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Component-based development is challenging in a distributed setting, for starters considering program-
ming a task may involve the assembly of loosely-coupled remote components. In order for the task
to be fulfilled, the supporting interaction among components should follow a well-defined protocol. In
this paper we address a model for message passing component-based systems where components are
assembled together with the protocol itself. Components can therefore be independent from the proto-
col, and reactive to messages in a flexible way. Our contribution is at the level of the type language that
allows to capture component behaviour so as to check its compatibility with a protocol. We show the
correspondence of component and type behaviours, which entails a progress property for components.

1 Introduction

Code reusability is an important principle to support the development of software systems in a cost-effective
way. It is a key principle in Component-Based Development (CBD) [11], where the idea is to build systems
relying on the composition of loosely-coupled and independent units called components. A component
is a software element that is replaceable and reusable, and that offers a well-defined functionality via an
external interface which encapsulates the implementation (e.g., components range from software packages
that aggregate a set of related functions to web services, just to mention a few).

The motivations behind CBD are, on the one hand, to increase development efficiency and lower the
costs (by building a system from pre-existing components, instead of building from scratch), and on the
other hand, to improve quality of the software for instance to what concerns software errors (components
can be tested over and over again in different contexts). Consider, for example, microservices (see, e.g., [7])
that have been recently adopted by massively deployed applications such as Netflix, eBay, Amazon and
Uber, and that are reusable distributed software units. In such a distributed setting, composing software
elements necessarily involves some form of communication scheme, for instance based on message passing.

In order for the functionality to be achieved, communication among components should follow a well-
defined protocol of interaction, that may be specified in terms of some choreography language like, for
example, WS-CDL [14] or the choreography diagrams of BPMN [13]. A component should be able to
carry out a certain sequence of input/output actions in order to fulfil its role in the protocol. One way
to accomplish this is to implement a component in a way that prescribes a strict sequence of I/O actions,
that should precisely match the actions expected by the protocol. However, this choice interferes with
reusability, since such a component can be used only in an environment that expects that exact sequence of
communication actions. For instance, if a component receives an image and outputs its classification just
once, what will happen if we need to use this component in a context that requires the classification is sent
multiple times?

In contrast, a more flexible design choice inspired in reactive programming is to design components so
that they can respond to external stimulus without any specific I/O sequence. The reactive programming
principle for building such components is to consider that as soon as the data is available, it can be received
or emitted. For example, we can design a component that is able to output a classification after receiving
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an image, as long as required. In such a way, reusability is promoted since such components can be used in
different environments thanks to the flexibility given by the reactive behaviour. However, such a flexibility
at the composition level may be too wild if all components are able to send / receive data as soon as it is
available. Hence, there is the need to discipline the interactions at the level of the environment where the
composition takes place. What if, for example, we have different images that need to be classified and the
classifying component is continuously emitting the result for the first image?

Carbone, Montesi and Vieira [6] proposed a language that supports the development of distributed sys-
tems by combining the notions of reactive components with choreographic specifications of communication
protocols [12]. The proposal considers components that can dynamically send / receive data as soon as it is
available, while considering that an assembly of components is governed by a protocol. Hence, among all
the possible reactions that are supported by the composed components, the only ones that will actually be
carried out are the ones allowed by the protocol. A composition of components defines itself a component
that can be further composed (under the governance of some protocol) also providing a reactive behaviour.
This approach promotes reusability thanks to the flexibility of the reactive behaviour. For instance, by ab-
stracting from the number of supported reactions, e.g., if a component can (always) perform a computation
reacting to some data inputs, then it can be used in different protocols that require such computation to be
carried out a different number of times; by abstracting from message ordering, e.g., if a component needs
some values to perform a computation, it may be used with any protocol that provides them in any order.

Component implementations should be hidden, so it shouldn’t be necessary to inspect the inner workings
in order to asses if it is usable in a determined context for the purpose of off-the-shelf substitution or reuse.
Hence, a component should be characterised with a signature that allows checking its compatibility when
used in a composition. In particular, it must be ensured that each component provides (at least) the behaviour
prescribed by the protocol in which the component participates. Carbone et al. [6] propose a verification
technique that ensures communication safety and progress. However, the approach requires checking the
implementation of components each time the component is put in a different context, i.e., each time that the
component is used “off-the-shelf” we need to check if the reactions supported by the component are enough
to implement its part in the protocol.

In this work we consider a different approach, avoiding the implementation check each time a component
is to be used. Firstly, we introduce a type language that characterises the reactive behaviour of components.
Secondly, we devise an inference technique that identifies the types of components, based on which we
can verify whether the component provides the reactive behaviour required by a context. The motivation
is in tune with reusability: once the component’s type is identified, there is no further need to check the
implementation, because the type is enough to describe “what the component can do”.

Our types specify the ability of components to receive values of a prescribed basic type. Moreover, they
track different kinds of dependencies, for instance that certain values to be emitted always (for each output)
require a specific set of inputs (dubbed per each value dependencies). Our types can also describe the fact
that a component needs to be, in some sense, initialised by receiving specific values before proceeding with
other reactive behaviour (dubbed initial dependencies). Furthermore, our types also identify constraints on
the number of values that a component can send. Finally, we ensure the correctness of our type system by
proving that our extraction procedures are sound with respect to the semantics of the Governed Components
(GC) language [6], considering here the choice-free subset of the GC language and leaving a full account
of the language to future work. Moreover, we ensure that whenever a type of a component prescribes an
action, a component will not be stuck, i.e., it will eventually carry out the matching action.

The rest of the paper is organised as follows. We first present the GC language in Section 2. Then in Sec-
tion 3 we intuitively introduce our type language through a motivating example based on AWS Lambda [2]
where we point out different scenarios that might occur while composing components and how our types al-
low to describe certain behavioural patterns. Section 4 introduces the syntax and the semantics of our types.
Then, we define the type extraction for base components in Section 4.1, whereas the type extraction for
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Components Local Binders Protocol

K ::= [x̃〉 ỹ]{L} (base) L ::= y = f (x̃) G ::= p
`−→ q̃;G (communication)

[x̃〉 ỹ]{G;R;D; r[F ]} (composite) L,L µX.G (recursion)
X (recursion variable)
end (termination)

Role assignments Distribution Binders Forwarders

R ::= p= K D ::= p.x `←− q.y F ::= z← w
R,R D,D F,F

Table 1: Syntax of Governed Components

composite components in Section 4.2. In Section 4.3 we present our results. Section 5 concludes, discusses
related work and gives some future issues. Finally, in order to support the reviewing, we present the proof
sketches in Appendix.

2 Background: Governed Components Language

In this section we briefly introduce the GC language, focusing on the main points that allow to grasp the
essence of the model and to support a self-contained understanding of this paper. We refer the interested
reader to [6] for a full account of the language. The syntax of the (protocol choice-free fragment of the)
GC language is given in Table 1. There are two kinds of components (K): base and composite. Both
kinds interact with the external environment by means of input and output ports exposed as the component’s
interface. Besides of the interface, components are defined by their implementation.

In the case of a base component the implementation is given by the list of local binders ({L}). A local
binder specifies a function, denoted as y = f (x̃), which is used to compute the output values for port y
relying on values received on (input) ports x̃. So, we say that component’s ability to output a value may
depend on the ones received, where instead, components are always able to receive values.We abstract from
the definition of such functions f and assume them to be total. Received values are processed in a FIFO
discipline, so queues are added to the local binders at runtime (noted as y = f (x̃)〈 σ̃ ). Each element (σ ) in
a queue (σ̃ ) is a store defined as a partial mapping from input ports to values (σ̃ = σ1,σ2, . . . ,σk, where in
σ1 the oldest values received are stored, in σ2 the second-oldest values, and so on and so forth up to σk).

The implementation of a composite component, represented by {G;R;D;r[F ]}, is an assembly of sub-
components whose interaction is governed by a protocol (G). The set of subcomponents are given in R
together with their roles in the interaction (e.g., r = K denotes that component K is assigned to role r).
Composite components also specify a list of (distribution) binders (D) that provide an association between
the messages exchanged in the protocol (`) and the ports (x,y) of the components (e.g., p.x `←− q.y states that
a message with a label ` is emitted on port y of the component assigned to role q, and to be received on port
x of the component assigned to role p). Ports are uniquely associated to message labels (`) in such way that
each communication step in the protocol has a precise mapping to a port, i.e., all values emitted on a port
will be carried in messages with the same label and all values received on a port will be delivered in mes-
sages with the same label. Finally, subterm r[F ] is used to specify the externally-observable behaviour: the
(only interfacing) subcomponent responsible for the interaction with the external environment is identified
(by its role r) and the respective connection between ports is provided by forwarders (F). The idea is that
values received on the (input) ports of the composite component are directly forwarded to the (input) ports of
the interfacing subcomponent, and values emitted on the (output) ports of the interfacing subcomponent are
forwarded to the (output) ports of the composite component. For example, the term x′← x is for forwarding



4 Type language

an input, and the term y← y′ is for forwarding an output (x and y are the ports of the composite component).
Protocol specifications prescribe the interaction among a set of parties identified by roles. Communica-

tion term p
`−→ q̃;G specifies that role p sends the message labelled ` to the (nonempty) set of roles q̃, after

which the protocol continues as specified by G. The difference between this work and [6] is the absence of
branching. Then we have terms µX.G and X for specifying recursive protocols. Finally, term end defines
the termination of the protocol.

We now present the operational semantics of the GC in terms of a labelled transition system (LTS). We

denote by K λ−→ K′ that a component K evolves in one computational step to K′, where observations are
captured by labels defined as follows λ ::= x?v | y!v | τ . Transition label x?v represents an input on port x
of a value v, label y!v captures an output on port y of a value v, and label τ denotes an internal move.

The rules that describe the behaviour of components are presented in two parts, addressing base and
composite components separately. We present only the main rules, the full semantics can be found in [6].

L
y!v−→ L′ y ∈ ỹ

[x̃〉 ỹ]{L} y!v−→ [x̃〉 ỹ]{L′}
OutBase

L x?v−−→ L′ x ∈ x̃

[x̃〉 ỹ]{L} x?v−−→ [x̃〉 ỹ]{L′}
InpBase

Table 2: Semantics of base components

Rules OutBase and InpBase that are given in Table 2 capture base component behaviour, and are defined

relying on transitions exhibited by local binders, denoted L λ−→ L′. Rule OutBase states that if local
binders L can exhibit an output of value v on port y, where y is part of the component’s interface, then the
corresponding output can be exhibited by the base component. Rule InpBase follows the same lines.

Notice that the transition of the local binder specifies a final configuration L′ which is accounted for in
the evolution of the base component. We omit here the rules for local binders (see [6]) and provide only an
informal account for them. Essentially, a (runtime) local binder y = f (x̃)〈 σ̃ is always receptive to an input
x?v: if x is not used in the function (x 6∈ x̃) then value v is simply discarded; otherwise, the value is added to
the (oldest) entry in mapping queue σ̃ that does not have an entry for x (possibly originating a new mapping
at the tail of σ̃ ). All local binders in L synchronise on an input, so each local binder will store (or discard)
its own copy of the value. Instead, local binder outputs are not synchronised among them: if a local binder
outputs a value, other local binders will not react. For this to happen, the oldest mapping in queue σ̃ must
be complete (i.e., assign values to all of x̃) at which point function f may be computed, the result which is
then carried in the transition label (i.e., the v in y!v).

We now introduce the rules that capture the behaviour of the composite components, displayed in Ta-
ble 3. Notice that a composite component may itself be used as a subcomponent of another composition (of
a “bigger” component), and base components provide the syntactic leaves. Rules OutComp and InpComp
capture the interaction of a composite component with an external environment, realised by the interfacing
subcomponent. The role assignment r=K captures the relation between component K and role r, which
is specified as the interfacing role (r[F ]). Rule OutComp allows for the interfacing component K to send
a value v to the external environment via one of the ports of the composite component (y). Notice that
the connection between the port of the interfacing component (z) and the port of the composite compo-
nent (y) is specified in a forwarder (F = y← z,F ′). Rule InpComp follows the same lines to model an
externally-observable input. Rule Internal allows for internal actions in a subcomponent (K), where the
final configuration (K′) is registered in the final configuration of the composite component.

Rules OutChor and InpChor capture the interaction among subcomponents of a composite component.
Rule OutChor addresses the case when a component is sending a message to another one. The premises,
together with role assignment p=K, establish the connection among sender component K, the component
port u, sender role p, and message label `. Premise K u!v−−→ K′ says that the sender component (K) can
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K z!v−→ K′ F = y← z,F ′ y ∈ ỹ

[x̃〉 ỹ]{G; r=K,R;D; r[F ]} y!v−→ [x̃〉 ỹ]{G; r=K′,R;D; r[F ]}
OutComp

K z?v−−→ K′ F = z← x,F ′ x ∈ x̃

[x̃〉 ỹ]{G; r=K,R;D; r[F ]} x?v−−→ [x̃〉 ỹ]{G; r=K′,R;D; r[F ]}
InpComp

K τ−→ K′

[x̃〉 ỹ]{G;s=K,R;D; r[F ]} τ−→ [x̃〉 ỹ]{G;s=K′,R;D; r[F ]}
Internal

K u!v−−→ K′ D = q.z `←− p.u,D′ G
p!`〈v〉−−−→ G′

[x̃〉 ỹ]{G;p=K,R;D; r[F ]} τ−→ [x̃〉 ỹ]{G′;p=K′,R;D; r[F ]}
OutChor

K z?v−−→ K′ D = q.z `←− p.u,D′ G
q?`〈v〉−−−→ G′

[x̃〉 ỹ]{G;q=K,R;D; r[F ]} τ−→ [x̃〉 ỹ]{G′;q=K′,R;D; r[F ]}
InpChor

Table 3: Semantics of composite components

perform an output of value v on port u. Premise D = q.z `←− p.u,D′ says that the distribution binders specify
the (unique) relation between port u of sender role p and message label ` (receiver role q and associated

port z are not important here). The last premise G
p!`〈v〉−−−→ G′ realises the component governing by the

protocol, i.e., saying that the communication is only possible if the protocol prescribes it. Namely, the
premise says that the protocol exhibits an output of a value v carried in message ` from role p. The rules
for protocol transitions are given in [6]. We do not present here the rules for the semantics of protocols as
the key idea is that there is a well-defined semantics of protocols. Naturally which semantics has an impact
on our technical development (namely regarding end-point projection in local protocols), but to some extent
can be addressed in a modular way (i.e., up to the existence of the end-point projection). Notice that the
transitions of component K and protocol G specify final configurations K′ and G′ which are accounted for
in the evolution of the composite component.

