

U. de’ Liguoro, H. Melgratti, E. Tuosto 5

Definition 2 (Configuration domain). If E = (E,≤,#,λ) is an event structure a set of events x ⊆ E is a
configuration if

1. e≤ e′ & e′ ∈ x =⇒ e ∈ x (x is downward closed)

2. ∀e,e′ ∈ x. ¬(e#e′) (x is consistent)

The domain of configurations of E is the poset D(E)= (D(E),⊆) where D(E)= {x⊆E | x a configuration}.
We say that x ∈ D(E) is maximal if it is such in D(E): Cmax(E) is the set of maximal configurations.

Being conflict-free and maximal, configurations in Cmax(E) correspond to branches of events of E .

3 Well-formedness by Typing

We formalise global views of choreographies as g-choreographies [9, 13]. Although we maintain the
original syntax, we provide a new semantics of g-choreographies based on event structures. This is
instrumental to identify a simple notion of well-formedness that can be statically checked.

3.1 Global Choreographies

Definition 3 introduces global choreographies. The syntax of a g-choreography is given by the grammar
below that we borrow from [13].

Definition 3 (Global Choreographies). The set G of global choreographies (g-choreographies for short)
consists of the terms G derived by the grammar

G ::= 0 empty (6)∣∣ A m−→B interaction (7)∣∣ G;G′ sequential (8)∣∣ G | G′ parallel (9)∣∣ G + G′ choice (10)

such that A 6= B in interactions (7) We let P(G) be the set of participants occurring G.

Besides the empty choreography 0, the syntax of Definition 3 allows us to specify choreographies
whose basic elements are interactions A

m−→B which represent that participant A sends message m to
participant B, which is supposed to receive it. Finally, gr-choreographies can be composed sequentially,
in parallel, and non-deterministically. The syntax in [13] encompasses iterative g-choreographies which,
for simplicity, for simplicity we drop. Adding iteration can be done following standard techniques at the
cost of a substantial increase of the technical complexity.

Example 3. The term in (2) in Section 1 is a g-choreography as well all the examples in Section 1.

We now give the semantics of g-choreographies in terms of event structures. To this purpose, note that
not every G is “meaningful” because G can specify protocols where the behaviour of some participants,
say B, depends on choices made by others that are not properly propagated to B. The following example
illustrates this.

Example 4. The g-choreography G=A
m−→C;B m−→C + A

n−→C;B n−→C specifies a protocol where A decides
weather to send m or n to C. In either case B should mimic A and send the same message to C. However,
in a distributed implementation of this protocol B is oblivious of the decision of A; hence, e.g., B could
send message m while A decided to send message n.

6 Refinable Choreographies

To mitigate the problem above, we give well-formedness conditions that rule out meaningless g-
choreographies. We start with well-branchedness.

Definition 4 (Well-branchedness). Two event structures E0 and E1 are well-branched (in symbols wb(E0,E1))
if E0 = ε ⇐⇒ E1 = ε and, for E = E0 +E1 = (E,≤,#,λ) the following two conditions hold:

determined choice: ∀B ∈P : ∀e,e′ ∈min(E � B) : e#e′ =⇒ λ (e) 6= λ (e′)

unique selector: ∃A ∈P : λ (min(E � A))⊆ {l ∈L ! ∣∣ sbj l = A} &

∀B 6= A ∈P : λ (min(E � B))⊆ {l ∈L ? ∣∣ sbj l = B}

We dub active the unique participant A satisfying the second condition and passive the others.

Well-branchedness is akin to what happens in behavioural types, where these conditions enforce
choice determinacy. Namely, each choice is determined by a unique participant, dubbed selector, which
starts to send messages to the others and that any non-selector participant becomes aware of the choice
taken by the selector just because of the messages received on a branch.

Also the parallel composition of g-choreographies is subject to some conditions. As observed in [13],
“confusion” may arise when different threads of participants exchange a same message: the message
meant to be received by thread is received by the other. If this happens there is a violation of the causal
order of the events. We therefore re-cast the notion of well-forkedness in [13] in terms of event structures.

Definition 5 (Well-forkedness). Two event structures E = (E,≤,#,λ) and E ′ = (E ′,≤,#′,λ ′) are well-
forked (in symbols w f (E ,E ′)) if λ (E)∩λ ′(E ′) = /0.

Definition 6 (Sequential composition). Let E , E ′ be event structures and

(E ′′,≤′′,#′′,λ ′′) = E ⊗ ∑
x∈Cmax(E)

E ′x

where the structures E ′x = (Ex,≤x,#x,λx) are disjoint copies of E ′, then

seq(E ,E ′) = (E ′′,≤′′ ∪
⋃

x∈Cmax(E)

{(e,e′) ∈ x×Ex
∣∣ sbj λ

′′(e) = sbj λ
′′(e′)},#′′,λ ′′).

The intuition of the definition of seq(E ,E ′) is that any branch x ∈ Cmax(E) of E is concatenated to
a (pairwise incompatible) copy of E ′x , where events in E cause those of E ′x with labels having the same
subject. Admittedly, in the context of Definition 7 this is unnecessarily abstract, since an event structure
E interpreting a g-choreography is finite, and hence Cmax(E) and any of its elements are such: hence any
x ∈ Cmax(E) includes a finite subset of maximals w.r.t. ≤E . However the definition applies to infinite
structures as well, that will be necessary when considering recursion in our planned work.

Lemma 5. If E ,E ′ are event structures, then seq(E ,E ′) is such.

