
Optimal and Automated Deployment for Microservices

Lorenzo Bacchiani Univ. of Bologna - Italy

Joint work with: M. Bravetti, S. Giallorenzo, I. Talevi and G. Zavattaro Univ. of Bologna - Italy

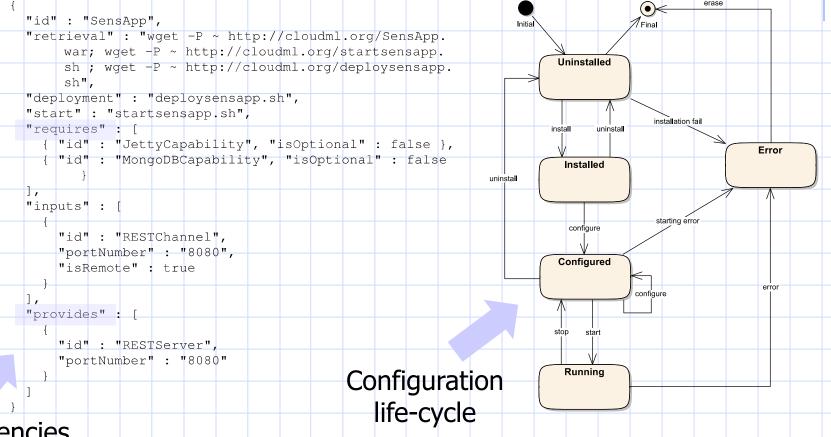
J. Mauro Southern Denmark Univ. - Denmark

Deploying component-based applications is complex

Optimal and Automated Deployment for Microservices

Automatic synthesis of deployment orchestration

- Mastering such complexity requires automation
- Deployment orchestration synthesis requires specific knowledge:
 - Component dependencies
 - Component configuration life-cycle

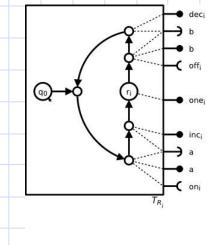

(similar to dependency-conflicts metadata used in the automatic configuration of **package-based software distributions**)

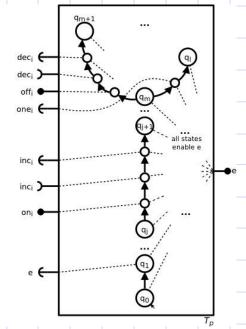
Optimal and Automated Deployment for Microservices

Dependencies and configuration life-cycle

CloudMF

[N.Ferry et al. – ACM ToIT 18]




Dependencies

Optimal and Automated Deployment for Microservices

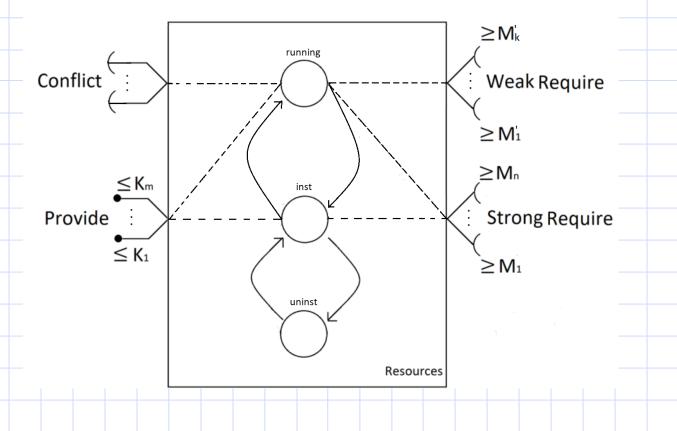
FASE'19 - 11.4.2019

Is the automated deployment problem decidable?

We saw that such complexity causes orchestration synthesis to be uncedidable

Optimal and Automated Deployment for Microservices

What if components are Microservices?


Microservices
 Components become:
 Fine grained
 Loosely coupled
 This facilitates:
 Development (simple components)
 Maintenance (local modifications)

What about deployment?

Optimal and Automated Deployment for Microservices

Microservice's finite state automaton

Fixed state machine states/transitions

Optimal and Automated Deployment for Microservices

State-of-the-art microservice deployment technologies

version: '3'
services:
 web:
 build: .
 image: some-image
 ports:
 - "3001:3000"
 dns: "8.8.8.8"
 volumes:
 - ".:/app"

env_file: .env

links:

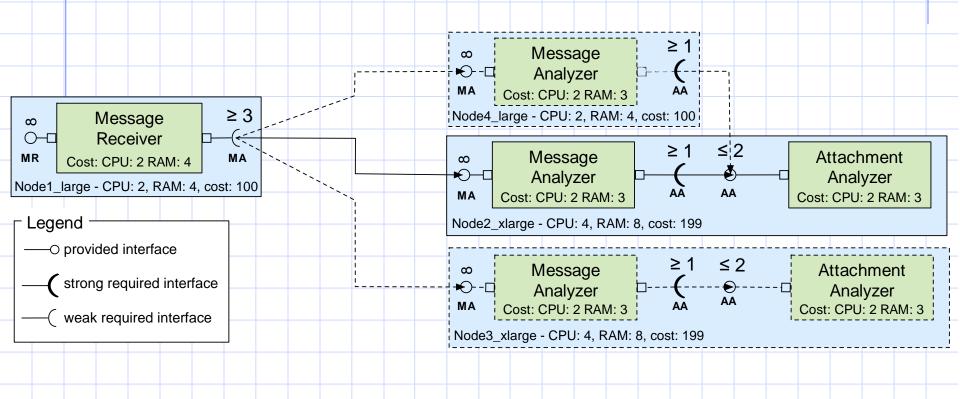
- redis:redis
 external_links:
- postgres1

...

docker Two types of dependencies: Inks force an order of activation external links order of activation does not matter

State-of-the-art microservice deployment technologies

apiVersion: v1 kind: Pod metadata: name: frontend spec: containers: - name: db image: mysql env: - name: MYSQL_ROOT_PASSWORD value: "password" resources: requests: memory: "64Mi" cpu: "250m"


kubernetes

Services (pods) consume resources

Hosting nodes must provide pods with such resources

...