Rule InpChor is similar, but instead of message sending, it addresses the case when a subcomponent
receives a message from another subcomponent. The premises are equivalent to the ones for Rule OutChor,
but now regard reception. Namely, by saying that receiving component K can exhibit the respective input
transition, that the distribution binder specifies the relation of message label ` with receiver role q and port
z, and that protocol G prescribes the input of a value.

3 Motivating example: microservices for Image Recognition System

In order to further motivate GC and also to introduce our typing approach, we now informally discuss an
example inspired on a microservices scenario [2] that addresses an Image Recognition System (IRS). The
basic idea is that users upload images and receive back the resulting classification. Moreover, users can get
the current running version of the system whenever desired. The IRS is made of two microservices, Portal
and Recognition Engine (RE), that interact according to a predefined protocol.

The task is achieved according to the following workflow: Portal sends the image loaded by a user
to RE to be processed. When RE service finishes its classification, it sends the class as the result of the
classification to Portal. We model the scenario in the GC calculus by assigning to each microservice the
corresponding role and using components to represent them. We assign role Portal to component KPortal
and role RE to component KRE , where KPortal and KRE are base components. Interaction between these two



6 Type language

components is governed by global protocol G, that can be described in the following way:

Portal
image−−−→RE;RE class−−−→Portal

This (the part of G) protocol exactly specifies the workflow described above: Portal sends an image to RE

(Portal
image−−−→RE) that answers with the computed class (RE class−−−→Portal). If we add the termination (end)

we obtain (complete G) protocol

Portal
image−−−→RE;RE class−−−→Portal;end

which may be described as a one-shot protocol, since the interaction is over (end) after the components
exchange the two messages.

We obtain composite component KIRS by assembling KPortal and KRE together with protocol G that
governs the interaction. Below, we show how it is possible to graphically represent component KIRS, where
we represent KPortal and KRE as its subcomponents:

The subcomponent KPortal is the interfacing component (hence is the only one connected to the external
environment via forwarders). We can specify KPortal in the GC language as

[xp,x′p 〉yp,y′p,y
′′
p]{yp = fu(xp)< σ̃

yp ,y′p = fr(x′p)< σ̃
y′p ,y′′p = f ()< ·}

As previewed in the graphical illustration, from the specification we can see that KPortal component has
two input ports (xp,x′p), three output ports (yp,y′p,y

′′
p), and three local binders that at runtime are equipped

with queues (σ̃ yp , σ̃
y′p and empty queue · given that the respective binder does not use any input ports).

Notice that the queues are only required at runtime and are initially empty.
The idea of our type description is to provide an abstract characterisation of component’s behaviour.

Types provide information about the set of input ports, namely the types of values that can be received
on them, and about the output ports, namely regarding their behavioural capabilities. In particular, for each
output port there are constraints which comprise three pieces of information: what type of values are emitted;
what is the maximum number of values that can be emitted; and what are the dependencies on input ports,
possibly including the number of currently available values that satisfy the dependency at runtime.

Informally, the type of KPortal announces the following: In the two input ports xp and x′p the component
can receive an image and a class, respectively ({xp(image),x′p(class)}). Also, the type says in yp the com-
ponent can emit images and it can do so an unbounded number of times (denoted by ∞) as the underlying
local binder imposes no boundary constraints. In particular, the local binder can send an image as soon as
one is received in xp. Hence, we have a per each value dependency of yp on xp. Formally, we write this
constraint as yp(image) : ∞ : [{xp :Np}], where Np is the number of values received on xp that are available to
be used to produce the output on yp. We may describe constraint y′p(class) : ∞ : [{x′p :N′p}] in a similar way.
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In constraint y′′p(version) : ∞ : [ /0] there are no dependencies from input ports specified, hence the reading is
only that a version can be emitted an unbounded number of times. We may specify the type of KPortal as:

TPortal =< {xp(image),x′p(class)};{yp(image) : ∞ : [{xp :Np}],y′p(class) : ∞ : [{x′p :N′p}],y′′p(version) : ∞ : [ /0]}>

Composite component KIRS is an assembly of two base components KPortal and KRE whose communica-
tion is governed by global protocol G. The description of KIRS in GC language is the following:

KIRS = [x〉y,y′]{G;Portal= KPortal,RE= KRE ;D;Portal[F ]}

where G is the already described one-shot protocol

G = Portal
image−−−→RE;RE class−−−→Portal;end

Interfacing component KPortal forwards the values from/to the external environment as specified in the for-
warders (F = xp← x,y← y′p,y

′← y′′p). The forwarding implies that the characterisation of ports x, y and y′

in the type of KIRS relies on one of the ports xp, y′p and y′′p, respectively, in the type of KPortal.
The type of KIRS then says that it can always input on x values of type image accordingly to the input

receptiveness principle. The constraint for y′ is the same as for y′′p since y′′p does not depend on the protocol
(in fact it has not dependencies). However, this is not the case for y: in order for a class of an image
to be forwarded from y′p there is a dependency (identified in TPortal) on port x′p. Furthermore, component
KPortal will only receive a value on x′p accordingly to the protocol specification, in particular upon the second
message exchange. Hence, there is also a protocol dependency since the first message exchange has to
happen first, so there is a transitive dependency to an image being sent in the first message exchange, emitted
from port yp of component KPortal. Finally, notice that yp depends on xp which is linked by forwarding to
port x of component KIRS, thus we have a sequence of dependencies that link y to x.

Since we have a one-shot protocol, the communications happens only once, which implies that one class
is produced for the first image received. We therefore consider that the dependency of y on x is initial (since
one value suffices to break the one-shot dependency), and that the maximum number of values that can be
emitted on y is 1. This constraint is formally written as y(class) : 1 : [{x : Ω}]. The constraint for y′ is
y′(version) : ∞ : [ /0], where the set of dependencies is empty, i.e., it does not depend on any input. We then
have the following type for component KRS:

TIRS =< {x(image)};{y(class) : 1 : [{x : Ω}],y′(version) : ∞ : [ /0]}>

Let us now consider a recursive version of protocol

G′ = µX.Portal
image−−−→RE;RE class−−−→Portal;X

is used instead (i.e., K′IRS = [x〉y,y′]{G′;Portal= KPortal,RE= KRE ;D;Portal[F ]}). The idea now is that for
each image received a class is produced. So, class may be emitted on y an unbounded number of times and
the dependency of y on x is of a per each kind. Notice that the chain of dependencies can be described as
before, but the one-shot dependency from before is now renewed at each protocol iteration.

The constraint for y in this settings is y(class) : ∞ : [{x : Ni}], where Ni captures the number of values
received on x that are currently available to produce the outputs on y. The constraint for y′ is the same as in
the previous case. We then have that the type of K′IRS is

< {x(image)};{y(class) : ∞ : [{x :Ni}],y′(version) : ∞ : [ /0]}>

Imagine now that a component K′Portal (is a composite component) that has an initialisation phase such
that, first it receives a message about what kind of classification is required (e.g., “classify the image by
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Types and input interfaces Dependency kinds Boundaries

T ∆
=< Xb;C > Xb

∆
= {x1(b1), . . . ,xk(bk)} M ::= N | Ω B ::= N | ∞

Constraints Dependencies

C ∆
= {y1(b1) : B1 : [D1], . . . ,yk(bk) : Bk : [Dk]} D ∆

= {x1 :M1, . . . ,xk :Mk} k ≥ 0 N ∈ N0

Table 4: Type Syntax

the number of faces found on it”), then it sends it to K′RE , after which the uploading and classification of
the images can start (all other characteristics remain). Let x1 be the port of K′IRS on which this message is
received. Let us consider the following protocol

G′′ = Portal
kind−−→RE; µX.Portal

image−−−→RE;RE class−−−→Portal;X

where after component K′Portal sends the required kind of classifications (labelled as kind), the communica-
tion between K′Portal and K′RE is governed by a recursive protocol as described in the previous example. The
type of the component K′IRS is similar to the type from the previous example, but now announces that the
output on y requires an initial value to be received on port x1, as the image classification process can only
start after that. We then have the type of K′IRS

< {x(image)};{y(class) : ∞ : [{x :Ni,x1 : Ω}],y′(version) : ∞ : [ /0]}>

4 A type language for the components

In this section we define the type language that captures the behaviour of components in an abstract way,
starting by the presentation of the syntax which is followed by the operational semantics. Then we present
two procedures that define how to extract the type of a component. First procedure is for base, and the
second one if for composite components.

Syntax The syntax of types is presented in Table 4 and some explanations follow. A type T consists in
two elements: a (possibly empty) set of input ports, where each one is associated with a basic type b (i.e.,
int, string, etc.), and a (possibly empty) set of constraints C, one for each output port. Basic types (ranged
over by b,b1,b2,bx,by,b′, . . .) specify the type of the values that can be communicated in ports, so as to
ensure that no unexpected values arise. Each constraint in C contains a triple of the form y(b) : B : [D],
which describes the type (b) of values sent via y, the capability (B) of y and the dependencies (D) of y on the
input ports. Capability B identifies the upper bound on the number of values that can be sent from the output
port: a natural number N denotes a bounded capability, whereas ∞ an unbounded one. Dependencies are of
two kinds: per each value dependencies are of the form x :N and initial dependencies are given by x : Ω. A
dependency x :N says that each value emitted on y requires the reception of one value on x, and furthermore
N provides the (runtime) number of values available on x (hence, initially N = 0). Instead, a dependency
x : Ω says that y initially depends on a (single) value received on x, hence the dependency is dropped after
the first input on x.
Semantics We now define the operational semantics of the type language, that is required to show that
types faithfully capture component behaviour. The semantics is given by the LTS shown in Table 5. There
are four kinds of labels λ described by the following grammar: λ ::= x? | x?(b) | y!(b) | τ . Label x? denotes
an input on x; whereas, label x?(b) denotes an input of a value of type b; then, label y!(b) represents an
output of a value of type b; finally, τ captures an internal step.

We briefly describe the rules shown in Table 5. Rules [T1,T2,T3] describe inputs of a (single) constraint,
while [T4, T5, T6] capture type behaviour. Rule [T1] says a constraint for y can receive (and discard) an
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x /∈ dom[D]

y(b) : B : [D]
x?−→ y(b) : B : [D]

[T 1]
y(b) : B : [{x : Ω}]D]

x?−→ y(b) : B : [D]
[T 2]

y(b) : B : [{x :N}]D]
x?−→ y(b) : B : [{x :N +1}]D]

[T 3]
T τ−→ T

[T 4]

∀i ∈ 1,2, . . . ,k yi(bi) : Bi : [Di]
x?−→ yi(bi) : Bi : [D′i]

< {x(bx)]Xb};{yi(bi) : Bi : [Di]|i ∈ 1, . . . ,k}> x?(bx)−−−→< {x(bx)]Xb};{yi(bi) : Bi : [D′i]|i ∈ 1, . . . ,k}>
[T 5]

∀i ∈ 1,2, . . . ,k Ni ≥ 1 B > 0

< Xb;{y(by) : B : [{xi :Ni|i ∈ 1, . . . ,k}]}]C >
y!(by)−−−→< Xb;{y(by) : B−1 : [{xi :Ni−1|i ∈ 1, . . . ,k}]}]C >

[T 6]

Table 5: Type Semantics

input on x in case y does not depend on x, i.e., if x is not in the domain of D (dom(D) = {x | D = {x :
M}]D′}), leaving the constraint unchanged. Rule [T2] addresses the case of an initial dependency, where
after receiving the value on x the dependency is removed. Rule [T3] captures the case of a per each value
dependency, where after the reception the number of values available on x for y is incremented.

With respect to type behaviour, Rule [T4] says that the type can exhibit an internal step and remain
unchanged, used to mimic component internal steps (which have no impact on the interface). Rule [T5]
states that if all type constraints can exhibit an input on x and x is part of the type input interface, then the
type can exhibit the input on x considering the respective basic type. Notice that rules [T4, T5, T6] say
that constraints can always exhibit an input (simply the effect may be different). Finally, Rule [T6] says
that if one of the constraints has all of dependencies met, i.e., has at least one value for each x for which
there is a dependency, and also that the boundary has not been reached (i.e., it is greater than zero), then
the type can exhibit the corresponding output implying the decrement of the boundary and of the number
of values available in dependencies. Notice that in order for a port to output a value, there can be no initial
dependencies present (which are dropped once satisfied), only per each value dependencies.

In the following example and in the rest of the paper (where appropriate) we adopt the following nota-
tion: i abbreviates the image type, c abbreviates the class type and v abbreviates the version type.

Example 4.1. We revisit the type of component KPortal shown in Section 3

< {xp(i),x′p(c)};{yp(i) : ∞ : [{xp :N1}],y′p(c) : ∞ : [{x′p :N2}],y′′p(v) : ∞ : [ /0]}>

for some N1 and N2. Recall also type

< {x(i)};{y(c) : 1 : [{x : Ω}],y′(v) : 1 : [ /0]}>

that may evolve upon the reception of an input on x as follows:

y(c) : 1 : [{x : Ω}] x?−→ y(c) : 0 : [ /0]
[T 2]

x /∈ dom[D]

y′(v) : 1 : [ /0] x?−→ y′(v) : 1 : [ /0]
[T 1]

< {x(i)};{y(c) : 1 : [{x : Ω}],y′(v) : 1 : [ /0]}> x?(i)−−→< {x(i)};{y(c) : 0 : [ /0],y′(v) : 1 : [ /0]}>
[T 5]

The type language serves as a means to capture component behaviour, and types for components may
be obtained (inferred) as explained below. The results presented afterwards ensure that when the type
extraction is possible, then each behaviour in the component is explained by a behaviour in the type, and
that each behaviour in the type can eventually be exhibited by the component.
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4.1 Type extraction for base components

We describe the procedure that allows to (automatically) extract the type of a component, focusing first on
the case of base components. The goal is to identify the basic types associated to the communication ports,
as well as the dependencies between them, while checking that their usage is consistent throughout.