We can now give a denotational semantics of g-choreographies. We require our semantics to be
defined only on g-choreographies amenable of being realised by distributed components satisfying the
following requirements:

• no extra components: each component corresponds to a uniquely participant of the g-choreography

• no extra communications: each communication among the components uniquely corresponds to
some communication events of the (semantics of the) g-choreography

These requirements impose that the communication behaviour of a realisation of a g-choreography faith-
fully reflects the communication events of the g-choreography.

U. de’ Liguoro, H. Melgratti, E. Tuosto 7

Definition 7 (Semantics). Let G be a g-choreography. The semantics [[G]] of G is the partial mapping
assigning an event structure to G according to the following inductive clauses:

[[0]] = ε

[[A
m−→B]] = ({e1,e2},{e1 < e2}, /0,{e1 7→ AB!m, e2 7→ BA?m})

[[G;G′]] = seq([[G]], [[G′]])

[[G | G′]] =

{
[[G]]⊗ [[G′]] if w f ([[G]], [[G′]])

⊥ otherwise

[[G + G′]] =

{
[[G]]+ [[G′]] if wb([[G]], [[G′]])

⊥ otherwise

where if either [[G]] or [[G′]] is ⊥, then seq([[G]], [[G′]]), [[G]]⊗ [[G′]] and [[G]] + [[G′]] are all equal to ⊥.
Finally we say that G is well-formed if [[G]] 6=⊥.

We say that a g-choreography G is well-formed when each choice subterm of G is well-branched and
each parallel subterm of G is well-forked.

Example 6. Let us spell out the semantics of the g-choreography G=C
md−−→S + C

req−−→S;S stats−−→C;S done−−→C

obtained by the refinement (3) (cf. Section 1) with the further refinement of C
md
999K S with its ground coun-

terpart C md−−→S. By Definition 7, [[G]] is defined if wb([[C md−−→S]], [[C
req−−→S;S stats−−→C;S done−−→C]]) holds true.

We now verify that this is the case. By definition, we have:

[[C
md−−→S]] =

CS!md

CS?md

and [[C
req−−→S;S stats−−→C;S done−−→C]] =

CS!req

CS?req

SC!stats

SC?stats

SC!done

SC?done

The sum operation on event structures introduces conflicts between the events in [[C
md−−→S]] and those in

[[C
req−−→S;S stats−−→C;S done−−→C]], hence:

E = [[C
md−−→S]]+ [[C

req−−→S;S stats−−→C;S done−−→C]] =

CS!md CS!req

CS?md CS?req

SC!stats

SC?stats

SC!done

SC?done

#

(recall that conflicts are hereditary, hence it is enough to put only minimal events in conflict). Now we
look at the projections on C and on S of E :

[[G]] � C=

CS!md CS!req

SC?stats

SC?done

#

and [[G]] � S=

CS?md CS?req

SC!stats

SC!done

#

8 Refinable Choreographies

where in E � C the minimal events are in conflict because they are in conflict in E by construction and in
[[G]] � S they are in conflict because in E the events inherit previous conflict. It is easy to verify that the
conditions of Definition 4 are therefore verified.

Example 7. Recall the g-choreography (4) in Section 1 which we rewrite as Gerr = G + G′ where

G= C
md−−→B;B md−−→S and G′ = C

req−−→S;S done−−→C

Let us show that [[Gerr]] =⊥. In fact,

[[G]] =

CB!md

CB?md

BS!md

BS?md

and [[G′]] =

CS!req

CS?req

SC!done

SC?done

hence [[G]]+ [[G′]] =

CB!md

CB?md

BS!md

BS?md

CS!req

CS?req

SC!done

SC?done

#

It is easy to check that the determined choice condition of Definition 4 does not hold for B.

3.2 Typing well-formedness

By Definition 7, non-wellformed g-choreographies G are meaningless, i.e. [[G]] = ⊥. However, a direct
inspection of the event structure [[G]] is too expensive to check that [[G]] 6= ⊥. Also, it is hard to see
how to extend the semantics to refinable communications, as their intended meaning is an infinite set of
possible realisations by concrete g-choreographies. To circumvent this difficulty we formalise sufficient
conditions for well-formedness via a typing system.

Our typing discipline assigns to a g-choreography type 〈φ ,Λ〉 which is a pair of sets of labels. Intu-
itively, φ ⊆L and Λ ⊆L are respectively the labels of the first and last events in the g-choreography.
Our judgements have the form

Π ` G : 〈φ ,Λ〉

and their intended meaning is: the g-choreography G has a defined semantics and it has type 〈φ ,Λ〉 under
the assumption that its participants are those in Π⊆P .

In the following we illustrate the typing rules, by defining side conditions, explaining the notation,
and relating the rules to the semantics of choreographies in Section 3. Fig. 1 collects all the rules for
convenience.

