
Fed-DIC: Diagonally Interleaved
Coding in a Federated Cloud

Environment
Giannis Tzouros
Department of Informatics
Athens University of Economics and Business

Vana Kalogeraki
Department of Informatics
Athens University of Economics and Business

Introduction
l In recent years, the management of big data

has become a vital challenge in distributed
storage systems

l Failures, outages and unreliable equipment
may lead to data loss and slowdowns

l To guarantee availability, distributed systems
deploy fault tolerance methods

Fault Tolerance Methods
l Replication

+ Simplest form of redundancy
+ Replicates data content into multiple replicas for data recovery
- Massive storage overhead

l Erasure Coding
+ Equal or higher redundancy that Replication
+ Creates parity data that recover multiple chunks within a data block
+ Higher storage efficiency
- Limited reliability (depending on the # of parity data)
- High read and network access cost during repairing processes due to

sparsely stored data
- The sparsity problem can be dealt by using metadata, but it depends

on where the metadata will be stored

Federated Cloud
l Most popular distributed systems today (HDFS, Azure,

Google FileSystem, Ceph) store data into multiple nodes,
organized in racks, using load balancing policies.

l However, these policies are limited due to data size and
node storage behavior, leading to the need for
interconnecting cloud computing.

l Federated Cloud: Cloud environment that utilizes
multiple smaller clouds with HDFS storage clusters,
comprising one NameNode and multiple DataNodes

l The client can use the federated cloud to communicate
with every NameNode to store data across different
clusters

l Improved load balancing by storing data through multiple
clusters while avoiding overburdening issues.

-1 0 1 2 3 4 5 6

1 B1,-1 B1,0 B1,1 B1,2 B1,3 B1,4 B1,5 B1,6

2 B2,-1 B2,0 B2,1 B2,2 B2,3 B2,4 B2,5 B2,6

3 B3,-1 B3,0 B3,1 B3,2 B3,3 B3,4 B3,5 B3,6

P1 Null Null Null P1(d1) P1(d2) P1(d3) P1(d4) Null

P2 Null Null Null Null P2(d1) P2(d2) P2(d3) P2(d4)

Diagonally Interleaved Codes
l Burst erasure model that constructs an optimal convolutional

code by interleaving data stripes in a diagonal order
l c: interval between input messages
l d: total number of symbols in a stripe
l k: number of parity symbols in a stripe

l An input message is split into a vector of c columns and d-k
rows. Blank tables are created between the vector and the
message is re-arranged in a diagonal order.

l Next, a systematic block code (e.g. Reed-Solomon) encodes
every diagonal group into stripes containing parity symbols

l Diagonally interleaved codes provide extended fault
tolerance compared to simpler erasure codes by generating
parity data for multiple portions of a data block

d1 d2 d3 d4

Problem & Challenges
l Problem Definition: How can we achieve high reliability with

minimum access cost in Federated clouds?
l Approach: Implement an erasure coding framework which

integrates federated cloud storage with metadata techniques

l Challenges:
1) How can we retrieve data without the need to access a large

number of clusters or nodes within the clusters?
2) How can we enhance the fault tolerance of our system and

improve it over simpler erasure codes?
3) Which load balancing policy should we consider for handling and

storing multiple streams of data?

Our Solution: Fed-DIC
l Fed-DIC: Fedarated cloud Diagonally
Interleaved Coding

l Utilizes diagonal interleaving and erasure
coding on streaming data records in a
federated edge cloud environment.

l Supports load balancing by uploading
different streams in a rotational order

l Components
q Edge-side clients
q Federated cloud
q Network Hub that connects the clients to

the cloud

Client Services
l Interleaver: Arranges input data into a grid and

interleaves them into diagonal groups

l Coder: Encodes diagonal groups prior to being uploaded
and decodes a diagonal group during the retrieval process

l Destination module: Splits the encoded stripes into
batches and configures the destination clusters
where the batches will be stored

l Hadoop Service: Communicates with NameNodes of each cluster
in order to upload diagonal stripe batches.

l Metadata Service: Creates metadata index for uploaded data
directories and provides interface for the user for data retrieval

l Extractor: Searches a received diagonal stripe to
extract the requested data record

System Metrics
l Read access cost for a query q:

l l: number of lines read in metadata file, rmd: Reading cost during metadata search
l h: number of accessed clusters, rh: reading cost on accessing an HDFS cluster
l D: number of chunks in a data stripe, pi : probability of a chunk being present, tm : searching delay from a

missing chunk

l Overall query storage latency Lq:
l Tp: chunk transmission time
l B : connection bandwidth
l Tdecq : decoding time for query q
l C : number of encoded diagonal

groups
l ci: a single chunk in a diagonal

group

l Total access
latency for all
Q queries:

l Data loss percentage:

Fed-DIC Operations
l Store data to the federated cloud

q The input data are trace records that include
information for G sensor groups and R days.
The data is organized into a grid with R
columns and G rows based on the numbers
of sensor groups and days.

q API:
l Encode(): Groups grid data into diagonal

groups, merges these groups into new data
blocks and encodes them using RS.

l Store(): Splits encoded stripes into batch
groups, stores them into different clusters
within the cloud and creates a metadata
file with the locations of the stored data.