In order to extract the type of a base component we need to define two auxiliary functions. First, we
assume that from each function f (x̃) used in a local binder, we can infer the respective function type. We
introduce the notation γ(·) to represent a mapping from basic elements (such as values, ports, or functions)
to their respective types. We also use γ for lists of elements in which case to obtain the list of respective
types (e.g., γ(1,hello) = integer,string). Second, given a local binder y = f (x̃)< σ̃ , we need to count the
number of values that y has available at runtime for each of the ports in x̃. This corresponds to the number
of elements in σ̃ that have a mapping for a port x to a value, which we denote by count(x, σ̃) defined as
follows. Let X be the set of ports and Σ a set whose elements are the lists of mappings from ports to values.
Then function count : X×Σ→ N0 is defined as follows:

count(x, σ̃) =

{
j if σ̃ = σ1, . . . ,σ j,σ j+1, . . . ,σl ∧ x ∈

⋂
1≤i≤ j dom(σi) ∧ x /∈

⋃
j+1≤i≤l dom(σi)

0 otherwise

Notice that mappings in σ̃ are handled following a FIFO discipline, so the first (oldest) mappings are the
ones that need to be accounted for. We may now define our type extraction procedure for base components:

Definition 4.1 (Type Extraction for a Base Component). Let

[x̃ > ỹ]{y1 = fy1(x̃
y1)< σ̃

y1 , . . . ,yk = fyk(x̃
yk)< σ̃

yk}

be a base component, where ỹ = y1,y2, . . . ,yk. If there exists γ such that γ(x̃) = b̃ and γ(y1) = b′1, . . . ,γ(yk) =
b′k and provided that γ( fyi) = b̃yi → b′i for any i ∈ 1, . . . ,k and that b̃yi = γ(x̃yi) for any i ∈ 1, . . . ,k then the
extracted type of the base component is < Xb;C > where Xb = {x(b) | x ∈ x̃∧b = γ(x)} and

C = {yi(bi) : ∞ : Dyi | i ∈ 1, . . . ,k∧b′i = γ(yi)∧Dyi = {x : count(x, σ̃ yi) | x ∈ x̃yi}}

In Definition 4.1 the list of local binders is specified in such a way that each function ( fyi), its parameters
(x̃yi) and the list of mappings (σ̃ yi) are indexed with the output port that is associated to them (yi), so
as to allow for a direct identification. Moreover, notice that each list of arguments x̃yi (of function fyi) is a
permutation of list x̃, as otherwise they would be undefined. Notice also that every output port of the interface
of the component has a local binder associated to it and that there is no local binder yt = fyt (x̃

yt )< σ̃ yt such
that yt is not the part of the component interface, i.e., we do not type components that have undefined output
ports or that declare unused local binders, respectively. We also rely in Definition 4.1 on (the existence of)
γ to ensure consistency. Namely, we consider γ provides the list of basic types for the input ports (γ(x̃) = b̃)
and for the output ports (γ(y1) = b′1, . . . ,γ(yk) = b′k). Then, we require that γ( fyi), for each fyi , specifies
the function type where the return type matches the one identified for yi (i.e., b′i). Furthermore, we require
that the types of the parameters given in the function type (b̃yi) match the ones identified for the respective
(permutation of) input port parameters (γ(x̃yi)).

We then have that the extracted type of a base component is a composition of two elements. The first
one (Xb) is a set of input ports which are associated with their basic types. The second one is a set of
constraints C, one for each output port and of the form yi(b′i) : ∞ : [Dyi ]. The constraint specifies the basic
type (b′i) which is associated to the output port, and the maximum number of values that can be output on yi

is unbounded (∞), since local binders can potentially perform computations indefinitely. The third element
of the constraint (Dyi) is a set of per each value dependencies (of port yi) on the input port parameters x̃yi ,
capturing that each value produced on yi depends on a value being received on all of the ports in x̃yi . Notice
that the number of values that yi has available (at runtime) for each x in x̃yi is given by count(x,σ yi).
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From an operation perspective, Definition 4.1 can be implemented by first considering the type inferred
for the functions in the local binders and then propagating (while ensuring consistency of) this information.
Example 4.2. Consider our running example from Section 3, in particular, component KPortal specified as
[xp,x′p 〉yp,y′p,y

′′
p]{yp = fu(xp)< σ̃ yp ,y′p = fr(x′p)< σ̃

y′p ,y′′p = f ()< ·}.
Let us take γ such that γ(xp,x′p) = i,c and γ(yp) = i, γ(y′p) = c and γ(y′′p) = v. We know that function

fu takes an image (i) and gives an image in return, hence γ( fu) = i→ i. Similarly, we also know that
function fr is typed as γ( fr) = c→ c. Function f does not have any parameters hence γ(time) = ()→ v.
The extracted set of input ports with their types is Xb = {xp(i),x′p(c)}. Assume that the component is in the
initial (static) state, so the queues of lists of mappings are empty (i.e., σ̃ yp = ·= σ̃

y′p). Hence, we have that
count(xp, σ̃

yp) = 0 and count(x′p, σ̃
y′p) = 0. The extracted set of constraints is then C = {yp(i) : ∞ : [{xp :

0}],y′p(c) : ∞ : [{x′p :0}],y′′p(v) : ∞ : [ /0]} and the extracted type of the component KPortal is < Xb;C >.

4.2 Type extraction for composite components

Extracting the type of a composite component is more challenging than for a base component. The focus of
the extraction procedure is on the interfacing subcomponent, which interacts both via forwarders and via the
protocol. For the purpose of characterising how components interact in a given protocol, we introduce local
protocols LP which result from the projection of a (global) protocol to a specific role that is associated to a
component. We reuse the projection operation presented in [6], where message labels are mapped to com-
munication ports (thanks to distribution binders D) and also to basic types that describe the communicated
values (that can be inferred from the ones of the ports). The syntax of local protocols LP is:

LP := x? :b.LP | y! :b.LP | µX.LP | X | end.
Term x? : b.LP denotes a reception of a value of a type b on port x, upon which protocol LP is activated.
Term y! : b.LP describes an output in similar lines. Then we have standard constructs for recursion and for
specifying inaction (end). Our local protocols differ from the ones used in [6] since here we only consider
choice-free global protocols. To simplify the setting, we consider global protocols that have at most one
recursion (consequently also the projected local protocols). We also consider that message labels can appear
at most once in a global protocol specification (up to unfolding of recursion), hence also ports occur only
once in projected local protocols (also up to unfolding).

We omit the definition of projection and present the intuition via an example.

Example 4.3. Let G be the (one-shot) protocol G = Portal
image−−−→ RE;RE class−−−→ Portal;end from Section 3

and let γ(image,class) = i,c be a function that given a list of a message labels returns a list of their types.
Then, the projection of protocol G to role Portal, denoted by G ↓Portal is protocol yp! : i.x′p? : c.end and

the projection of G to role RE is local protocol xre?: i.yre! :c.end, where ports x′p,yp,xre,yre are obtained via

distribution binders RE.xre
image←−−− Portal.yp,Portal.x′p

class←−−− RE.yre. Essentially, the local protocol of Portal
describes that first it emits an image on yp and then receives a classification on x′p, and the local protocol of
RE says that it first receives an image on xre and then outputs a result of a classification on yre.

We introduce some notation useful for the definition of the type extraction for composite components.
We use the language context for local protocols (excluding recursion), denoted by C , so as to abstract from
the entire local protocol and focus on specific parts and we define it as: C [ · ] ::= x? : b.C [ · ] | y! : b.C [ · ] | ·.
We denote the set of ports appearing in a local protocol by f p(LP) and by rep(LP) the set of ports that occur
in a recursion (e.g. in LP for recursion µX.LP). Considering a list of forwarders F , we define two sets: by
F i we denote the set of (internal) input ports and by Fo the set of (internal) output ports which are specified
in F (e.g., if F = xp← x then F i = {xp}).

We now introduce the important notions that are used in our type extraction, namely that account for
values flowing in a protocol and for the kinds of dependencies involved in composite components. Finally,
we address the boundaries for the output ports.
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Values flowing Our types track the dependencies between output and input ports, including per each
value dependencies that specify how many values received on the input port are available to the output port.
As discussed in the previous section, for base components this counter is given by the number of values
available in the local binder queues. For composite components, as preliminary discussed in Section 3, per
each value dependencies might actually result from a chain of dependencies that involve subcomponents and
the protocol. So, in order to count how many values are available in such case, we need to take into account
how many values are in the subcomponents (which is captured by their types) and also if a value is flowing
in the protocol. We can capture the fact that a value is flowing by inspecting the structure of the protocol.
In particular we are interested in values that flow from y to x when an output on y precedes an input in x
in a recursive protocol, hence when the protocol is of the form C [µX.C ′[y! :b′.C ′′[x? :b.LP′]]. The value is
flowing when the output has been carried out but the input is yet to occur, which we may conclude if the
protocol is also of the form C ′′′[x? :b.LP′′] where x,y /∈ f p(C ′′′[ · ]). We denote by vf(LP,x,y) that there is
a value flowing from y to x in LP, in which case vf(LP,x,y) = 1, otherwise vf(LP,x,y) = 0. We will return
to this notion in the context of the extraction of the dependencies of the output ports, discussed next.

Kinds of dependencies Composite components comprise two kinds of dependencies between output ports
and input ports, illustrated in Figure 1 and Figure 2, which are dubbed direct and transitive, respectively.

Figure 1: Direct Dependency Figure 2: Transitive Dependency

We gather the set of direct dependencies, i.e., when external output ports directly depend on external
input ports (see Figure 1), in Dd(C,F,y) which is defined as follows:

Dd(C,F,y), {x :M | C = {y(by) : B : [{x :M}]D]}]C′∧ x ∈ F i∧ y ∈ Fo}

Hence, in Dd(C,F,y) we collect all the dependencies for y given in (internal) constraint C whenever both
ports are external and preserving the kind of dependency M so as to lift it to the outer interface.

For transitive dependencies (see Figure 2) to exist there are three necessary conditions. The first condi-
tion is to have in the description of a local protocol at least one output action, say on port y′, that precedes
at least one input action, say on port x′. The second condition is that such output port y′ depends on some
external input port x and the third condition is that there exists some external output port y that depends on
the input on x′. In such cases, we say that y depends on x in a transitive way.

We introduce a relation that allows to capture the first condition above. Let LP be the local protocol that
is prescribed for an interfacing component. Two ports x′ and y′ are in relation �LP

i for some local protocol
LP if x′,y′ ∈ f p(LP) and where i ∈ {1,2,3} as follows: y′ �LP

1 x′ if LP = C [y′! : by′ .C ′[x′? : bx′ .LP′]] and
x′,y′ /∈ rep(LP); y′ �LP

2 x′ if LP = C [y′! : by′ .C ′[µX.C ′′[x′? : bx′ .LP′]]] and y′ /∈ rep(LP); y′ �LP
3 x′ if LP =

C [µX.C ′[y′! : by′ .C ′′[x′? : bx′ .LP′]]]. We distinguish three cases: when both the output and the input are
non-repetitive, when only the input is repetitive, and when both the output and the input are repetitive.

We may now characterise the transitive dependencies. Let [x̃′ 〉 ỹ′]{G;r = K,R;D; r[F ]} be the composite
component, Tr =< Xb,C > the type of interfacing component K and LP its local protocol. The set of
transitive dependencies on y, denoted Dt(C,F,LP,y), is defined relying on an abbreviation η as follows:
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η = C = {y(b1) : B : [{x′ :M′}]D′],y′(b2) : B′ : [{x :M}]D]}]C′

∧ x ∈ F i∧ y ∈ Fo∧ y′ �LP
i x′

Dt(C,F,LP,y) ,
{

x : Ω | η ∧ i ∈ {1,2}∧M ≯ 0}⋃{
x : Ω | η ∧ i = 3∧ (M = Ω∨ (M′ = Ω∧M = 0∧vf(LP,x′,y′) = 0))

}⋃{
x :(N +N′+vf(LP,x′,y′)) | η ∧ i = 3∧M = N∧M′ = N′

}
In η we gather a conjunction of conditions that must always hold in order for a transitive dependency to

exist: namely that the (internal) constraint C specifies dependencies between y and x′ and between y′ and x
and also that y and x are external ports while y′ precedes x′ in the protocol. To simplify presentation of the
definition of Dt(C,F,LP,y) we rely on the (direct) implicit matching in η of the several mentioned elements.

There are two kinds of transitive dependencies that are gathered in Dt(C,F,LP,y), namely initial (x : Ω)
and per each value (x : N). For initial dependencies there are two separate cases to consider. The first case
is when the protocol specifies that the output on y′ is non-repetitive (i ∈ {1,2}), hence will be provided
only once. Condition M ≯ 0 says that no values are already available for that initial output to take place
(internally to the component that provides them as specified in η), hence either M = x : Ω or M = 0.

The second case for an initial transitive dependency is when both y′ and x′ are repetitive in the protocol
(i = 3) but at least one of the internal dependencies (between y′ and x and between y and x′, given by M and
M′ respectively) is an initial dependency. This means that, regardless of the protocol, such a dependency is
dropped as soon as a value is provided which implies that the transitive dependency is also dropped. Since M
is at the beginning of the dependency chain, if it is initial then no further conditions are necessary. However,
if M′ is initial we need to ensure that there is no value already flowing (vf(LP,x′,y′) = 0) or already available
to be output on y′ (M = 0), since only in such case (an initial) value is required from the external context
(i.e., otherwise if vf(LP,x′,y′) = 1 or M ≥ 0 then the chain of dependencies is already “internally” satisfied).

Finally, we have the case of per each value transitive dependency, that can only be when both y′ and x′ are
repetitive in the protocol (i = 3) and internal dependencies M and M′ are both per each value dependencies
(M = N and M′ = N′), which means that the dependency chain is persistent. The number of values available
of (external) x for y is the sum of the values available in the internal dependencies (N and N′) plus one if
there is a value flowing (zero otherwise). Notice that the definition of value flowing presented previously
focuses exclusively in the case when y′ and x′ are repetitive in the protocol, since this is the only case where
values might be flowing and the dependency is still present in the protocol structure (i.e., y′ �LP

3 x′ holds).
In contrast, a dependency y′ �LP

i x′ for i ∈ {1,2} is no longer (structurally) present as soon as the value is
flowing (i.e., a non-repetitive y′ no longer occurs in the protocol after an output).