Interaction Define the mappinĝ : 2L →P → 2L by L̂(A) = {l ∈ L | sbj l = A}. Then

L =
⋃

A∈P
L̂(A)

so that we can see any L⊆L as a family of sets of (labels of) actions indexed over P . Note that if L is
finite then L̂(A) 6= /0 for finitely many A. Now, inspecting the rule for interaction:

φ = Λ = {AB!m,AB?m}

{A,B} ` A m−→B : 〈φ ,Λ〉
T-INT

U. de’ Liguoro, H. Melgratti, E. Tuosto 9

/0 ` 0 : 〈 /0, /0〉
T-EMP

φ = Λ = {AB!m,AB?m}

{A,B} ` A m−→B : 〈φ ,Λ〉
T-INT

Π1 ` G1 : 〈φ1,Λ1〉 Π2 ` G2 : 〈φ2,Λ2〉

Π1∪ Π2 ` G1;G2 : 〈φ1∪ (φ2−Π1),Λ2∪ (Λ1−Π2)〉
T-SEQ

Π1 ` G1 : 〈φ1,Λ1〉 Π2 ` G2 : 〈φ2,Λ2〉 Π1∩Π2 = /0

Π1∪Π2 ` G1 | G2 : 〈φ1∪φ2,Λ1∪Λ2〉
T-PAR

Π ` G1 : 〈φ1,Λ1〉 Π ` G2 : 〈φ2,Λ2〉 φ1 ./Π φ2

Π ` G1 + G2 : 〈φ1∪φ2,Λ1∪Λ2〉
T-CH

Figure 1: Typing rules for g-choreographies.

we see that {A,B}=P(A
m−→B); also we know that A m−→B has a defined semantics (recall that P(G) are

the participant occurring G):

[[A
m−→B]] = ({e1,e2},{e1 < e2}, /0,{e1 7→ AB!m, e2 7→ BA?m}) hence

φ̂(A) = Λ̂(A) = {AB!m}= min([[A m−→B]] � A) and φ̂(A) = Λ̂(B) = {BA?m}= min([[A m−→B]] � B)

The distinction among minimal and maximal elements in a singleton poset is clearly immaterial; it be-
comes sensible in case of the subsequent rules.

Sequential composition If L⊆L and Π⊆P then set L−Π = {l ∈ L | sbj l 6∈Π}. Then the rule is:

Π1 ` G1 : 〈φ1,Λ1〉 Π2 ` G2 : 〈φ2,Λ2〉

Π1∪ Π2 ` G1;G2 : 〈φ1∪ (φ2−Π1),Λ2∪ (Λ1−Π2)〉
T-SEQ

By induction if [[Gi]] = Ei 6= ⊥ for i = 1,2, hence [[G1;G2]] = seq([[G1]], [[G2]]) is defined by definition.
Let Ei = [[Gi]] and, let for each indexed over x in the set of maximal configurations of E1 Cmax(E1), Ex be
disjoint event structures isomorphic to E2. Then by definition, the order relation ≤seq of seq([[G1]], [[G2]])
is the relation;

≤1 ∪
⋃

x∈Cmax(E1)

(
≤x ∪ {(e1,e2) ∈ x×Ex

∣∣ sbj λ1(e) = sbj λx(e2)}
)

where ≤x is the order relation of Ex, and λx(e2) = λ2(e2) by construction. If e is minimal w.r.t. ≤seq

then either it is such w.r.t. ≤1, or e ∈ Ex it is minimal w.r.t. ≤x and sbj λ1(e′) 6= sbj λx(e) for all
maximal e′ ∈ E1. If we consider the projection [[G1;G2]] � A for any participant A of G1;G2, then by
definition all event labels have the same subject A. So if A ∈P(G1) then each maximal configuration of
[[G1]] has an event whose label has subject A, hence min([[G1;G2]] � A) are exactly the minimal events in

10 Refinable Choreographies

min(E1 � A). Otherwise, min([[G1;G2]] � A) = min(E2 � A). By induction we know that Πi = P(Gi) and
φ̂i(A) = min(Ei � A). Hence

min([[G1;G2]] � A) = min(E1 � A)∪{e ∈min(E2 � A) | A 6∈P(G1)}
= φ̂1(A)∪ (φ̂2−Π1(A))

= (̂φ1∪ (φ2−Π1))(A)

where of course either φ̂1(A) or φ̂2−Π1(A) must be empty. Similarly we get (̂Λ2∪ (Λ1−Π2))(A) =
max([[G1;G2]] � A).

Example 8. Consider typing C
req−−→S;S done−−→C; then we have:

φ1 = Λ1 = {CS!req,CS?req}

{C,S} ` C req−−→S : 〈φ1,Λ1〉

φ2 = Λ2 = {SC!done,SC?done}

{C,S} ` S done−−→C : 〈φ2,Λ2〉

{C,S} ` C req−−→S;S done−−→C : 〈φ1,Λ2〉

because {C,S}∪{C,S}= {C,S}, φ1∪(φ2−{C,S})= φ1 since φ2−{C,S}= /0, and Λ2∪(Λ1−{C,S})=
Λ2 as Λ1−{C,S}= /0. Similarly, typing C

md−−→B;B md−−→S we obtain:

φ3 = Λ3 = {CB!md,CB?md}

{C,B} ` C md−−→B : 〈φ3,Λ3〉

φ4 = Λ4 = {BS!md,BS?md}

{B,S} ` S done−−→C : 〈φ4,Λ4〉

{B,C,S} ` C md−−→B;B md−−→S : 〈φ5,Λ5〉

where

φ5 = φ3∪ (φ4−{C,B}) = φ3∪{BS?md} = {CB!md,CB?md,BS?md} and
Λ5 = Λ4∪ (Λ3−{B,S}) = Λ4∪{CB!md} = {CB!md,BS!md,BS?md}.