D D D D D D D
D D D D D D D
D D D D D D D
D D D D D D D
D D D D D D D

D D D B

B1 B2 . . BN P1 . PM

Fed-DIC Operations
l Store data to the federated cloud

q The input data are trace records that include
information for G sensor groups and R days.
The data is organized into a grid with R
columns and G rows based on the numbers
of sensor groups and days.

q API:
l Encode(): Groups grid data into diagonal

groups, merges these groups into new data
blocks and encodes them using RS.

l Store(): Splits encoded stripes into batch
groups, stores them into different clusters
within the cloud and creates a metadata
file with the locations of the stored data.

B1 B2 . . BN P1 . PM

B1 B2 . . BN P1 . PM

B1 B2 . . BN P1 . PM

B1 B2 . . BN P1 . PM

Fed-DIC Operations
l Retrieve data from the federated cloud

q The system provides an interface to the user
for issuing queries about the day and the
sensor group for one or multiple data
records. When the queries are created, they
are processed by the below API operations:

q API:
l Retrieve(): Provides an interface to the

user for entering data record queries,
searches the metadata file for the diagonal
stripe with the requested record and
stores temporarily the stripe to the clients.

l Decode(): Decodes a stripe into its original
data and extracts the requested data
record from that stripe.

User Query

B1 B2 . . BN P1 . PM

B D D D

DOutput:

Experiments
l We compared Fed-DIC to 3-way replication and RS(7,4) through a number

of experiments

l Client machine specs: Intel i7-7700 4-core 3.5 GHz CPU, 16GB RAM, 1TB
disk drive, Windows 10 OS

l Network Hub specs: WAN VPN Router with a data throughput of 100 Mbps
and support of 20,000 concurrent connections

l Cloud specs: 4 clusters in Oracle VirtualBox each with 4 VMs, Linux
Lubuntu 16.04 OS, Apache Hadoop 3.1.1. We used 2 machines, each
running 8 VMs.

l Input data extracted from SCATS sensors that are deployed in Dublin Smart
City

Experiments

l The RS chunks are distributed evenly (3 in first 3 clusters, 2
in last) in order to utilize all of our experimental
environment

l With Fed-DIC we can extract up to 4 data records and 2
records across different clusters and achieve up to 60%
lower download latency compared to extracting the entire
data file with RS

l Total download latency comparison: We attempt to extract a
stored data file Reed-Solomon and Fed-DIC using parameters
(7,4)

l Unlike Fed-DIC where we can extract a portion of our data, in RS
we need to download the entire input data file

l Data Loss rate between 3 fault tolerance
methods

l Even when up to 40% of the nodes are
available in the federated cloud, Fed-DIC can
maintain a portion of data fully recoverable
to the user compared to Replication and RS

Experiments

l Storage Overhead between Replication, Erasure Coding and Fed-DIC

l A single chunk generated from erasure coding and Fed-DIC has a significantly
smaller storage size compared to a full sized replica created by Replication

Experiments

l Maximum Transfer Rate for replication, erasure coding and 2 cases of Fed-DIC
(Single record query and 7 record query)

l While Erasure coding and replication overburden the system with high bandwidth
rates, Fed-DIC’s small data transfers are much less demanding

Experiments

l Load balance comparison among the 3 fault tolerance methods
l 4 different streams with similar sizes were uploaded to the cloud with each method
l While Replication and RS place data randomly throughout the clusters, Fed-DIC

uploads the streams using the round-robin policy described earlier for balancing the
load among the cluster storages

Conclusion
l We presented Fed-DIC, our framework that integrates Diagonal Interleaved Coding

with organized storage of the encoded data in a federated cloud environment

l Our experimental evaluations illustrate the benefits of our framework compared
to state-of-the-art fault tolerance methods in terms of total read access latency,
data loss percentage, maximum network transfer rate, storage overhead and load
balancing

l For future work, we plan to deploy Fed-DIC in a federated environment with
different types hardware and equipment

Fed-DIC: Diagonally Interleaved
Coding in a Federated Cloud

Environment
Giannis Tzouros
Department of Informatics
Athens University of Economics and Business

Vana Kalogeraki
Department of Informatics
Athens University of Economics and Business