It might be the case that one output port depends in multiple ways on the same input port. For that
reason we introduce a notion of priority among dependencies, denoted by pr( , ) that gives priority to per
each value dependencies (with respect to “initial”). The definition of priority follows expected lines (see
Appendix B) and builds on the property (cf. Proposition B.1) that if multiple per each value dependencies
(including direct and transitive) are collected (e.g., x : N1, . . . ,x : Nk) then the number of available values
specified in them is the same (i.e., N1 = . . . = Nk). The list of dependencies for port y is then given by the
(prioritised) union of direct and transitive dependencies:

D(C,F,LP,y) = pr(Dd(C,F,y)∪Dt(C,F,LP,y))

Boundaries The last element that we need to determine in order to extract the type of a composite com-
ponent is the boundary of output ports. The type of the interfacing component already specifies (an internal)
boundary, however this value may be further bound by the way in which the component is used in the com-
position. In particular, if an output port depends on input ports that are not used in the protocol nor are
linked to external ports, then no (further) values are received in them and the potential for the output port is
consequently limited. We distinguish three cases for three possible limitations:
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B1 = {N′ | C = y(b1) : B : [{x′ :N′}]D′]]C′∧ x′ /∈ ( f p(LP)∪F i)}
B2 = {0 | C = {y(b1) : B : [{x′ : Ω}]D′]}]C′∧ x′ /∈ ( f p(LP)∪F i)}
B3 = {(N′+1) | C = {y(b1) : B : [{x′ :N′}]D′]}]C′∧ x′ ∈ f p(LP)∧ x′ /∈ (rep(LP)∪F i)}
In B1 and B2 we capture the case when there is a dependency on a port that is not used in the protocol

(x′ /∈ f p(LP)) nor linked externally (x′ /∈ F i), where the difference is in the kind of dependency. For per
each value dependencies (if any), the minimum of the internally available values is identified as the potential
boundary, while for initial dependencies (if present) the potential boundary is zero (or the empty set). In B3
we capture a case similar to B1 where the port is used in the protocol but in an non-repetitive way, hence
only one (further) value can be provided.

The final boundary determined for y, denoted by B(y,LP,C), is the minimum number among the internal
boundary of y (i.e., B if C = y(b) : B : [D]]C′) and possible boundaries B1,B2 and B3 described above.

B(y,LP,C) = min({B}∪B1∪B2∪B3)

We may now present the definition of type extraction of a composite component relying on a renaming
operation. Since the type extraction of a composite component focuses on the interfacing subcomponent,
we single out the ports that are linked via forwarders to the external environment. To capture such links, we
introduce renaming operation ren( , ) that renames the ports of the interfacing subcomponent to the outer
ones by using the forwarders as a guideline. For example, if we have that F = xp← x than ren(F,xp) = x.

Definition 4.2 (Type Extraction for a Composite Component). Let [x̃〉 ỹ]{G;r =K,R;D; r[F ]} be a composite
component and LP = G �r the local protocol for component K. If Tr =< X r

b ;Cr > is the type of component
K, then the extracted type from LP and Tr is

T (LP,Tr,F) = ren(F,< Xb;C >)

where: Xb = {x(b) | x(b) ∈ X r
b ∧ x ∈ F i}

C = {y(b′) : B(y,LP,Cr) : [D(Cr,F,LP,y)] | Cr = {y(b′) : B′ : [D′]}]C′∧ y ∈ Fo}.

Example 4.4. Let us extract the type of component KIRS from Section 3 considering protocol G=Portal
image−−−→

RE;RE class−−−→Portal;end. The type of interfacing component KPortal is

TPortal =< {xp(i),x′p(c)};{yp(i) : ∞ : [{xp :Np}],y′p(c) : ∞ : [{x′p :N′p}],y′′p(v) : ∞ : [ /0]}>

We have that local protocol is LP = yp! : i.x′p? : c.end and sets of external ports F i = {xp} and Fo =
{y′p,y′′p}, where ren(F,xp) = x, ren(F,y′p) = y and ren(F,y′′p) = y′. This immediately gives us the set of input
ports that is in the description of the type of component KIRS which is Xb = {x(i)}.

Let us now determine the constraints of the output ports. Since port y′′p has no dependencies also port
y′ will not have any, and moreover has the same boundary (∞). So, the extracted constraint for y′ will
be ren(y′′p(v) : ∞ : [ /0]), which is y′(v) : ∞ : [ /0]. Port y′p instead depends on port x′p which is used in the
protocol (x′p ∈ f p(LP)). Since the protocol is not recursive we have the consequent limited boundary (case
B3 explained above), namely the boundary of y′p is min(N′p + 1,∞) = N′p + 1. Furthermore. we have that
yp �LP

1 x′p and that yp has per each value dependency xp :Np. If Np > 0 then y′p does not transitively depend
on xp, otherwise there is an initial dependency. Let us consider the initial (static) state where no image has
been receive yet, i.e., Np = 0. In such case we have that the resulting constraint for y′p is y′p(c) : N′p : [xp : Ω],
which after renaming for y is y(c) : N′p : [xp : Ω]. So, the extracted type of KIRS is the following

{x(i)};{y(c) : N′p : [xp : Ω],y′(v) : ∞ : [ /0]}
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4.3 Type Safety

In this section we present our main results that show a tight correspondence between the behaviour of
components and of their extracted types. Apart from the conditions already involved in the type extraction,
for a component to be well-typed we must also also ensure that any component that interacts in a protocol
can actually carry out the communication actions prescribed by the protocol.

For this reason we introduce the conformance relation, denoted by ./, that asserts compatibility between
the type of a component and the local protocol that describes the communication actions prescribed for
the component. For the purpose of ensuring compatibility, in particular for the interfacing component, we
also introduce an extension of our type language, dubbed modified types T (see Appendix D). The idea
for modified types is to allow to abstract from input dependencies from the external environment, namely
by considering such dependencies can (always) potentially be fulfilled, allowing conformance to focus on
internal compatibility. By T (F,T ) we denote the modified type that results from abstracting such external
dependencies in T , relying on forwarders F , namely by considering per each value dependencies for external
input ports are unbounded (∞) and dropping initial dependencies. The rules for the semantics of modified
types are the same as the ones shown in Section 4, the only implicit difference for modified types is that
decrementing an unbounded dependency has no effect.

The definition of the conformance relation (see Appendix E) is given by induction of the structure of the
local protocol and it is characterised by judgments of the form Γ `T ./ LP, where Γ is a type environment
that handles protocol recursion (i.e., Γ maps recursion variables to modified types). We report and comment
here only on the rules for input and output:

T
x?(b)−−−→T ′ Γ `T ′ ./ LP

Γ `T ./ x? :b.LP
[InpCon f ] T

y!(b)−−→T ′ Γ `T ′ ./ LP
Γ `T ./ y! :b.LP

[OutCon f ]

Rule [InpCon f ] states that a modified type T is conformant with protocol x?:b.LP, if T can input a value of
type b on port x and if continuation T ′ is conformant with the continuation of protocol LP. Rule [OutCon f ]
is similar but deals with the output of a value on port y.

We can now formally define when a component K has type T , in which case we say K is well-typed.

Definition 4.3. Let K be a component, we say that K has a type T , denoted by K ⇓ T :

1. If K is a base component, K ⇓ T when T is obtained by Definition 4.1.

2. If K = [x̃ > ỹ]{G; r1 = K1, . . . , rk = Kk;D; r1[F ]} then K ⇓ T when

• ∃Tri | Ki ⇓ Tri , for i = 1,2, . . . ,k;

• T is extracted type from T1 and G �r1 by Definition 4.2;

• T (F,Tri) ./ G �ri for i = 1,2, . . . ,k;

Notice that the definition relies on modified types for conformance, but for any type T not associated
with the interfacing component we have that T (F,T ) = T since there can be no links to external ports
(assuming that all ports have different identifiers).

We can now our type safety results given in terms of Subject Reduction and Progress, which provide
the correspondence between the behaviours of well-typed components and their types. In the statements we
rely on notation λ (v) that represents x?(v), y!(v) or τ and λ (b) that represents x?(b), y!(b) or τ .

Theorem 4.1 (Subject Reduction). If K ⇓ T and K
λ (v)−−→ K′ and v has type b then T

λ (b)−−→ T ′ and K′ ⇓ T ′.

Proof. By induction on the derivation of K
λ (v)−−→ K′ (see Appendix F).
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Theorem 4.1 says that if a well-typed component K performs a computation step to K′, then its type
T can also evolve to type T ′ which is the type of component K′. Moreover, the theorem ensures that if
K carries out an input or an output of a value v, type T performs the corresponding action at the level of
types. Theorem 4.1 thus attests that well-typed components always evolve to well-typed components, and
furthermore that any component evolution can be described by an evolution in the types.

The Progress result does not describe a strong correspondence like for Subject Reduction since we need
to abstract from internal computations in components. For that reason, in the Progress statement we rely

on K
λ (v)
==⇒ K′ to denote a sequence of transitions K τ−→ ·· ·K′′ λ (v)−−→ K′′′ τ−→ ·· ·K′, i.e, that component K may

perform a sequence of internal moves, then an I/O action, after which another sequence of internal moves
leading to K′.

Theorem 4.2 (Progress). If K ⇓ T and T
λ (b)−−→ T ′ and λ (b) 6= τ then b is the type of a value v and K

λ (v)
==⇒ K′

and K′ ⇓ T ′.

Proof. By induction on the structure of K (see Appendix G).

Theorem 4.2 says that if type T of component K can evolve by exhibiting an I/O action to type T ′, then
K can eventually (up to carrying out some internal computations) exhibit a corresponding action leading
to K′, and where K′ has type T ′. Theorem 4.2 thus ensures that the behaviours of types can eventually be
carried out by the respective components, which entails components are not stuck and allows, together with
Theorem 4.1, to attest that types faithfully capture component behaviour.

5 Concluding Remarks

In this paper we introduce a type language for the choice-free subset of the GC language [6] that charac-
terises the reactive behaviour of components and allows to capture “what components can do”. In particular,
our types describe the ability of components to receive and send values, while tracking different kinds of
dependencies (per each value and initial ones) and specifying constraints on the boundary of the number of
values that a component can emit. We show how types of components can be extracted (inferred) and prove
that types faithfully capture component behaviour by means of Subject Reduction and Progress theorems.
Typing descriptions such as ours are crucial to promote component reusability, since to use a component
we should only need to analyse its type and not its implementation (like in [6]). For instance, for the sake
of ensuring the behaviour of a component is compatible with a governing communication protocol, where
such compatibility is attested in our case by the conformance of the type to the (local) protocol.

We place our approach in the behavioural types setting (cf. [9]) since our types evolve in order to ex-
plain component behaviour (cf. Theorem 4.1), in contrast with classic subject reduction results where the
type is preserved. In the realm of behavioural types, we distinguish Multiparty Asynchronous Session
Types [8] which actually lay the basis for the protocol language of our target model [6]. The model builds
on the idea that protocols can be used to directly program the interaction, and not only serve as a specifica-
tion/verification mechanism, following the approach of choreographic programming [5, 12].

We discuss some closely related work, starting by Open Multiparty Sessions [4] which to some extent
shares the same goals and the same background (cf. [8]). The approach in [4] targets the composition of
protocols by considering that one of the participants can actually be instantiated by an external environment.
Two protocols can then be connected if there is a participant in each that can serve as the interface to the
other interaction. So protocols can be viewed as the units of composition instead of components like in our
case, and reusing such protocols in other compositions requires compatibility between the I/O actions which
are prescribed for the interfacing role. The main difference is therefore that we consider components that
are potentially more reusable considering the I/O flexibility provided the reactive flavour.
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We also identify the CHOReVOLUTION [1]project where the assembly of services via a choreography
is addressed. The I/O flexibility is provided by adapters at assembly time that can solve I/O interface
mismatches between service and choreography. We remark that the CHOReVOLUTION approach is at a
very mature state (including tool support [3]), where however an assembly of services cannot be provided
as a unit of reuse (like our composite components). We distinguish our type-based approach that aims at
abstracting from the implementation and providing more general support for component substitution and
reuse.

We believe the ideas reported in this paper can contribute to the theoretical basis for providing support
for component-based development in distributed systems. Immediate directions for future work include
the support for protocols with branching, and providing a characterisation of the substitution principle [10]
based in our types. Further challenges remain at the level of conveying the theoretical model to concrete
applications, in particular regarding component deployment and the support for their persistent reuse.
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A Auxiliary definitions for Components

As shown in definitions for the extraction of a components (Definition 4.1 and Definition 4.2) both base and
composite, the extraction of a set of constraints is obtained in such a way that the constraint for each output
port is obtained separately. For this reason we first introduce the next definition, that is used in propositions
required for proving the theorems.

Definition A.1. We define the restriction of a component K to one output port denoted by K(y) as

1. If K = [x̃〉 ỹ]{L}, then K(y) = [x̃〉y]{L}, where y ∈ ỹ.

2. If K = [x̃〉 ỹ]{G;R;D; r[F ]}, then K(y) = [x̃〉y]{G;R;D; r[F ]}, where y ∈ ỹ.

In the Definition 4.1 we mainly focus on the local binders. For this reason we introduce some of their
properties that are used in proofs.

Proposition A.1. If [x̃〉 ỹ]{L} x?v−→ [x̃〉 ỹ]{L′} then:

1. If L= f (x̃)< σ̃ ,L1∧x∈ x̃. Then we have that L′= f (x̃)< σ̃ ′,L′1 where count(x, σ̃ ′)= count(x, σ̃)+1;

2. If L = f (x̃)< σ̃ ,L1 ∧ x /∈ x̃. Then we have that L′ = f (x̃)< σ̃ ,L′1.

Proof. Proof by induction on the derivation of L x?v−→ L′.

[LInpDisc] y = f (x̃)< σ̃
x?v−−→ y = f (x̃)< σ̃ , by inversion we know that x /∈ x̃ so the property holds.

[LInpNew] y = f (x̃) < σ̃
x?v−−→ y = f (x̃) < σ̃ ,{x→ v}, by inversion we know that x ∈ ∩σi∈σ̃ dom(σi),

i ∈ {1,2, . . . ,n}. After input on x, the number of mappings for x increases by 1. So, the property holds.

[LInpUpd] y = f (x̃) < σ̃1,σ , σ̃2
x?v−−→ y = f (x̃) < σ̃1,σ [x → v],σ2. By inversion we know that x ∈

∩σi∈σ̃1 dom(σi) and x ∈ x̃. After input on x, the number of mappings for x increases by 1. So, the property
holds.

[LInpList] L1,L2
x?v−−→ L′1,L

′
2. By inversion we know that L1 x?v−−→ L′1, and by i.h. we know that for L′1

the property holds. The same reasoning for L2
x?v−−→ L′2, so also for L′2 the property holds. Directly we can

conclude that the property holds also for L′1,L
′
2.

Proposition A.2. If L
y!v−→ L′ then:

1. If L= y= f (x̃) < σ̃ ,L1 ⇒ L′= y= f (x̃) < σ̃ ′,L1 where ∀x ∈ x̃ | count(x, σ̃ ′) = count(x, σ̃)−1 and
count(x, σ̃)≥ 1;

2. If L = y = f ()< ·,L1⇒ L′ = y = f ()< ·,L1.

Proof. Proof by induction on the derivation of L
y!v−→ L′.