Parallel composition The rule is:

Π1 ` G1 : 〈φ1,Λ1〉 Π2 ` G2 : 〈φ2,Λ2〉 Π1∩Π2 = /0

Π1∪Π2 ` G1 | G2 : 〈φ1∪φ2,Λ1∪Λ2〉
T-PAR

By induction we may suppose that, for i= 1,2, Πi equals P(Gi) and [[Gi]] = Ei 6=⊥. Hence, the condition
Π1∩Π2 = /0 implies that λ1(E1)∩λ2(E2) = /0, where E i and λi are the carrier and the labeling mapping
of Ei respectively, so that [[G1 | G2]] = [[G1]]⊗ [[G2]] is defined. Again by induction, for all participants A
of Gi we have that:

φ̂i(A) = min([[Gi]] � A) and Λ̂i(A) = max([[Gi]] � A)

By definition of the tensor product, we know that ≤E1⊗E2 is just ≤E1 ∪ ≤E2 , which is a disjoint union
(and the same holds of the #E1⊗E2 relation). By observing that

φ̂1∪φ2(A) = {l ∈ φ1∪φ2 | sbj l = A}= {l ∈ φ1 | sbj l = A}∪{l ∈ φ2 | sbj l = A}= φ̂1(A)∪ φ̂2(A)

and similarly that Λ̂1∪Λ2(A) = Λ̂1(A)∪ Λ̂2(A), we conclude that, for all participants A of G1 | G2:

φ̂1∪φ2(A) = min([[G1 | G2]] � A) and Λ̂1∪Λ2(A) = max([[G1 | G2]] � A).

U. de’ Liguoro, H. Melgratti, E. Tuosto 11

Choice Two sets of labels U,V ⊆L are output uniform if U ∩V = /0 and U ∪V ⊆L !; likewise, U and
V are input uniform if U ∩V = /0 and U ∪V ⊆L ?. Then the rule for typing choice is:

Π ` G1 : 〈φ1,Λ1〉 Π ` G2 : 〈φ2,Λ2〉 φ1 ./Π φ2

Π ` G1 + G2 : 〈φ1∪φ2,Λ1∪Λ2〉
T-CH

where the condition φ1 ./Π φ2 is defined by the clauses:

1. there is a unique A ∈Π such that φ̂1(A) and φ̂2(A) are output uniform and both non-empty;

2. for all B 6= A ∈Π, φ̂1(B) and φ̂2(B) are input uniform and φ̂1(B) = /0 if and only if φ̂2(B) = /0.

By induction, for i = 1,2 [[Gi]] 6= ⊥, the participantsof Gi are Π and φ̂i(R) = min(Ei � R) and Λ̂i(R) =
max(Ei � R) for all R ∈ Π. Let [[Gi]] = Ei = (E i,≤i,#i,λi) and E = E0 +E1. By condition 1 above, and
remembering the identification of e with λi(e), we have that φ̂i(A) = min(Ei � A) 6= /0 for both i = 1,2,
so that E0,E1 6= ε .

Again by 1, we know that A is active in both Ei, since min(E1 � A) and min(E2 � A) are output
uniform, while condition 2 implies that all B ∈ Π \A are passive, since min(Ei � B) are input uniform.
We conclude that wb(E0,E1) and hence that [[G1 +G2]] 6=⊥. Now that φ̂1∪φ2(R) = min([[G1 +G2]] � R)

and Λ̂1∪Λ2(R) = max([[G1 +G2]] � R) for all R ∈P(G1 +G2) follows by induction.

Example 9. By rule T-CH we can type e.g.

φ1 = Λ1 = {CS!req,CS?req}

{C,S} ` C req−−→S : 〈φ1,Λ1〉

φ6 = Λ6 = {CS!done,CS?done}

{C,S} ` C done−−→S : 〈φ6,Λ6〉

{C,S} ` C req−−→S + C
done−−→S : 〈φ1∪φ2,Λ1∪Λ2〉

since condition φ1 ./{C,S} φ6 holds, being C the unique participant in {C,S} such that φ̂1(C) and φ̂6(C)

are output uniform, and the remaining S is such that φ̂1(S) and φ̂6(S) are input uniform. However

none of the following are typable; recall that {C,S} ` C req−−→S : 〈φ1,Λ1〉, {C,S} ` S
done−−→C : 〈φ2,Λ2〉 and

{C,B} ` C md−−→B : 〈φ3,Λ3〉. Then:

G1 ≡ C
req−−→S + C

req−−→S: this is because φ̂1(C) cannot be disjoint from itself;

G2 ≡ C
req−−→S + S

done−−→C: in this case we have that neither φ̂1(C)∪ φ̂2(C) = {CS!req,SC?done} nor
φ̂1(S)∪ φ̂2(S) = {CS?req,SC!done} are output uniform;

G3 ≡ C
req−−→S + C

md−−→B: because {C,S} 6= {C,B}.

A more complex case is the following (continuing example 8):

φ1 = Λ1 = {CS!md,CS?md}

{C,S} ` C md−−→S : 〈φ1,Λ1〉 {C,S} ` C req−−→S;S done−−→C : 〈φ2,Λ3〉

{C,S} ` C md−−→S + C
req−−→S;S done−−→C : 〈φ1∪φ2,Λ1∪Λ3〉

because C is the unique participant in {C,S} such that φ̂1(C) and φ̂2(C) are output uniform, and the
remaining S is such that φ̂1(S) and φ̂2(S) are input uniform, namely condition φ1 ./{C,S} φ2 is satisfied.

12 Refinable Choreographies

On the other hand the choreography C
md−−→B;B md−−→S + C

req−−→S;S done−−→C is not typeable because know-
ing from example 8 that

{B,C,S} ` C md−−→B;B md−−→S : 〈φ6,Λ6〉

we have that {B,C,S} 6= {C,S}, so that rule T-CH doesn’t apply.

