Catastrophe by Design

Destabilizing Wasteful Technologies & The Phase Transition from Proof of Work to Proof of Stake

Stefanos Leonardos, Iosif Sakos, Costas Courcoubetis and Georgios Piliouras

Energy Consumption of PoW

Proof of Work (PoW): Security \iff Work \iff Energy Consumption

- 1 BTC transaction = 775.818 VISA transactions.
- BTC consumes more energy than Finland and Pakistan.
- Energy consumption doubles every year.
- BTC is only one out of many PoW blockchains, e.g., Ethereum.

Figure: The Cambridge Bitcoin Electricity Consumption Index (CEBCI)

Transtition to PoS

Proof of Stake (PoS) has equivalent provable guarantees to PoW. But:

- More work implies more safety more reliable applications (e.g., BTC).
- When all PoW it is individually rational to also PoW.
- Even worse PoW is evolutionary stable: small groups of adopters of alternative technologies are doomed to fail.

These observations hint towards a game-theoretic model.

Model I: Agents and Strategies

A population p of agents, investors or miners (physical or virtual)

- Mass K > 0: total available capital or resources, e.g., money, hardware or electricity.
- Strategies: two available technologies, W (costly), and S.
- Investment cost: $\gamma > 0$ for W and 0 for S.
- Population states: $X = \{(x, 1 x) : x \in [0, 1]\}$ where x = fraction of PoW investors

Model II: Value and Payoffs

Each technology creates value split among adopters

- Value V, Adoption $\alpha > 1$:
 - $V_W = V(xK)^{\alpha}$ and $V_S = V((1-x)K)^{\alpha}$
- Payoff functions: equal share amongst all invested units:

•
$$u(W, x) = V_W \cdot (xK)^{-1} - \gamma = VK^{\alpha - 1}x^{\alpha - 1} - \gamma$$

• $u(S, x) = V_S \cdot ((1 - x)K)^{-1} = VK^{\alpha - 1}(1 - x)^{\alpha - 1}$

- For the purposes of this talk we restrict ourselves to the case $\alpha = 2$:
 - $u(W,x) = VKx \gamma$
 - u(S, x) = VK(1 x)

An Evolutionary Game

Evolutionary game interpretation

$$P = \begin{array}{cc} W & S \\ W & \left(\begin{array}{cc} VK - \gamma & -\gamma \\ 0 & VK \end{array} \right) \end{array}$$
 (G1)

Theorem

(G1) has three Nash equilibria: (W, W), (S,S) and one mixed. The two pure equilibria are evolutionary stable, whereas the mixed one is unstable.

Q-Learning dynamics:

$$\dot{x} = x \left[\underbrace{u(W, x) - \bar{u}(x)}_{\text{Replicator Dynamics}} - T \cdot \underbrace{\left(x \ln x + (1 - x) \ln (1 - x)\right)}_{\text{Entropy}} \right]$$

Where
$$\bar{u}(x) = xu(W, x) + (1 - x)u(S, x)$$

Quantal Response Equilibrium (QRE): The steady states of the system, i.e., $\dot{x} = 0$.

We can affect the agents' rationality by scaling the agents utilities:

$$\begin{split} x[\frac{u(W,x)}{c} - \frac{\bar{u}(x)}{c} - T \cdot (x \ln x + (1-x) \ln (1-x))] &= 0 \\ \iff x[u(W,x) - \bar{u}(x) - cT \cdot (x \ln x + (1-x) \ln (1-x))] &= 0 \end{split}$$

QRE Correspondence: Visually

In our case
$$(\alpha = 2)$$
: $\dot{x} = x(1-x)[2x - (1+\gamma) - T \ln(\frac{x}{1-x})]$

QRE Correspondence: Formally

Theorem

For any $\alpha > 1$ there exists a finite sequence of temperatures $T = \langle T_0, T_1, \dots \rangle$ such as starting from an initial state x_0 and performing the following procedure for each $T_i \in T$:

- Scale the system's temperature at T_i , and
- Wait until the system converges to a QRE

the system is going to converge to the desirable state x = 0 which corresponds to energy-friendly technology S.

We can reliably destabilize PoW equilibrium and converge to PoS equilibrium by introducing and removing taxes in the system.

Short Term Policy ⇒ Long Lasting Effects

Conclusion