[LOut] y = f (x̃) < σ , σ̃
y!v−→ y = f (x̃) < σ̃ , so f (x̃). By inversion we have that {x̃}=dom(σ) and

f (σ(x̃)) ↓ v. We can directly conclude, from the definition of function count that the property holds.

[LConst] f ()< · y!v−→ f ()< ·. We directly conclude that the property holds.

[LOutLift] L1,L2
y!v−→ L′1,L2. By inversion we know that L1

y!v−→ L′1 and by i.h. we know that the property
holds for L′1. So, the property holds for L′1,L2, where L = L1,L2.
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B Auxiliary definitions for Composite component Type extraction

The set of ports that are found in the description of the body a recursion of some local protocol LP is defined
as follows:

rep(LP)
4
= {z|LP = C [µX.C ′[z? :b.LP′]]∨LP = C [µX.C ′[z! :b.LP′]]}

The set of ports that are found in the description of some local protocol LP is defined as follows:

f p(LP)
4
= {z|LP=C [z?:b.LP′]∨LP=C [z!:b.LP′]∨LP=C [µX.C ′[z?:b.LP′]]∨LP=C [µX.C ′[z!:b.LP′]]}

For the purpose of making proofs less complex, we introduce the notion of inc given by the next def-
inition, that can be the conclusion of observation of our type language semantics when we have the value
input.

Definition B.1. By inc(C,x) we denote the constraint defined as follows:

inc({y(b′) : B : [{x :N}]D]},x) , {y(b′) : B : [{x :N +1}]D]}
inc({y(b′) : B : [{x : Ω}]D]},x) , {y(b′) : B : [D]}
inc({y(b′) : B : [D]},x) , {y(b′) : B : [D]} (if x /∈ dom(D).

Proposition B.1. Let [x̃〉 ỹ]{G;r = K,R;D; r[F ]} be the composite component, Tr =< Xb,C > the type of
interfacing component K and LP its local protocol. If Dd(C,F,y)]Dt(C,F,LP,y) = {x:N1,x:N2,x:Nk}]D,
(where ¬∃N such that x :N ∈ D) then N1 = N2 = ...= Nk.

Proof. The proof is divided in two cases: first one is when we assume that one of the dependencies is
obtained in a direct way, and the other one is when all of them are obtained in a transitive way.

Case 1. Lets assume that x :Ni ∈Dd(C,F,y) and x :N j ∈Dt(C,F,LP,y), where i, j ∈ {1,2, ...,k} and i 6= j.
Consider the scenario where C = {y(b1) : B : [{x′ :N2,x :N}]D′],y′(b2) : B′ : [{x :N1}]D]}]C′, where

x ∈ F i, y ∈ Fo and x′,y′ ∈ f p(LP) and y′ �LP
3 x′. Then

N = N1+N2+vf(LP,x′,y′)

where N = Ni and N j = N1 +N2 +vf(LP,x′,y′)
We prove this case by the number values emitted from port y′, denoted by n.

Base case. n=0. Since n = 0, vf(LP,x′,y′) = 0. Moreover, by the description of relation �LP
3 we know that

an input on x′ is preceded by an output on y′, so N2 = 0.
Note that since N2 = 0, the value cannot be output from port y since the dependencies are not satisfied.
Both ports y and y′ have a per each value dependency on x and from non of them any value is output, so

N = N1. Then we have:

N = N1 = N1 +0+0 = N1 +N2 +vf(LP,x′,y′)

Induction hypothesis. Assume that the property holds for n = k.
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Inductive step. We prove that the property holds for n = k+1.
If the value can be sent from port y′, k+1-times, by Rule [T6] we know that the number of values input

on x is ≥ k+1 = k+1+m, m > 0. Assuming that there was no value output from y, by Rule [T3] we know
that N = k+1+m.

Since the value is emitted from port y′, k+ 1-times, then by Rule [T6] we have that N1 = k+ 1+m−
(k+1) = m. After an output from y′ we have that vf(LP,x′,y′) = 1

Moreover, since the value was already emitted k-times and it can be output one more time, thus the
recursive protocol was unfolded k times. This implies that the value is received on port x′, k-times. This
implies that, since there was no output from y, by Rule [T3] N2 = k.

So, we have that N = k+1+m, N1 = m, vf(LP,x′,y′) = 1 and N2 = k, we conclude that

N = N1 +N2 +vf(LP,x′,y′)

If now we have some number q of values emitted from y, (by Rule [T6] q ≤ k) then by Rule [T6] we
have that N = k +m+ 1− q and N2 = k− q. Again we have that N = k +m+ 1− q = k− q+m+ 1 =
N2 +N1 + vf(LP,x′,y′). Since this case holds for arbitrary per each value obtained in a transitive way, we
conclude that it holds for all of them (there is only one x : N obtained in a direct way).

Case 2. Assuming that ∀x : Ni where i ∈ {1,2, ...,k} holds that x : Ni ∈ Dt(C,F,LP,y). Without loss of
generality we prove that the property holds for two of them, i.e. Ni = N j where i, j ∈ {1,2, ...,k} and i 6= j.
Since this case holds for arbitrary per each value obtained in a transitive way, we conclude that it holds for
all of them.

We divide the proof for Case 2. into three subcases: the first one is when both transitive dependencies
(x :Ni and x :N j) are obtained via the same output port attached to the protocol, but different input ports; the
second one is when they are obtained via the same input port attached to the protocol, but different output
ports; and the third one is that they are obtained via different ports attached to the protocol.

1. Consider the scenario where C= {y(b) : B : [{x′i :N′i ,x′j :N′j}]D′],y′(b′) : B′ : [{x:N}]D]}]C′, where
x ∈ F i, y ∈ Fo and x′i,x

′
j,y
′ ∈ f p(LP) and y′ �LP

3 x′i and y′ �LP
3 x′j. Then

Ni = N j

where Ni = N′i+N+vf(LP,x′i,y
′) and N j = N′j+N+vf(LP,x′j,y

′)

Assume that in the description of LP an input on xi precedes an input on x j (the proof is the same for
the case of the opposite order).
We prove this case, again, by the number values emitted from port y′, denoted by n.

Base case. n=0. Since n = 0, vf(LP,x′i,y
′) = 0 and vf(LP,x′j,y

′) = 0. Moreover, by the description
of relation �LP

3 we know that an input on x′i and x′j is preceded by an output on y′, so N′i = 0 = N′j. So,
Ni = N +0+0 = N j.

Induction hypothesis. Assume that the property holds for n=k.

Inductive step. n = k+1
If the value can be sent from port y′, k+ 1-times, by Rule [T6] we know that the number of values
input on x is ≥ k+1 = k+1+m, m > 0.
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Since the value is emitted from port y′, k+1-times, then by Rule [T6] we have that N1 = k+1+m−
(k+1) = m. After an output from y′ we have that vf(LP,x′i,y

′) = vf(LP,x′j,y
′) = 1

Moreover, since the value was already emitted k-times and it can be output one more time, thus the
recursive protocol was unfolded k times. This implies that the value is received on ports x′i and x′j,
k-times. This implies that, asumming that there was no output from y, by Rule [T3] N′i = N′j = k.

So, we have that N′i = N′j = k, N = m, vf(LP,x′i,y
′) = vf(LP,x′j,y

′) = 1, we conclude that

Ni = N j

Since an input on x′j precedes an input on x′j, consider the case when the k+1 value arrives on port x′i.
Then Ni = k+1 but vf(LP,x′i,y

′) = 0. So we have that Ni = m+ k+1 and N j = m+(k+1)+0 that
again implies that Ni = N j.

2. Consider the scenario where C = {y(b) : B : [{x′ :N′}]D′],y′i(bi) : B′i : [{x :Ni]D′′],y′j(b j) : B′j : [{x :
N j}]D]}]C′, where x ∈ F i, y ∈ Fo and x′,y′i,y

′
j ∈ f p(LP) and y′i �LP

3 x′ and y′j �LP
3 x′. Then

Ni = N j

where Ni = Ni+N′+vf(LP,x′,y′i) and N j = N j+N′+vf(LP,x′,y′j).

We prove this case, by the number values emitted from port y′i, denoted by n.
Assume that in the description of LP an output on y′i precedes an output on y′j (the proof is the same
for the opposite order and if we consider the number of values emmited from port y′j).

Base case. n=0. Since n = 0, and an output on y′i precedes an output on y′j we have vf(LP,x′,y′i) = 0
and vf(LP,x′,y′j) = 0. Moreover, by the description of relation �LP

3 we know that an input on x′ is
preceded by an output on y′i and y′j, so N′i = 0 = N′j. So, Ni = N +0+0 = N j.

Induction hypothesis. Assume that the property holds for n=k.

Inductive step. n = k+1

If the value can be sent from port y′i, k+ 1-times, by Rule [T6] we know that the number of values
input on x is ≥ k+1 = k+1+m, m > 0, for that is captured in the dependencies for both y′i and y′j.

Since the value is emitted from port y′, k+ 1-times, applying Rule [T6], we have Ni = k+ 1+m−
(k+1) = m. After an output from y′i we have that vf(LP,x′,y′i) = 1, but vf(LP,x′,y′j) = 0

Moreover, since the value was already emitted k-times and it can be output one more time, thus the
recursive protocol was unfolded k times. This implies that k values are emitted from port y′j, hence
Ni = k+1+m− (k) = m+1. Moreover, the value is received on port x′, k-times. This implies that,
assuming that there was no output from y, by Rule [T3] that N′ = k.

So, we have that N′ = k, Ni = m, N j = m+1, vf(LP,x′,y′i) = 0, and vf(LP,x′,y′j) = 1 we conclude that

Ni = N j

Since an output from y′i precedes an output from y′j, consider the case when the k+1 value is emitted
from port y′j. Then N j = m. but vf(LP,x′,y′j) = 1. So we have that Ni = m+k+1 and N j = m+k+1
that again implies that Ni = N j.
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With a k+ 1 input of a value on port x′, we have that number N′ by Rule [T3] increases by one, but
there is no value flowing from ports y′i and y′j. So, Ni = m+k+1+0 and N j = m+k+1+0, keeping
Ni = N j.
After an output on y for both 1) and 2) the equality will remain (similar reasoning as for the previous
case).

3. The proof for the case where the two transitive per each value dependencies are obtained via different
input and output ports of the protocol is a combination of the previous cases 1) and 2).

Definition B.2. Let W be the set of tuples of the form x : M. Let pr: W→ W be the function (“Priority
function”) defined as follows:

pr( /0) , /0

pr({x :M}∪W) , {x :M}∪pr(W)
if x /∈ elements(W)

pr({x :M}∪W) , {x :M}∪pr(W)\{x :M′}
if x :M′ ∈ pr(W) and M = N and M′ = Ω

pr({x :M}∪W) , pr(W)
if x :M′ ∈ pr(W) and M′ = N′ and M = Ω

where x ∈ elements(W) if x :M ∈W for some M.

Extracting the type of a composite component we use the port identifiers of the interfacing component.
At the end of the extraction procedure we need to rename those ports to the ones of the interface of a
composite component. The operation that allows us to achieve that is operation ren( , ) defined as follows:

ren(F,< Xb;C >) , < ren(F,Xb);ren(F,C)>

ren(F,{x1(b1)}]Xb) , ren(F,{x1(b1)})] ren(F,Xb)

ren(F,{y(b) : B : [D]}]C) , ren(F,{y(b) : B : [D]})] ren(F,C)

ren(F,{y(b) : B : [D]}) , {ren(F,y(b)) : B : ren(F,D)}
ren(F,{x :M}]D) , ren(F,{x :M})] ren(F,D)

ren(F,{x :M}) , {ren(F,x) :M}
ren(F,x) , x′ if F = x← x′,F ′

ren(F,x(b)) , x′(b) if F = x← x′,F ′

ren(F,y(b)) , y′(b) if F = y′← y,F ′

ren( /0) , /0

C Auxiliary results for Types

Proposition C.1. Let T =< Xb;C >. If x(bx) ∈ Xb for some bx, then T
x(bx)−−−→ T ′.

Proof. Since Rules [T2] and [T3] are the axioms and Rule [T1] captures the case where x is not even in the
domain of the dependencies of some constraint, we can conclude that the property holds.

Lemma C.1. If T =<Xb;{Ci|i= 1,2, . . . ,k}> and T
x?(b)−−−→T ′ then T ′=<Xb;{inc({Ci,x})|i= 1,2, . . . ,k}>.
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Proof. Following Rule [T5] we have that:

< {x(b)]Xb};{yi(bi) : Bi : [Di]|i ∈ 1, . . . ,k}> x?(b)−−−→< {x(b)]Xb};{yi(bi) : Bi : [D′i]|i ∈ 1, . . . ,k}>.

By inversion we know that ∀i ∈ 1,2, . . . ,k : yi(bi) : Bi : [Di]
x?−→ yi(bi) : Bi : [D′i]. Inspecting rules

[T1],[T2] and [T3] we can conclude that the property holds.

Proposition C.2. [Dependencies requirement] Let T =< Xb;C1,C2, . . . ,Ck > and Ci = {yi(bi) : Bi : [Di]}]
C′. Then if T

yi(bi)−−−→ T ′⇒ Bi > 0∧∀x ∈ dom(Di) : Di = {x :N}]D′i∧N > 0.

Proof. We can directly prove this proposition from Rule [T6].

Proposition C.3. [Constraint independency] Let K be a component with interface [x̃ > y1, . . . ,yk] and T =<
Xb;C1]·· ·]Ck} be the type of K. Then for every yi, where i∈ {1, . . . ,k} holds that K(yi)⇓<Xb;Ci >, where
Ci = {yi(byi) : Byi : [Dyi ]}.

Proof. Reffering to Definition 4.1 and Definition 4.2 the proof is direct.

D Modified type T

Now we introduce the modified type denoted by T . The interfacing component of the composite one,
beside its interaction with other components, also interacts with an external environment. In this case the
crucial part is that it is able to receive in any moment values that are input externally. For the purpose of
observing if a type of a component can perform actions required by the protocol, we need to modify the
type according to the possible inputs that a (interfacing) component can receive from the external context
without any constraints. The modified type of a type T , taking into account the list of corresponding list of
forwarders, is denoted by T (F,T ). If T is the type of the interfacing component, each dependency on the
external input ports is per each value dependency and the number of values available is unbounded (assum-
ing that whenever the value is available it is received on the external input ports). The syntax of T -type is
given in the Table 6. It is similar to a syntax of the types which we have already shown, with the difference
in the number of values received, that in the modified type can be unbounded (infinite). Moreover, the rules
defining the semantics of modified type are the same as the ones shown for our typing language (Table 7).