In summary we have proved the following result.

Theorem 10 (Soundness). If Π ` G : 〈φ ,Λ〉 is derivable then [[G]] 6=⊥, Π = P(G), and

φ̂(A) = min([[G]] � A) and Λ̂(A) = max([[G]] � A)

holds for all A ∈Π.

Corollary 11. If G is a typable g-choreography then G is well-formed. Moreover a typable G has exactly
one typing Π ` G : 〈φ ,Λ〉.

Our typing system is not complete. For instance, the g-choreography A
m−→B | A m−→C is well-formed

but it cannot be typed since the rule T-PAR cannot be applied since A occurs on both sides of the parallel.
In fact, this is the only obstacle to attain completeness and could be removed by tracing in the types not
only the minimal and maximal communications, but also the communications of threads.

Lemma 12. If Π ` G : 〈φ ,Λ〉 is derivable then, for all x ∈ Cmax([[G]]) and A ∈P , either max(x � A) is
empty or it is a singleton.

Proof. By induction on the derivation of Π ` G : 〈φ ,Λ〉 and case analysis of the last typing rule applied
observing that rule T-PAR requires to partition the context in two disjoint sub-contexts.

We remark that such a completeness result woul be basically due to the strictness of the conditions of
Definition 4. In fact, more general notions of well-branchedness would break the completeness theorem.
For instance, we can weaken the conditions of Definition 4 as follows.

• The projections on the event structures of the two branches may either be disjoint inputs (as per
the current determined choice condition) or be isomorphic

• there is a unique selector (as currently required in Definition 4) and any other participant whose
minimal actions are output have isomorphic projections on the two branches.

With this change, the g-choreography G = G1 + G2 where G1 = A
m−→B;C x−→B and G2 = A

n−→B;C x−→B
would become well formed. However, our system cannot type G since both A and C are selectors in
the choice of G. Notice that G1 violates the unique selector condition of Definition 4, while it does not
violate the more general conditions above since C behaves the same in G1 and G2.

4 Refinement

To the grammar of Definition 3 we add a new construct that we dub refinable action:

G ::= · · · | A
m1...mn
999999K B1. . .Bn refinable action

where m=m1, . . . ,mn and B= B1, . . . ,Bn are non-empty tuples of the same lenght of messages and par-
ticipants such that the participants in B are pairwise distinct. Call refinable a g-choreography generated
by the so extended grammar; a g-choreography is ground or non-refinable if it is derivable only with the
productions of the grammar in Definition 3.

U. de’ Liguoro, H. Melgratti, E. Tuosto 13

Definition 8 (Refines relation). A ground g-choreography G refines A
m
99K B, written G ref A

m
99K B, if

1. [[G]] = E 6=⊥;

2. sbj min(E) = {A}, by which we say that A is the (unique) initiator of G;

3. letting m = m1, . . . ,mn and B = B1, . . . ,Bn, for all x ∈ Cmax(E) and 1 ≤ h ≤ n there exists C ∈
P(G) such that CBh?mh ∈max(x � Bh).

In words, G refines A
m
99K B if G is meaningful, that is well-formed, with a unique participant A

initiating the interaction by some (necessarily distinct) output actions, and such that in all branches,
namely maximal configurations x of [[G]], each Bh eventually inputs mh.

Example 13. We list some examples and non-examples of the refinement relation:

A
m−→B ref A

m
99K B, A

m−→B + A
n−→B;A m−→B ref A

m
99K B, and A

m−→B | C n−→B ref A
m
99K B

Our next step is to devise sufficient conditions for substituting the refinement action A
m
99K B by some

of its ground refinemets G′ in a context of the shape G[A
m
99K B] while preserving well-formednes of the

resulting g-choreography G[G′]. In view of the previous section, an eligible tool is the typing system.
Hereafter, let G′[·] be a ground g-choreography with a hole [·], namely a placeholder such that, if replaced
by a ground G the resulting G′[G] is a ground g-chreography.

In fact, observe that, barred for the axioms, the shape of the typing judgement Π ` G : 〈φ ,Λ〉 in the
conclusion of each rule only depends on contexts and types in the premises premises. Combining this
remark with Theorem 10, we get the following corollary.

Corollary 14. Suppose that Π′ ` G′[·] : 〈φ ′,Λ′〉 is derivable in the type system extended by the axiom
Π ` [·] : 〈φ ,Λ〉. Then for all G such that Π ` G : 〈φ ,Λ〉 is derivable, the judgment Π′ ` G′[G] : 〈φ ′,Λ′〉 is
derivable, so that [[G′[G]]] 6=⊥.

To put this corollary to use, we have to define an axiom schema for deducing Π ` A m
99K B : 〈φ ,Λ〉

such that if Π ` G : 〈φ ,Λ〉 is derivable for some ground G, then G refines A
m
99K B. To do that we need a

preliminary lemma.

Lemma 15. Let [[G]] 6= ε be ground and well-formed. If x ∈ Cmax([[G]]) then

1. /0 6= min(x)⊆L ! and /0 6= max(x)⊆L ?;

2. sbj x = P(G).

