
Lorenzo Bacchiani Univ. of Bologna - Italy

Optimal and Automated
Deployment for Microservices

Joint work with:
M. Bravetti, S. Giallorenzo, I. Talevi and G. Zavattaro

Univ. of Bologna - Italy

J. Mauro Southern Denmark Univ. - Denmark

Deploying component-based
applications is complex

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Automatic synthesis of
deployment orchestration
◆Mastering such complexity requires

automation

◆Deployment orchestration synthesis
requires specific knowledge:

◼ Component dependencies

◼ Component configuration life-cycle

(similar to dependency-conflicts metadata used in the automatic
configuration of package-based software distributions)

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

FASE'19 - 11.4.2019Optimal and Automated Deployment for Microservices

CloudMF [N.Ferry et al. – ACM ToIT 18]

Dependencies and
configuration life-cycle

Dependencies

Configuration
life-cycle

Is the automated deployment
problem decidable?

◆We saw that such complexity causes
orchestration synthesis to be uncedidable

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

What if components are
Microservices?

◆Microservices

◼ Components become:

 Fine grained

 Loosely coupled

◼ This facilitates:

Development (simple components)

Maintenance (local modifications)

…

◆What about deployment?
ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Microservice’s finite state
automaton

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

◆Fixed state machine states/transitions

State-of-the-art microservice
deployment technologies

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

version: '3'
services:

web:
build: .
image: some-image
ports:

- "3001:3000"
dns: "8.8.8.8"
volumes:

- ".:/app"
env_file: .env

links:
- redis:redis

external_links:
- postgres1

...

Two types of
dependencies:
•links

force an order
of activation
•external links

order of activation
does not matter

State-of-the-art microservice
deployment technologies

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

apiVersion: v1
kind: Pod
metadata:

name: frontend
spec:

containers:
- name: db

image: mysql
env:
- name: MYSQL_ROOT_PASSWORD

value: "password"
resources:

requests:
memory: "64Mi"
cpu: "250m"

...

Services (pods)
consume resources

Hosting nodes must
provide pods with such
resources

A simplified model for
microservice deployment

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Legend

Message

Receiver

Cost: CPU: 2 RAM: 4

Node1_large - CPU: 2, RAM: 4, cost: 100

Message

Analyzer
Cost: CPU: 2 RAM: 3

Attachment

Analyzer
Cost: CPU: 2 RAM: 3

Node2_xlarge - CPU: 4, RAM: 8, cost: 199

≥ 3

≤ 2

Message

Analyzer
Cost: CPU: 2 RAM: 3

Node4_large - CPU: 2, RAM: 4, cost: 100

Message

Analyzer
Cost: CPU: 2 RAM: 3

Attachment

Analyzer
Cost: CPU: 2 RAM: 3

Node3_xlarge - CPU: 4, RAM: 8, cost: 199

provided interface

strong required interface

weak required interface

MR MA

AA

AA

AA

AA

AAMA

MA

MA

≥ 1

≥ 1

≤ 2≥ 1

8

8
8

8

Main result

◆Deployment orchestration synthesis is
decidable

◼ Proof:

 translation of the problem in sets of
constraints to be given in input to a
constraint solver/optimizer

◼ Side effect:

 optimization functions (e.g. minimize total cost)
can be used to optimize some metrics

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

The algorithm

◆Step 1:
compute service instances and their

distribution over computing nodes

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

NP-complete

The algorithm

◆Step 2:
defining connections among instances

Step 3:
orchestration synthesis (topological sort,
assuming no circular strong dependencies)

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

EXPTIME

Complexity is not encouraging

.. but ..

◼ We can assume, due to limited resources
and capacity constraints, that the
orchestration size is polynomial (not
exponential)

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Experimental validation

◆ We have modeled:

◼ a real-world microservice architecture

◼ computed optimal deployment and scaling
orchestrations

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Experimental validation
◆ Components/orhcestrations specified in ABS

(Abstract Behavioural Specification language)
executed with Erlang Backend

◆ Optimal deployments computed by using
SmartDepl and Zephyrus2

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

ABS feature
◆ Thanks to ABS expressiveness we have

modeled the system including explicit
modeling of load balancers

◆ We have exploited Erlang Backend to execute
our simulations

◆ We have exploited probabilistic properties to
evenly distributed email’s elementes

◆ We have exploited ABS time model to observe
system’s behavior over time

◆ 1 ABS time unit = 0.005 ms

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

SmartDepl & Zephyrus2
◆ SmartDepl is a tool to automatically

generates ABS deployment code and

◆ Zephyrus2 is the engin

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

System modeling
◆ Explicit Request queues of a fixed maximal

size in order to prevent system from over-
loading

◆ Deployment component’s speed adjusted at
run-time to reflect unused cores

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Automatically computed
orchestrations

◆Models and orchestrations available at:
https://github.com/LBacchiani/ABS-Simulations-Comparison

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Scalability experiment

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

◆ Message flow grows until it reaches a stable
situation

Results are encouraging

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Results are encouraging

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Results are encouraging

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Results are encouraging

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Conclusion & Future work

◆(Optimal) deployment of microservice
architectures is decidable and fully
automatable

◆Our approach has outperformed the
classic one

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

Conclusion & Future work

◆Future work:

◼ On-line computation of deployment
orchestrations (relax optimality to reduce
computation time)

ICE'20 - 19.6.2020Optimal and Automated Deployment for Microservices