T -Type syntax

Types Constraints Dependencies

T
∆
=< Xb;C >

Xb
∆
= {x1(b1), . . . ,xk(bk)} C

∆
= {y1(b1) : B1 : [D1], . . . ,yk(bk) : Bk : [Dk]} D

∆
= {x1 :M1, . . . ,xk :Mk}

Kinds of Dependencies Boundaries
M ::= N | Ω B ::= N | ∞ k ≥ 0;N ∈ N0
N ::= N | ∞

Table 6: T -Type syntax

T -Type semantics

Definition D.1. T ′ ≤ T if exists a (possibly empty) set of typed input ports {x1(b1),x2(b2), . . . ,xk(bk)}
such that T ′ x1?(b1)−−−−→ ·· · xk?(bk)−−−−→T .
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x /∈ dom[D ]

y(b) : B : [D ]
x?−→ y(b) : B : [D ]

[T 1]
y(b′) : B : [{x : Ω}]D ]

x?−→ y(b′) : B : [D ]
[T 2]

y(b′) : B : [{x :N }]D ]
x?−→ y(b′) : B : [{x :N +1}]D ]

[T 3]
T

τ−→T
[T 4]

∀i ∈ 1,2, . . . ,k yi(bi) : Bi : [Di]
x?−→ yi(bi) : Bi : [D ′i ]

< {x(bx)]Xb};{yi(bi) : Bi : [Di]|i ∈ 1, . . . ,k}> x?(bx)−−−→< {x(bx)]Xb};{yi(bi) : Bi : [D ′i ]|i ∈ 1, . . . ,k}>
[T 5]

B > 0 Ni ≥ 1

< Xb;{y(by) : B : [{xi :Ni|i ∈ 1, . . . ,k}]}]C >
y!(by)−−−→< Xb;{y(by) : B−1 : [{xi :Ni−1|i ∈ 1, . . . ,k}]}]C >

[T 6]

Table 7: T Semantics

Definition D.2. If Tr =< Xb;C > is a type of interfacing subcomponent K of composite component [x̃ >
ỹ]{G;r = K,R;D;r[F ]} then T (F,Tr) is the Tr-modified type where:

T (F,< Xb,C >) , < Xb;T (F,C)>
T (F,{y(b) : B : [D]}]C) , T (F,{y(b) : B : [D]})]T (F,C)
T (F,{y(b) : B : [D]}) , {y(b) : B : [T (D)]}
T (F,{x :M}]D) , T (F,{x :M})]T (D) where M ∈ {N,Ω}
T (F,x :M) , {x :M} if x /∈ F i, where M ∈ {N,Ω}
T (F,x :M) , {x :∞} if x ∈ F i

T (F,x : Ω) , /0 if x ∈ F i

Note that for K = [x̃> ỹ]{G,r1 =K1,r2 =K2, . . . ,rn =Kn;D;r1[F ]}we have that T (F,Tr2)=Tr2 , . . . ,T (F,Trk)=
Trk , since the only component that forwards the values from/to external environment is component K1.

E Conformance relation

T
x?(b)−−−→T ′ Γ `T ′ ./ LP

Γ `T ./ x? :b.LP
[InpCon f ] T

y!(b)−−→T ′ Γ `T ′ ./ LP
Γ `T ./ y! :b.LP

[OutCon f ]

Γ `T ./ end [EndCon f ]
T ′ ≤T

Γ,X : T ′ `T ./ X
[VarCon f ]

Γ,X : T `T ./ LP
Γ `T ./ recX .LP

[RecCon f ]

Table 8: Conformance

Rule [InpCon f ] ensures that a modified type T is conformant with the protocol, where it can receive an
input of a matching type with a continuation as a protocol LP, if a modified type can receive a value on
port x, and assuming that port x receives a values of type b and the evolved type is conformant with LP.
Similar reasoning is for an output. Rule [EndCon f ] states that a modified type is always conformant with
the termination protocol. Finally, we have two rules [VarCon f ] and [RecCon f ] for the recursion. The
premise of Rule [VarCon f ] requires that the type associated with the recursion variable by assumption and
the type under consideration are related as T ′ ≤T (Definition D.1). By Lemma C.1 the possible difference
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between types T ′ and T is that some initial dependencies might be dropped or that the number of values
available on some input ports for some outputs might increase. Rule [RecCon f ] states that T is conformant
with a protocol recX.LP, provided that the type is conformant with the body of the recursion under the
environment extended with assumption X : T .

F Subject Reduction Proof

We now prove the Subject Reduction theorem (Theorem 4.1). In reminder:

K ⇓ T and K
λ (v)−−→ K′ and v has type b then T

λ (b)−−→ T ′ and K′ ⇓ T ′.

Proof. (sketch) Proof by induction on the derivation of K
λ (v)−−→ K′.

We divide the proof into two parts: first one is where we consider component K to be a base component
and the second one where K is a composite one.

We start with the rules that define a transition of a base component:

[InpBase] If K = [x̃ > ỹ]{L} x?v−−→ [x̃ > ỹ]{L′} = K′, by inversion we know that x ∈ x̃ and L x?v−→ L′, so Proposi-
tion A.1 holds. Since x ∈ x̃, by the definition of the type extraction we know that x(bx) ∈ Xb, where
T =< Xb;C >, for some bx such that γ(v) = bx. Since x(bx) ∈ Xb, by Proposition C.1 we know that T

evolves in T
x?(bx)−−−→ T ′, for some T ′. By Lemma C.1 and Definition 4.1 we conclude that K′ ⇓ T ′.

[OutBase] If K = [x̃ > ỹ]{L} y!v−→ [x̃ > ỹ]{L′} = K′, by inversion we know that y ∈ ỹ and L
y!v−→ L′. Since y ∈ ỹ,

by the definition of the type extraction we know that y(by) : B : [D] ∈C, where T = {Xb;C}, for some

by,B,D where γ(v) = by. Since [x̃ > ỹ]{L} y!v−→ [x̃ > ỹ]{L′} we know that then Proposition A.2 holds,
so by the type extraction we conclude that also that for each x :N ∈ D holds that N > 0. Since K is a

base component B=∞. By Rule [T 6] we know that then T
y!(bx)−−−→ T ′, for some T ′. By Proposition A.2,

by Rule [T 6] and by Definition 4.1 we conclude that K′ ⇓ T ′.

Now, we move to the rules that characterise an evolution of a composite component.

[InpComp] K = [x̃ > ỹ]{G;r = K,R;D;r[F ]} x?v−−→ [x̃ > ỹ]{G;r = K′,R;D;r[F ]}= K′, then by inversion we know
that x ∈ x̃ and that exists z such that K z?v−→ K′ ∧F = z← x,F ′. Since K is well-typed, all its sub-
components are also well-typed, so K ⇓ Tr, for some Tr. By induction hypothesis exists T ′r such that

Tr
z?(bx)−−−→ T ′r ∧K′ ⇓ T ′r , where bx = γ(v).

Let the type of K be T =<Xb;C>. Since x∈ x̃ then by the definition of the type extraction x(bx)∈Xb.

By Proposition C.1 we know that T
x?(bx)−−−→ T ′, for some T ′.

Since the global protocol G remained the same, its projection to role r (denoted by LP) remains
unchanged due to an input on x, since x as an external port does not affect the protocol. Moreover, the
modified types of each subcomponent, remained conformant to their local protocol after the evolution
of K.

Now we need to prove that evolved type T ′ is the type extracted from T ′r and LP, i.e., K′ ⇓ T ′.
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Since the set of input ports with an input does not change, the extracted type from T ′r and LP will have
the same set of input ports as T (Xb). The only possible change can be in the set of constraints.

By Proposition C.3, we analyse the constraints of output ports of T separately. We have three cases:
First one is when the output port does not depend on the input on x; second one is when it depends
per each value; the last one is when we have an initial dependency. Each of these constraints was
extracted from Tr and LP. We now consider how an input on x affect these constraints.

Recall that T =< Xb,C > and let Tr =< Zb;Cr > where Cr = {y(by) : Br : [Dr]}]C′r, with F = y←
y,z← x,F ′ then:

Case 1. C = {y(by) : B : [D]} ]C′ ∧ x /∈ dom(D) i.e., the first case is when input port x is not in the
domain of the dependencies of some output port y.
Since z ∈ F i and y ∈ Fo, then by the definition of the type extraction of T we have that ¬∃M | z :
M ∈ Dd(Cr,F,y)]Dt(Cr,F,LP,y), i.e., z is not in the domain of dependencies of y obtained in
a direct nor transitive way. With an input on z we do not create any new dependencies, so the
constraint for y in the type extracted from T ′r and LP is y(by) : B : [D].
Observing the constraint for y when T evolves by Rule [T1] we have that:

y(by) : B : [D]
x?−→ y(by) : B : [D].

Hence, as the extracted type, T ′ will also have y(by) : B : [D] for the constraint for port y.

Case 2. C = {y(by) : B : [{x : N}]D]}]C′⇒ z : N ∈ D(Cr,F,LP,y) i.e., port x is in the domain of the
dependencies of some port y as a per each value dependency.
By the definition of the type extraction we have two ways to obtain the per each value depen-
dency:

(a) z :N ∈ Dd(Cr,F,y) i.e., when dependency on z was obtained in a direct way.
This implies that by the definition of the type extraction Cr = {y(by) : Br : [{z:N}]D′r]}]C′r
and by inversion of Rule [T5], applying Rule [T3] we have that:
y(by) : Br : [{z :N}]D′r]

z?−→ y(by) : Br : [{z :N+1}]D′r].
Since it is a dependency obtained in a direct way, by the definition of the type extraction the
constraint for y in the extracted type from LP and T ′r is y(by) : B : [{x :N+1}]D′].

Observing the constraint for y when T evolves with an input on x, by inversion on Rule [T5]
and applying Rule [T3] we have that: y(by) : B : [{x :N}]D]

x?−→ y(by) : B : [{x :N+1}]D].

(b) z :N ∈ Dt(Cr,F,LP,y) i.e., when the dependency on z was obtained in a transitive way.
By the definition of the type extraction exist ports y′ and z′ such that y′,z′ ∈ f p(LP) and
y′ �LP

3 z′, where port y (y ∈ Fo) depends on port z′, and port y′ depends on port z (z ∈ F i)
namely: Cr = {y(by) : Br : [{z′ :N′}]D′r]}]{y′(by′) : B′′ : [{z :N′′}]D′′r ]}]C′r.
By the definition of the type extraction we know that the number of values received on x for
y (N) is computed as N′+N′′+vf(LP,z′,y′). So, N = N′+N′′+vf(LP,z′,y′).
By inversion on Rule [T5] and applying Rule [T3] we have that:
y′(by′) : B′′ : [{z :N′′}]D′′r ]

z?−→ y′(by′) : B′′ : [{z :N′′+1}]D′′r ]

We know that Tr
z?(b)−−−→ T ′r . Let T ′r =< Xb;Cr >. Since local protocol LP remains the same,

number of values flowing vf(LP,z′,y′) remained the same after an input on z.
Then in the extracted type from LP and T ′r we have that
z :N ∈Dt(Cr,F,LP,y) where N = N′+N′′+1+vf(LP,z′,y′). This number can be written as
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N = (N′+N′′+vf(LP,z′,y′))+1 = N +1.
We conclude that z : N+1 ∈ Dt(C,F,LP,y) and by the definition of the type extraction we
have that y(by) : B : [{x :N+1}]D] is the constraint for port y in the extracted type.

For T =< Xb;{y(by) : B : [{x : N} ]D]} ]C′ > by inversion of Rule [T5] and applying
Rule [T3] we have that:y(by) : B : [{x :N}]D]

x?−→ y(by) : B : [{x :N+1}]D]

So, y(by) : B : [{x :N+1}]D] is the constraint for y in T ′.

Case 3. C = {y(by) : B : [{x : Ω}]D]}]C′ i.e., port x is in the domain of the dependencies of some
output port y as an initial dependency. Consider again Tr =< Zb;Cr >.
We have two possible ways of obtaining the initial dependency:

(a) z : Ω ∈ Dd(Cr,F,y)∧ z : Ω /∈ Dt(Cr,F,LP,y) i.e., we obtained the initial dependency in a
direct way.
Then we have that Cr = {y(by) : Br : [{z : Ω}]D′r]}]C′r.
By Rule [T2] we have that: y(by) : Br : [{z : Ω}]D′r]

z?−→ y(by) : Br : [D′r].
This means that dependency is dropped, so it will also be dropped in the extracted type.
By Rule [T2] in T ′ the dependency of y on x will be dropped: y(by) : B : [{x : Ω}]D]

z?−→
y(by) : B : [D].

(b) z : Ω ∈ Dt(Cr,F,LP,y), i.e., the initial dependency was obtained in a transitive way. We do
not exclude the possibility of having z : Ω in the set of direct dependencies, since we saw
that with an input on z it will be dropped, so this possibility does not interfere with this case.
By the definition of the type extraction we have that there exist ports y′ and z′ such that
y′,z′ ∈ f p(LP) and y′ �LP

i z′, where
Cr = {y(by) : B′ : [{z′ :M′}]D′],y′(by′) : B′′ : [{z :M}]D′′]}]Cr1 .
One of the conditions of having a transitive initial dependencies are:

I i = 3∧M = 0∧M′ = Ω∧vf(LP,z′,y′) = 0
II i = 3∧M = Ω∧vf(LP,z′,y′) = 0

III i ∈ {1,2}∧M ≯ 0

Number vf(LP,z′,y′) remains the same (it is zero) due to the fact that the protocol did not
evolve. With an input on z transitive dependency on z is dropped due to the rules of the
semantic where either it is dropped since the dependency of y′ on x is dropped as initial
dependency (Rule [T2]) or M = M+1 ≥ 1, for some M ∈ N0 (Rule [T3]).
Due to the semantics of the typing language by inversion on Rule [T5], applying Rule [T2]
we have that also the dependency of y on x is dropped:
y(by) : B : [{x : Ω}]D]

x?−→ y(by) : B : [D].

Since all the constraints in the extracted type from T ′r and LP match the constraints in T ′ and the
set of input ports remain the same, we can conclude that the extracted type and T ′ are the same
and that K′ ⇓ T ′.