Proof. By induction over G. If G≡ A
m−→B then [[G]] = {AB!m< AB?m} an the (1)-(2) are immediately

verified.
If G≡G1 | G2 we have that [[G]] = [[G1]]⊗ [[G2]] by well-formednes. If either of the [[Gi]] is ε the thesis

follows immediately by induction, since the other one has to be 6= ε . Suppose that [[Gi]] 6= ε for both i =
1,2. By definition of⊗we have that for some non empty xi ∈Cmax([[Gi]]) it is x= x1∪x2, from which part
(1) of the lemma follows by induction. Similarly if y ∈ Cmax([[G]]) then y = y1∪ y2 for yi ∈ Cmax([[Gi]]),
hence by induction sbj xi = sbj yi for i = 1,2, so that sbj x = sbj x1∪ sbj x2 = sbj y1∪ sbj y2 = sbj y and
we conclude that (2) holds.

If G≡ G1;G2 then by definition of [[G]] = seq([[G1]], [[G2]]) any x ∈ Cmax([[G]]) either x ∈ Cmax([[G1]]),
or x ∈ Cmax([[G2]]) or there exist x1 ∈ Cmax([[G1]]) and x2 ∈ Cmax([[G2]]) with x = x1 ∪ x2 and min(x) =
min(x1), max(x) = max(x2). Now (1) follows by induction. To see (2) suppose that y ∈ Cmax([[G]]) and,
toward a contradiction, assume that sbj x 6= sbj y: this is only possible if say x∈Cmax([[G1]])\Cmax([[G2]])

14 Refinable Choreographies

and y ∈ Cmax([[G2]]) \Cmax([[G1]]), since otherwise if e.g. x = x1 ∪ x2 as above then sbj y = sbj x2 by
induction, but then by definition of seq([[G1]], [[G2]]) there is a pair of events e1 ∈ x1 and e2 ∈ x2 with
sbj λ1(e1) = sbj λ2(e2) so that by construction e1 ≤[[G]] e2. This implies that there exist e3 ∈ y s.t.
sbj λ2(e3) = sbj λ2(e2) so that e1 ≤[[G]] e3 contradicting the maximality of y ∈ Cmax([[G]]).

But if x∈Cmax([[G1]])\Cmax([[G2]]) and y∈Cmax([[G2]])\Cmax([[G1]]) then x 6= y and x∪y∈Cmax([[G]])
contradicting the hypothesis that x,y ∈ Cmax([[G]]).

If G ≡ G1 + G2 and it is well-formed then P(G1) = P(G2) = P(G) and there exists a unique
active A ∈P(G) in [[G]] = [[G1]]+ [[G2]] that is the subject of all events in min(x) for any x ∈ Cmax([[G]]).
This also implies that [[G]] 6= ε , so that at least one of the two [[Gi]] is such. By induction we have
immediately (1). To prove (2) let y∈Cmax([[G]]). By definition of [[G1]]+[[G2]] we have that Cmax([[G]]) =
Cmax([[G1]])∪Cmax([[G2]]), so that either x and y belong to the same Cmax([[Gi]]), then sbj x = sbj y by
induction, or say x∈Cmax([[G1]]) and y∈Cmax([[G2]]): then by induction sbj x=P(G1) =P(G2) = sbj y
and we are done.

Lemma 16. Let A
m
99K B be a refinable action. If Π⊆P and φ ,Λ⊆L are such that

1. sbj φ = sbj Λ = Π,

2. sbj (φ ∩L !) = {A}, and

3. assuming B= B1, . . . ,Bn and m=m1, . . . ,mn, for all 1≤ h≤ n there exists C such that Λ̂(Bh) =
{CBh?mh}

then Π ` G : 〈φ ,Λ〉 implies G ref A
m
99K B.

Proof. By Theorem 10, we know that Π ` G : 〈φ ,Λ〉 implies [[G]] 6=⊥; on the other hand the hypotheses
imply that none among Π,φ and Λ is empty, hence G 6≡ 0. Recall that, by the same theorem, φ̂(C) =
min([[G]] � C) and Λ̂(C) = max([[G]] � C) for all C ∈Π = P(G).

Let x ∈ Cmax([[G]]). We have /0 6= min(x) ⊆ φ ∩L ! by the above and by Lemma 15.1, hence
sbj (φ ∩L !) = {A} implies sbj min(x) = {A}, and therefore A is the initiator of G.

On the other hand, by the hypothesis that for all Bh ∈ B there exists C s.t. Λ̂(Bh) = {CBh?mh}
an Theorem 10 we infer that {CBh?mh} = Λ̂(Bh) = max([[G]] � Bh) for all Bh ∈ B. Therefore there
exists y ∈ Cmax([[G]]) such that CBh?mh ∈ y∩Λ; by Lemma 15.2, sbj x = sbj y, hence Bh ∈ sbj x and so
x̂(Bh) 6= /0. This and the the typability of G imply that x̂(Bh) is a singleton by Lemma 12: from this and
the fact that max(x � Bh)⊆ Λ it follows that max(x � Bh) = Λ̂(Bh) = {CBh?mh}.