[OutComp] K = [x̃ > ỹ]{G;r = K,R;D;r[F ]} y(v)−−→ [x̃ > ỹ]{G;r = K′,R;D;r[F ]}= K′, then by inversion we know

that y ∈ ỹ that exist y such that K
y!(v)−−→ K′∧F = y← y,F ′. Since K is well-typed, so are its subcom-

ponents, thus, K ⇓ Tr. By induction hypothesis we have that ∃by,T ′r such that Tr
y!(by)−−−→ T ′r ∧K′ ⇓ T ′r ,

where γ(v) = b.
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Let T =< Xb;C >, since y ∈ Fo and Tr could do an output on y, the value is directly forwarded to y,

then ∃T ′ : T
y!(by)−−−→ T ′.

After an output on y, global protocol G remains unchanged, so is its projection to role r (denoted
by LP). Also, for the same reason all the subcomponents remain conformant to their local proto-
cols.Moreover, the set of input ports with their basic types in type T ′ and in the extracted type from
T ′r and LP remains unchanged.
Now we need to prove that type T ′ is the type extracted from T ′r and LP i.e., that K′ ⇓ T ′.
The set of input ports in the type extracted from T ′r and LP remains unchanged, i.e., it is the same as
in type T , since due to the rules of the semantics we cannot lose or gain new input ports.
Let Tr =< Zb;Cr > and Cr = {y(by) : Br : [Dr]}]Cr1 and we have that F = y← y,F ′⇒ y ∈ Fo.
For the extraction of the dependencies, we consider two cases: First case is that y has no dependencies
and the second one is when it has and due to the rules of the semantics (Rule [T6]), all of them are per
each value dependencies.

I If C = {y(by) : B : [ /0]}]C′ ⇒ ¬∃x | x : N ∈ (Dd(Cr,F,y)∪Dt(Cr,F,LP,y)), i.e., if y had no
dependencies in type T , then in the type extraction the sets of dependencies of y obtained in a
direct or transitive way are empty.

By induction hypothesis we have that Tr
y!(by)−−−→ T ′r , thus, we have that:

< Zb;{y(by) : Br : [Dr]}]Cr1 >
y!(by)−−−→< Zb;{y(by) : Br−1 : [D′r]}]Cr1 >

Observing Rule [T6] and Definition 4.2, we conclude that the boundary in the extracted type is
B′r = min{B1−1,B2−1,B3−1,Br−1}. So, the extracted type from T ′r and LP is

(< ren(F,Zb)>;ren({y(by) : B′r : [ /0]})]C′}

However, we cannot consider the set of possible boundaries {B2}, because in that case exists
some input port on which y initially depends that is not in f p(LP) nor in F i (extracted boundary,
the minimum is zero). This implies that y is not able to have an output, that as a consequence has
that a value cannot be emitted from y. If boundary is 0 a type cannot perform an output ([Rule
T6]), since in that case for the boundary of the type extracted from T ′ and LP is 0−1. So we
have that B′r = min{B1−1,B3−1,Br−1}.
Now, for type T , applying Rule [T 6]

< Xb;{y(by) : B : [ /0]}]C′ >
y!(by)−−−→< Xb;{y(by) : B−1 : [ /0]}]C′ > and we have that min{B1−

1,B3−1,Br−1}= min{B1,B2,B3,Br}−1 = B−1 and we conclude that the extracted type from
T ′r and LP matches with T ′.

– If C = {y(by) : B : [{x1 :N1, . . . ,xk :Nk}]D]}]C′, i.e., if y had dependencies on some input ports
x1, . . . ,xk.

By the definition of the type extraction we know that there exist a set {z1 :N1, . . . ,zk :Nk} where
{z1 :N1, . . . ,zk :Nk}= ren(F,{x1 :N1, . . . ,xk :Nk}) and
{z1 :N1, . . . ,zk :Nk}= Dt(Cr,F,LP,y)]Dd(Cr,F,y).
Considering that Tr =< Zb;Cr >, then z1 :N1, . . . ,zk :Nk ∈ Zb.
Observing how we obtained the dependencies of y on zi (i = 1,2, . . . ,k) in the extracted compo-
nent from Tr to LP, we have the following cases that focus on one input port, without the loss of
generality:
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Case 1. zi :Ni ∈ Dd(Cr,F,y), i.e., the dependencies are obtained in a direct way.
Then we have that Cr = {y(by) : Br : [{zi :Ni}]D′r]}]C′r. Since Tr had an output from port
y, by Rule [T6] we have that:

Tr
y!(by)−−−→< Zb;{y(by) : Br−1 : [{zi :Ni−1}]D′′r }]]C′r >= T ′r .

By Definition 4.2 in the extracted type obtained from LP and T ′r , we have that zi : Ni−1 is
the element of the set of the dependencies of y.

Case 2. zi :Ni ∈ Dt(Cr,F,LP,y), i.e., the dependencies are obtained in a transitive way.
We have to notice that it is a per each value dependency and that there is only one possible
way to obtain it, when we consider transitive dependencies:
Let Tr =< Zb;Cr > then there must exist y′,z′ ∈ f p(LP) such that y′ �LP

3 z′ (recap: recursive
protocol, where both y′ and z′ are in rep(LP) in such an order that an output on y′ precedes
the input on z′), where
Cr = {y(by) : Br : [{z′ :N′}]Dy],y′(by′) : Br

1 : [{zi :Ny′
i }]Dy′ ]}]C′r.

Since Tr
y!(by)−−−→ T ′r , by Rule [T6] we have the following:

< Zb;Cr >
y!(by)−−−→< Zb;{y(by) : Br−1 : [{z′ : N′−1} ]D′y],y′(by′) : Br

r : [{zi : Ny′
i } ]D′]} ]

C′r >= T ′r , where by inversion we know that N′ > 0,Br > 0.

By the type extraction procedure from LP and T ′r , the number of values from port zi available
for y is Nzi = (N′−1)+Ny′

i +vf(LP,x′,y′).
Since T =< Xb;{y(by) : B−1 : [{x1 :N1, . . . ,xk :Nk}]D]}]C′ > and by the type extracting

procedure we know that Ni = N′+Ny′
i +vf(LP,z′,y′). By Rule [T6] we have that T

y!(by)−−−→<
Xb;{y(by) : B−1 : [{x1 :N1−1, . . . ,xi :Ni−1, . . . ,xk :Nk−1}]D]}]C′ >= T ′.
This implies that the number of values from port xi available for y (i = 1, . . . ,k) in type T ′

is Ni−1 = N′−1+Ny′
i −+vf(LP,z′,y′) = Nzi .

Note that vf(LP,z′,y′) remained the same since the protocol did not evolve.
The boundary of y decreases by one compared to the one in T and that all the ports in the
dependency of y have one value less available for computing y, applying Rule [T6] we have
that the extracted type and T ′ match so K′ ⇓ T ′.

[Internal] K = [x̃ > ỹ]{G;r = K,R;D;r[F ]} τ−→ K′ = [x̃ > ỹ]{G;r = K′,R;D;r[F ]}, then by inversion we know
that K τ−→ K′. If K has a type Tr, by induction hypothesis we know that there exist type T ′r such that
Tr

τ−→ Tr ∧K′ ⇓ Tr. We can conclude that each type of the subcomponents remained the same, and
also the global protocol did not evolve, so these types remained conformant with their local protocols.
Therefore, the extracted type from T ′r and LP is the one extracted from Tr and LP, and by Rule [T4]
we know that T τ−→ T .

[InpChor] K = [x̃ > ỹ]{G;r = Kr,R;D;r[F ]} τ−→ [x̃ > ỹ]{G′;r = K′r,R;D;r[F ]}= K′, then by inversion we know

that Kr
z?(v)−−→ K′r ∧ D = r.z′← p.u,D′ ∧ G r?l < v >−−−−−→ G′.

Let R = r1 = K1,r2 = K2, . . . ,rm = Km. Since K is well-typed, all its subcomponents are also well-
typed, hence, exist types Tr,T1, . . . ,Tm such that Kr ⇓ Tr, K1 ⇓ T1, . . . , Km ⇓ Tm.
Let the projection of protocol G to role r (G ↓r) be local protocol LP. Since component Kr, assigned
to role r, can input a value v on port z, then LP = z? :b.LP′.
By Definition D.2, since Kr is the only interfacing component, then T (F,Ti) = Ti, where i = 1, . . . ,m.
Since all the subcomponents are well-typed, their modified types are conformant to their local proto-
cols: T (F,Tr) ./ z? :b.LP′, T1 ./ G �r1 , . . . , Tm ./ G �rm .
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Since x is a port of Kr, after the input on z all the other subcomponents are conformant to their local
protocol.

By induction hypothesis, we know that exist b,T ′r such that γ(v) = b and Tr
z?(b)−−−→ T ′r .

Let Tr =< Zb;Cr >, Ti =< Zi
b;Ci >, where i = 1, . . . ,m. Since z(b) ∈ Zb and z(b) /∈ Zi

b,∀i = 1, . . . ,m,
by Rule [T 5] we have that:

T (F,Tr)
z?(b)−−−→T ′(F,Tr),T1

z?(b)−−−→ T1, . . . ,Tm
z?(b)−−−→ Tm.

By Rule [InpCon f ] we have that: T ′(F,Tr) ./ G′ �r,T1 ./ G′ �r1 . . . ,Tm ./ G′ �rm .

Let T =< Xb;C >, be the extracted type from LP and Tr. Since Tr
z?(b)−−−→ T ′r , then T does an internal

move, i.e., T τ−→ T . We need to prove that K′ ⇓ T .

Since the set of input ports Xb after any transition remains the same, we need to prove that the set of
constraints extracted from LP′ and T ′r will be exactly C Precisely, since we do not output a value from
the external ports it is enough to prove that the dependencies of the output ports remained the same.

In reminder Tr
z?(b)−−−→ T ′r and Tr =< Zb;Cr >. Since z ∈ f p(LP) we need to consider the following

cases:

Case 1. ¬∃y∈ Fo such that y(by) : By : [{z:M}]Dy], i.e., there is no external port depending on z. By the
definition of the type extraction we cannot obtain the transitive dependency (on some external
port) of any output port via z. So, we cannot obtain any new ones after an input on z, so the
dependencies of the external output ports remain unchanged.

Case 2. ∃y ∈ Fo such that y(by) : By : [{z :M}]Dy], i.e., some external output port depends on the input
on z.
Since we have local protocol LP = z′? : t ′b.LP′ we consider the following scenarios:

a. ¬∃y′ | y′ �LP
3 z, i.e., one of the conditions of obtaining the transitive dependency of en ex-

ternal port y, where z is the port involved, fails. By the definition of the type extraction the
dependencies obtained in a transitive way remain the same after an input on z since port z
does not have any impact on obtaining them.

b. ∃y′ | y′ �LP
3 z, i.e., one of the conditions for obtaining the transitive dependency of port y is

fulfilled.
We now have to consider other two possibilities:

I ¬∃z1 ∈ F i | y′(by′) : By′ : [{z1 : M1]Dy′}], one of the conditions of obtaining the tran-
sitive dependency of y where in the extraction port z is included, fails, so an input on z
will not change any dependencies obtained in a transitive way.

II ∃z1 ∈ F i | y′(by′) : By′ : [{z1 : M1}]Dy′ ] i.e., there exist an external port z1 such that y′

depends on it.
Combining cases 2,b and II, by the extraction procedure, we have the dependency of y
on z1 obtained in a transitive way. To sum up we have that set of constraints Cr is

Cr = {y(by) : By : [{z :M}]Dy],y′(by′) : By′ : [{z1 :M1}]Dy′ ]}]C1
r

where y′ �LP
3 z (recall that then LP1 = C [µX.C ′[y′! : t ′b.C

′′[x′? : .LP′]]]). Since we have
that LP = z? :b.LP′, indicates that the component already had an output from y′. Since
y′ depends on an input on z1 implies that the value is already received.
If M1 = Ω then the dependency of y on z1 was already dropped in T , so an input on z
does not change that fact.
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If instead, M1 = N and M = Ω, by the type extraction procedure in type T we do not
have a dependency of y on z1 (up to renaming), since vf(LP,z,y′) = 1. After an input
on z, vf(LP,z,y′) = 0, but the dependency of y on z will be dropped, hence, by the type
extraction procedure, there is no dependency of y on z1 obtained in a transitive way .
Now, we consider the case where M = N and M1 = N1. By the definition of the type
extraction the number of values from port z1 available for y in T (up to renaming) is
N+N1+vf(LP,z,y′) = N+N1+1 (vf(LP,z,y′) = 1). After an input on z, the number
of values of z available for y (that was N) will increase by 1 (Rule [T5]), hence in the
extracted type from T ′r and LP′ we have that the number of values of port z1 available
for y is N+1+N1+vf(LP,z,y′) = N+1+N1+0 (vf(LP,z,y′) = 0 since the value that
was flowing was input on z. We conclude that for this case the dependencies in the
constraint will remain the same in T ′, as it is in T .

We can conclude that dependencies of the output ports did not change. We conclude that the extracted
type from LP′ and T ′r is type T . Therefore, K′ ⇓ T .

[OutChor] K = [x̃ > ỹ]{G;r = Kr,R;D;r[F ]} τ−→ [x̃ > ỹ]{G′;r = K′r,R;D;r[F ]}= K′, then by inversion we know

that Kr
y′!(v)−−−→ K′r ∧ D = p.u← r.y′,D′ ∧ G r!l < v >−−−−−→ G′.

The first part of the proof for Rule [OutChor] and the assumptions are the same as for Rule [InpChor],
but for an output (from port y′).
Below we assume:

– T =< Xb;C >;
– R = r1 = K1,r2 = K2, . . . ,rm = Km.
– ∃Tr,T1, . . . ,Tm such that Kr ⇓ Tr, K1 ⇓ T1, . . . , Km ⇓ Tm;

– ∃b,T ′r | γ(v) = b ∧ Tr
y′!(b)−−−→ T ′r ;

– LP is the projection of G to role r and LP = y′! :b.LP′;
– T (F,Ti) = Ti, where i = 1, . . . ,m;
– T (F,Tr) ./ z? :b.LP′, T1 ./ G �r1 , . . . , Tm ./ G �rm ;

– G r?l < v >−−−−−→ G′ then G ↓i= G′ ↓i, i = 1, . . .m;
– Let Tr =< Zb;Cr >, Ti =< Zi

b;Ci >, where i = 1, . . . ,m;

– T (F,Tr)
y′!(b)−−−→T ′(F,Tr),T1

y′!(b)−−−→ T1, . . . ,Tm
y′!(b)−−−→ Tm;

– By Rule [OutCon f ] we have that: T ′(F,Tr) ./ G′ �r,T1 ./ G′ �r1 . . . ,Tm ./ G′ �rm .
Let us prove that the extracted type from T ′r and LP′ is T and that K′ ⇓ T .
Since the set of input ports Xb after any transition remains the same (we do not lose or gain
any new input ports due to the semantics of (modified) type), we need to prove that the set of
constraints extracted from LP′ and T ′r are exactly the ones in C. Again, since we do not output
a value from the external ports it is enough to prove that the dependencies of the output ports
remained the same.

In reminder we have that Tr
y′!(b)−−−→ T ′r and LP = y′! :b.LP′.

Let Tr =< Zb;{y(b) : By : [Dy]}]C1
r >.

Since Tr can do an output from port y′, by Rule [T6] we know that T ′r =< Zb;{y′(b) : By′−1: [Dy′
1 ]}]

C1
r >, where ∀z :N ∈ Dy′ ⇒ z :N−1 ∈ Dy′

1 .
If in the description of LP′ we do not have any input ports or if we had ones such that there is no
external output port depending on them, output on y′ does not have any impact on the dependencies
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obtained in a transitive way. Moreover, by the type extraction procedure, it is also irrelevant for
creating the dependencies obtained in a direct way.
Consider now the case where we have in the description of local protocol LP′ an input port z′ and that
∃y ∈ Fo such that y depends on z′. We have two cases:

Case 1. ¬∃z ∈ F i such that y′ depends on it. If this is the case, we do not have the dependency of port y
obtained in a transitive way, hence, the output from the port does not have any impact on the extracted
constraints of y.

Case 2. ∃z ∈ F i such that y′ depends on it.
Similar to the proof for Rule [InpChor] we have that set of constraints C is

Cr = {y′(by′) : By′ : [{z :M}]Dy′
2 ],y(b) : By : [{z′ :M′}]Dy]}]C2

r

Extracting type T , port y cannot initially depend on port z, since we know that y′ can output, which
implies that a value was already received on z, i.e. before an output on y′ the dependency was already
dropped.
If there was a per each value dependency of y on z in type T , then by the type extraction procedure
we know that y′ �LP

3 z′, M = N and M′ = N′. Before an output on y′, we have in T that the number
of values on z available for y is N +N′+0 (vf(LP,z′,y′) = 0 before an output on y′). After an output
on y′, N will decrease by 1 (Rule [T6]), but vf(LP,z′,y′) will increase by 1 (vf(LP,z′,y′) = 1). Hence,
in the extracted type from T ′r and LP′ the number of values of port z available for y is N−1+N1+
vf(LP,z,y′) = N−1+N1+1. Therefore, the dependencies of the output ports in type T ′ are the same
as those in T . Therefore, K ⇓ T ′, where T ′ = T .

G Progress Proof

First, we prove the following lemma that we use to prove the Progress theorem.

Lemma G.1. [Protocol Progresss] Let K = [x̃ > ỹ]{G;r = Kr,R;D;r[F ]} be a well-typed composite com-
ponent. Assuming all subcomponents enjoy the progress property:

K ⇓ T and T
λ (b)−−→ T ′ and λ (b) 6= τ then b is the type of a value v and K

λ (v)
==⇒ K′ and K′ ⇓ T ′.

Then for any trace such that

G
p1`1(v1)−−−−→ ·· · pk`k(vk)−−−−→ G′

we have that
[x̃ > ỹ]{G;R;D;r[F ]} τ−→ ·· · τ−→ [x̃ > ỹ]{G′;R′;D;r[F ]}

Proof. By induction on the size of the trace.

Base case. k = 1, i.e., the size of the trace is one.

Then we have that G
p`(v)−−−→ G′, where p ∈ {p!,p?}. Let R = p = Kp,R1. Since K is a well typed

component, there exists some T such that , K ⇓ T . Then all its subcomponents are well-typed, so exists Tp

such that Kp ⇓ Tp and let LP=G �p. Moreover, all the subcomponents’ modified types remained conformant
with their local protocols after protocol G evolved, besides the component with role p, since all the other

protocol projections remained the same. Instead, T (F,Tp)
a(b)−−→ T (F,T ′p), where a = x? if p = p?, a = y!
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if p = p!, and γ(v) = b, where x and y are ports explained in a distribution binder (D). After protocol G
evolved to G′, by Rule [InpCon f ] for a = x? or Rule [OutCon f ] for a = y!, we have that T (F,T ′p) ./ G′ �p,

so Tp
τ−→ ·· ·Tp

a(b)−−→ T ′p (in reminder Rule [T 4] Tp
τ−→ Tp). Subcomponent Kp enjoys the progress property, so

exists some value v of type b, and K′p such that Kp
a(v)
==⇒K′p and K′p ⇓ T ′p, K′p also enjoys the progress property.

Applying Rule[Internal] some number of times and then Rule [InpChor] (or [OutChor] depending on the
nature of I/O action) we have that K τ−→ [x̃ > ỹ]{G;R1;D;r[F ]} τ−→ ·· · [x̃ > ỹ]{G′;R′;D;r[F ]}= K′. We have
that K ⇓ T , by Theorem 4.1 then T τ−→ ·· ·T and K′ ⇓ T .

Induction hypothesis. Assume that the property holds for any trace of size k = n−1.

Inductive step. We prove that the property holds for any trace of size k = n, i.e.,

G
p1`1(v1)−−−−→ ·· · pn−1`n−1(vn−1)−−−−−−−−→ Gn−1 pn`n(vn)−−−−→ G′.

By induction hypothesis exists K′′ such that K τ−→ ·· · τ−→ [x̃ > ỹ]{Gn−1;R′′;D;r[F ]}= K′′.
Since K ⇓ T and K has some number of internal steps e.g., m steps, applying the Theorem 4.1 m times

we know that exists T ′′ such that T τ−→ ·· · τ−→ T ′′ and K′′ ⇓ T ′′.
By inversion on rules [InpChor], [OutChor] or [Internal] we know that then for some subcomponents

K1,K2, . . .Kl , l ≥ 1 such that R = p1 = K1, p2 = K2, . . . pl = Kl,R′ (R′ possibly empty list) with possibility of
having the case where pi = Ki = r = Kr for some i ∈ {1,2, . . . l} holds the following

Ki
a(v)
==⇒ K′i

or
Ki

τ
=⇒ K′i

Since each subcomponent Ki is well-typed, i.e., exists Ti such that Ki ⇓ Ti, by the Theorem 4.1 (applied
multiple times) exists T ′i such that K′i ⇓ T ′i . Each K′i enjoys the progress property.

If we apply the reasoning for the base case having Gn−1 pn`n(vn)−−−−→ G′, K′′ ⇓ T ′′ and all subcomponents of
K′′ that enjoy the progress property, we conclude that K′′ τ

=⇒ K′, so in conclusion, for n-size trace where

G
p1`1(v1)−−−−→ ·· · pn−1`n−1(vn−1)−−−−−−−−→ Gn−1 pn`n(vn)−−−−→ G′.

exists K′ such that
K τ
=⇒ K′.

Now we prove the Progress theorem (Theorem 4.2). In reminder:

K ⇓ T and T
λ (b)−−→ T ′ and λ (b) 6= τ then b is the type of a value v and K

λ (v)
==⇒ K′ and K′ ⇓ T ′.

Proof. (Sketch) Proof by induction on the structure of K.

• First, we prove the base case, where K is a base component by inspection on the rules for types.

• Then we assume that the progress property holds for all the subcomponents of K.

• Finally, we prove that the progress property holds for K by inspection on the rules for types.
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Base case. Proof by inspection on the rules for types. Let K be a base component [x̃〉 ỹ]{L} of type T .

[T5] < {x(bx)}]Xb;{yi(bi) : Bi : [Di]|i∈ 1, . . . ,k}> x?(bx)−−−→< {x(bx)}]Xb;{yi(bi) : Bi : [D′i]|i∈ 1, . . . ,k}>,

then by inversion we know that ∀i ∈ 1,2, . . . ,k it holds that yi(bi) : Bi : [Di]
x?−→ yi(bi) : Bi : [D′i]. Since

x(bx) ∈ {x(bx)}]Xb, by Definition 4.1, we have that x ∈ x̃ and that there exist a component K′ and a

value v of type b (γ(v) = bx) such that K
x?(v)−−−→ K′. We need to prove that K′ ⇓ T ′.

We have that T =<Xb;{Ci|i= 1,2, . . . ,k}> and T
x?(bx)−−−→T ′ then, by Lemma C.1, T ′=<Xb;{inc({Ci,x})|i=

1,2, . . . ,k}> (by the type semantics, T ′ is unique).

Since K is a base component and [x̃〉 ỹ]{L} x?(v)−−−→ [x̃〉 ỹ]{L′}, then by inversion on Rule [InpBase] we
know that L x?v−→ L′ and that x ∈ x̃, so Proposition A.1 holds.
By Definition 4.1 we have that K′ ⇓ T ′.

[T6] <Xb;{y(by) : B : [{xi :Ni|i∈ 1, . . . ,k}]}]C>
y!(by)−−−→<Xb;{y(by) : B−1 : [{xi :Ni−1|i∈ 1, . . . ,k}]}]C>.

By inversion we know that B > 0 and Ni > 0 for all i ∈ 1, . . . ,k.
Since it holds that y(by) : B : [{xi : Ni|i ∈ 1, . . . ,k}] ∈ {y(by) : B : [{xi : Ni|i ∈ 1, . . . ,k}]} ]C, then
by Definition 4.1 we have that y ∈ ỹ, and that there exist K′ and a value v of type by (γ(v) = by) such

that K
y!(v)−−→ K′. We need to prove that K′ ⇓ T ′. Recall that K = [x̃〉 ỹ]{L}, then since [x̃〉 ỹ]{L} y!(v)−−→

[x̃〉 ỹ]{L′} by the premise of Rule [OutBase] we know that L
y!(v)−−→ L′ and y ∈ ỹ, so Proposition A.2

holds.
By Definition 4.1 we conclude that K′ ⇓ T ′.

We proved the case where K is a base component. Now we apply the induction hypothesis for a com-
posite component.

Induction hypothesis Assume that all the subcomponents of K enjoy the progress property.

Inductive step We prove that component K enjoys the progress property.

We have that K = [x̃ > ỹ]{G;r = Kr,R;D;r[F ]} where K ⇓ T and T
λ (b)−−→ T ′.

Let T =< Xb;C >.
Since K ⇓ T then exists a type Tr such that Kr ⇓ Tr. Let Tr =< Zb;Cr > and LP be the local protocol

of component Kr. Since K is well-typed, all of its subcomonent’s modified types are conformant with their
local protocol (e.g. T (F,Tr) ./ G �r= LP).

Let us now divide the proof depending on label λ .

Case 1. [λ = x?], i.e., if we had an input on port x.

Since T
x?(bx)−−−→ T ′ we know by Rule [T5]) that x(b) ∈ Xb. By the extraction procedure of a composite

component ∃z(bx)∈ Zb,T ′r | F = z← x,F ′⇒ Tr
z?(bx)−−−→ T ′r . By induction hypothesis ∃K′r,γ,v | Kr

z?(v)−−→
K′r ∧K′r ⇓ T ′r ∧ γ(v) = bx (since the value is forwarded the value is directly input, i.e., the number

of internal moves is zero). Applying Rule [InpComp] we have that then K
x?(v)−−−→ K′. Since K ⇓ T

and K
x?(v)−−−→ K′, applying Theorem 4.1 and knowing by the definition of the type extraction that T ′ is

unique we have that K′ ⇓ T ′.
This is true because an external input does not affect the modified types of the subcomponents different
from the interfacing one, so they remained conformant to their local protocol. In the case of the
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interfacing component by Rule [T 5] and Definition D.2, an input on the external port does not affect
the modified type.

Case 2. [λ = y!]

Since K ⇓ T and T
y!(b)−−→ T ′ we know by the definition of the type extraction that ∃y : F = y← y,F ′.

We have to consider two possible cases:

1 Tr
y!(b)−−→ T ′r

2 Tr 6
y!(b)−−→

If the case 1 holds, by induction hypothesis exist K′r and v such that Kr
y!(v)−−→ K′r, γ(v) = b and K′ ⇓ T ′r

(since the value is forwarded the value is directly output, i.e., the number of internal moves is zero).

Then, by the rule [OutComp] we have that K = [x̃ > ỹ]{G;r = Kr,R;D;r[F ]} y!(v)−−→K = [x̃ > ỹ]{G;r =
K′r,R;D;r[F ]}. Since G did not move (all the projections remained the same) and the output on the
port y does not interfere with the conformance, we can conclude that T (T ′r )G �r= LP. Since all the
modified type of other components remain the same, by Theorem 4.1 we can conclude that K′ ⇓ T ′.

If the case 2 holds, T can output a value but Tr cannot. This means that during the type extraction we
capture values that are flowing. Since port y can output, this means that all its dependencies are sat-
isfied. However, since F = y← y,F ′, but y still has some unsatisfied dependencies, the only possible
case is that y still needs to receive the values from the ports in f p(LP):

Assume that there is one input port, e.g., z′ ∈ f p(LP) (without loss of generality since the reasoning
can be reproduced) such that y depends on it, and on which does not have the dependency satisfied.
Let LP = G �r and Tr =< Zb;Cr > where

Cr = {y(b) : Br : [Dr]}]C′r.

We have the case where Dr = {z′ :M}]D′r ∧ (M = 0∨M = Ω).
Since T (Tr) ./ LP and z′ ∈ f p(LP) then we can write that T (F,Tr) ./ C [z′ :b′.LP′]. This implies that

LP′ = G′ ↓r where G→ ··· r`(v′)−−−→G′. Since K ⇓ T and by induction hypothesis all the subcomponents
enjoy the progress property, by Lemma G.1 exists a trace such that K τ−→ ·· · τ−→= [x̃ > ỹ]{G′;r =
K′r,R;D;r[F ]} = K′′ and we have that exists some T ′r such that K′r ⇓ T ′r . Applying Rule [InpCon f ]
(possibly multiple times, toghether with the Rule [OutCon f ]) we have that T (F,T ′r ) ./ G′ �r which
implies that we had an input on z′. Since all the dependencies of y are satisfied now, we conclude

based on the case 1) that exists K′ such that K′′
y!(v)−−→ K′. Then we have K

y!(v)
==⇒ and Theorem 4.1

(applied multiple times) exists T ′ such that K′ ⇓ T ′.
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