In view of Lemma 16 it is sound to extend the type system to refinable choreographies by adding to
the rules in Figure 1 the following axiom schema:

sbj φ = sbj Λ = Π sbj (φ ∩L !) = {A} ∀h∃C ∈Π. Λ̂(Bh) = {CBh?mh}

Π ` A
m1...mn
999999K B1. . .Bn : 〈φ ,Λ〉

T-REF

Remark 17. Given any refinable action A
m
99K B ≡ A

m1...mn
999999K B1. . .Bn there exists a typing context

Π0,φ0,Λ0 such that Π0 `A
m
99K B : 〈φ0,Λ0〉 is an instance of rule T-REF. Indeed taking Π0 = {A,B1, . . . ,Bn}

and φ0 = Λ0 = {AB1!m1,AB1?m1, . . . ,ABn!mn,ABn?mn} it is easy to check that the conditions of
rule T-REF are satisfied. On the contrary the same conditions do not ensure that there is a G that
is typable in the given context: let Π′ = {A,B,C,D} and φ ′ = Λ′ = {AB!m,AB?m,CD?m}, then
Π′ ` A m

99K B : 〈φ ′,Λ′〉, but there exists no ground G such that Π′ ` G : 〈φ ′,Λ′〉.

U. de’ Liguoro, H. Melgratti, E. Tuosto 15

Example 18. The refinements in the above proof are the simplest, but less interesting ones; to see more
significant examples let us first generalize Corollary 14 to the case of contexts G[·]1 . . . [·]n, with n distinct

holes. Suppose that Πi ` Ai
mi
99K Bi : 〈φi,Λi〉 are the instances of T-REF that have been used in deriving:

Π ` G[A1
m1
999K B1]1 . . . [An

mn
999K Bn]n : 〈φ ,Λ〉

If Πi ` Gi : 〈φi,Λi〉 are derivable for ground Gi then Π ` G[G1]1 . . . [Gn]n : 〈φ ,Λ〉 is derivable, and hence
G[G1]1 . . . [Gn]n is well-formed by Theorem 10.

Resuming from the Introduction and adapting from Example 9 we have:

T-REF

Π ` C md
999K S : 〈φ1,Λ1〉

T-REF
Π ` C

req
999K S : 〈φ2,Λ2〉

T-REF

Π ` S done
9999K C : 〈φ3,Λ3〉

Π ` C
req
999K S;S

done
9999K C : 〈φ2,Λ3〉

T-CH

Π ` C md
999K S + C

req
999K S;S

done
9999K C : 〈φ1∪φ2,Λ1∪Λ3〉

(11)

where Π = {C,S}, φ1 = Λ1 = {CS!md,CS?md}, φ2 = Λ2 = {CS!req,CS?req} and φ3 = Λ3 =

{SC!done,SC?done}. From Example 9 we know that we can derive Π ` C md−−→S : 〈φ1,Λ1〉, Π ` C req−−→S :

〈φ2,Λ2〉 and Π : 〈φ3,Λ3〉; hence we conclude that Π ` C md−−→S + C
req−−→S;S done−−→C : 〈φ1∪φ2,Λ1∪Λ3〉 is

derivable, and so semantically well-formed.

Consider now the g-choreography C
md−−→B;B md−−→S, which can be checked to refine C

md
999K S: replac-

ing the former to the latter in the context C
md
999K S + C

req−−→S;S done−−→C does not give a well-formed chore-
ography, and indeed Π 6` C md−−→B;B md−−→S : 〈φ1,Λ1〉. However it suffices to take Π′ = Π∪{B}= {C,S,B}
and φ ′1 = φ1 ∪{CB?md}, Λ′1 = Λ1 ∪{BS!md} to have that Π′ ` C md−−→B;B md−−→S : 〈φ ′1,Λ′1〉 is derivable

and Π′ ` C md
999K S : 〈φ ′1,Λ′1〉 is an instance of T-REF. Incidentally we note that Π′,φ ′1,Λ

′
1 are computable

from C
md−−→B;B md−−→S.

Still we cannot freely replace Π′ ` C md
999K S : 〈φ ′1,Λ′1〉 in the derivation (11), because Π′ 6= Π where

the difference is B, making rule T-CH inapplicable. However, by computing the typing context of
C

x−→B;B
req−−→S we obtain Π′ ` C

x−→B;B
req−−→S : 〈φ ′2,Λ′2〉 where φ ′2 = {CB!x,CB?x,BS!rep} and Λ′2 =

{CB?x,BS!rep,BS?rep} we can easily check that Π′ ` C
req
999K S : 〈φ ′2,Λ′2〉 is an instance of T-REF, so

that C x−→B;B
req−−→S refC

req
999K S by Lemma 16. In this case we do not need to further modify the derivation

(11) to deduce Π ` C
req
999K S;S

done
9999K C : 〈φ ′2,Λ′3〉 with Λ′3 = Λ3∪{BS!rep} and then, applying rule T-CH

we eventually obtain a derivation of Π′ ` C md
999K S + C

req
999K S;S

done
9999K C : 〈φ ′1∪φ ′2,Λ

′
1∪Λ′3〉, that is the

typing context in which we can safely replace C md−−→B;B md−−→S to C
md
999K S, C x−→B;B

req−−→S to C
req
999K S and

S
done−−→C to S

done
9999K C.

5 Conclusions & Related Work

We proposed a framework for refining the global views of choreographies. In the context of concur-
rent and distributed systems, refinement methods have received great attention in the 80-90’s. Action
refinement has been studied in different settings by adding refinement combinators to, e.g., process al-
gebras [1], labelled event structures [8] and causal trees [6]. The cornerstone in this line of work is that

16 Refinable Choreographies

actions, considered atomic at a given level of abstraction, are refined into processes or computations,
which are non-atomic at a lower level of abstraction. For instance, a labelled event structure can be
refined into another one by substituting all events that have a particular label by an event structure [8].
Analogously, a term of a process algebra can be refined into another one by replacing all occurrences of
a particular action by a term. A straightforward application of this approach to global choreographies
would suggest to consider a standard language for choreographies, e.g., the one formalised in [13] and
reproduced in Definition 3, and then provide a substitution mechanism for its atomic actions, which in
this setting would be interactions A m−→B. Despite being technically possible, we opted for a generalised
version A

m1...mn
999999K B1. . .Bn that allows for the explicit definition of several participants involved in a

complex, underspecified interaction. In this way, we provide more flexibility for abstraction. Suppose
we would like to state that a participant A is intended to communicate two messages m1 and m2 respec-
tively to B1 and B2 but A is uninterested on the way in which those messages are delivered, e.g., A is
equally satisfied if m1 arrives first to B1 and then B1 sends m2 to A2, or if the flow involves first A2 and
then A1, or else if a (non-specified) broker sends the messages to both receivers. A specification of all be-
haviours described above in terms of binary interactions leave little space for abstraction. This has been
the main motivation for the introduction of refinable interactions. We may have opted for more general
versions of refinable interactions, e.g., by considering multiple senders on the left hand side of the arrow.
We opted for the current presentation because the standard well-formedness condition on global chore-
ographies introduces several limitations on the way in which such abstractions could be implemented,
e.g., they could not be refined as a choices because of the standard constraint about single selectors. We
plan to investigate suitable generalisations on the shape of refinable interactions.

A semantics of g-choreographies in terms of pomsets [12] has been introduced in [9, 13]. Pomsets can
be envisaged as event structures with an empty conflict relation. This semantics captures a more general
notion of well-brancheness than the one considered here. In principle, one could borrow this more
general notion of well-formedness in our framework at the cost of increasing the technical execution.
Despite we associate global choreographies with event structures (as previously done, e.g., in [5] to
give semantics to multi-party session types [10]), we remark that refinement techniques developed for
event structures cannot be straightforwardly lifted to the language of global choreographies because the
semantics of interactions is given in terms of two events. Hence, the refinement of an interaction would
translate into the refinement of a sub-structure instead of a single event. This establishes an interesting
connection with previous work that we plan to investigate further. Along the same lines, the main focus
on previous work on refinement [1, 8, 6] is concerned with the consistency of refinement with respect to
the semantics of the language, i.e., whether refinement preserves behavioural equivalences. Note that we
have left implicit the semantics of refinable interactions, which is given in terms of the set of concrete
realisations that it admits. An interesting line of work that we envisage for future development is whether
the proposed refinement preserves equivalences.

The typing of ground g-choreography is unique (cf. Corollary 11). Actually, a simple inspection
of the typing rules in Fig. 1 shows that type inference is trivial for ground g-choreography. This is not
the case for non-ground g-choreographies where a type inference algorithm has to “guess” the types of
refinable actions. We leave type inference open and we will address it in the future.

References

[1] Luca Aceto & Matthew Hennessy (1994): Adding action refinement to a finite process algebra. Information
and Computation 115(2), pp. 179–247.

U. de’ Liguoro, H. Melgratti, E. Tuosto 17

[2] Davide Basile, Pierpaolo Degano, Gian-Luigi Ferrari & Emilio Tuosto (2016): Relating two automata-based
models of orchestration and choreography. JLAMP 85(3), pp. 425 – 446.

[3] Egon Börger (2012): Approaches to modeling business processes: a critical analysis of BPMN, workflow
patterns and YAWL. Software & Systems Modeling 11, pp. 305—-318.

[4] Marco Carbone, Fabrizio Montesi & Hugo Torres Vieira (2018): Choreographies for Reactive Programming.
CoRR abs/1801.08107. Available at http://arxiv.org/abs/1801.08107.

[5] Ilaria Castellani, Mariangiola Dezani-Ciancaglini & Paola Giannini (2019): Event structure semantics for
multiparty sessions. In: Models, Languages, and Tools for Concurrent and Distributed Programming,
Springer, pp. 340–363.

[6] Philippe Darondeau & Pierpaolo Degano (1993): Refinement of actions in event structures and causal trees.
Theoretical Computer Science 118(1), pp. 21–48.

[7] Edsger W. Dijkstra (1976): A Discipline of Programming. Prentice-Hall.
[8] Rob van Glabbeek & Ursula Goltz (1989): Equivalence notions for concurrent systems and refinement of

actions. In: International Symposium on Mathematical Foundations of Computer Science, Springer, pp.
237–248.

[9] Roberto Guanciale & Emilio Tuosto (2016): An Abstract Semantics of the Global View of Choreographies.
In: Interaction and Concurrency Experience, pp. 67–82.

[10] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty Asynchronous Session Types. Journal
of the ACM 63(1), pp. 9:1–9:67. Extended version of a paper presented at POPL08.

[11] Nickolas Kavantzas, Davide Burdett, Gregory Ritzinger, Tony Fletcher & Yves Lafon (2004):
Web Services Choreography Description Language Version 1.0. http://www.w3.org/TR/2004/

WD-ws-cdl-10-20041217.
[12] Vaughan Pratt (1986): Modeling concurrency with partial orders. International Journal of Parallel Program-

ming 15(1), pp. 33–71.
[13] Emilio Tuosto & Roberto Guanciale (2018): Semantics of global view of choreographies. Journal of Logic

and Algebraic Methods in Programming 95, pp. 17 – 40.

http://arxiv.org/abs/1801.08107
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217

	Introduction
	Background
	Well-formedness by Typing
	Global Choreographies
	Typing well-formedness

	Refinement
	Conclusions & Related Work