A simplified model for microservice deployment

Optimal and Automated Deployment for Microservices

Main result

- Deployment orchestration synthesis is
 decidable
 - Proof:
 - translation of the problem in sets of constraints to be given in input to a constraint solver/optimizer
 - Side effect:

 optimization functions (e.g. minimize total cost) can be used to **optimize** some metrics

Optimal and Automated Deployment for Microservices

The algorithm

Step 1:

compute service instances and their distribution over computing nodes

$\bigwedge_{p\in\mathcal{I}(U)}$	$\bigwedge_{\mathcal{T} \in U, \; p \in \texttt{dom}(\mathcal{T}.\texttt{req}_{\texttt{S}})} \mathcal{T}.\texttt{req}_{\texttt{S}}(p) \cdot \texttt{inst}(\mathcal{T}) \leq \sum_{\mathcal{T}' \in U} \texttt{bind}(p, \mathcal{T}, \mathcal{T}')$	$\operatorname{inst}(\mathcal{T}_t) \geq 1$ $\bigwedge \qquad \bigwedge \qquad \operatorname{inst}(\mathcal{T}) > 0 \Rightarrow \operatorname{inst}(\mathcal{T}') = 0$		
$\bigwedge_{p\in\mathcal{I}(U)}$	$\bigwedge_{\mathcal{T} \in U, \; p \in \texttt{dom}(\mathcal{T}.\texttt{req}_{\mathtt{W}})} \mathcal{T}.\texttt{req}_{\mathtt{W}}(p) \cdot \texttt{inst}(\mathcal{T}) \leq \sum_{\mathcal{T}' \in U} \texttt{bind}(p, \mathcal{T}, \mathcal{T}')$	$p \in \mathcal{I}(U) \qquad \mathcal{T} \in U, \qquad \mathcal{T}' \in U - \{\mathcal{T}\}, \\ p \in \mathcal{T}. \texttt{conf} \qquad p \in \texttt{dom}(\mathcal{T}'.\texttt{prov})$		
$\bigwedge_{p\in\mathcal{I}(U)}$	$\bigwedge_{\mathcal{T} \in U, \ \mathcal{T}.\texttt{prov}(p) < \infty} \mathcal{T}.\texttt{prov}(p) \cdot \texttt{inst}(\mathcal{T}) \geq \sum_{\mathcal{T}' \in U} \texttt{bind}(p, \mathcal{T}', \mathcal{T})$	$\bigwedge_{\substack{p \in \mathcal{I}(U) \\ p \in dom(\mathcal{T}.prov)}} \bigwedge_{\substack{\tau \in U, \ p \in \mathcal{T}.conf \\ p \in dom(\mathcal{T}.prov)}} inst(\mathcal{T}) \leq 1$		
$\bigwedge_{p \in \mathcal{I}(U)}$	$\bigwedge_{\mathcal{T} \in U, \ \mathcal{T}. \texttt{prov}(p) = \infty} \texttt{inst}(\mathcal{T}) = 0 \Rightarrow \sum_{\mathcal{T}' \in U} \texttt{bind}(p, \mathcal{T}', \mathcal{T}) = 0$	$\bigwedge_{p \in \mathcal{I}(U)} \bigwedge_{\mathcal{T} \in U} \bigwedge_{\mathcal{T}' \in U - \{\mathcal{T}\}} \mathtt{bind}(p, \mathcal{T}, \mathcal{T}') \leq \mathtt{inst}(\mathcal{T}) \cdot \mathtt{inst}(\mathcal{T}')$		
$\bigwedge_{p \in \mathcal{I}(U)} \bigwedge_{\mathcal{T} \in U, \ p \notin \texttt{dom}(\mathcal{T}.\texttt{prov})} \sum_{\mathcal{T}' \in U} \texttt{bind}(p, \mathcal{T}', \mathcal{T}) = 0$		$\bigwedge_{p \in \mathcal{I}(U)} \bigwedge_{\mathcal{T} \in U} \mathtt{bind}(p, \mathcal{T}, \mathcal{T}) \leq \mathtt{inst}(\mathcal{T}) \cdot (\mathtt{inst}(\mathcal{T}) - 1)$		
	$ ext{inst}(\mathcal{T}) = \sum ext{inst}(\mathcal{T})$	-, <i>o</i>)		
	$r \in \mathcal{R} \ o \in O \ \mathcal{T} \in U$	$\mathcal{T}.\mathtt{res}(r) \leq o.\mathtt{res}(r)$		
	$\bigwedge_{o \in O} \big(\sum_{\mathcal{T} \in U} \texttt{inst}(\mathcal{T}, o) >$	$> 0) \Leftrightarrow used(o)$		
	Optimal and Automated Deploymer $\min_{o \in O, used(o)} o.cost$	ICE'20 - 19.6.2020		

The algorithm

Step 2:

defining connections among instances

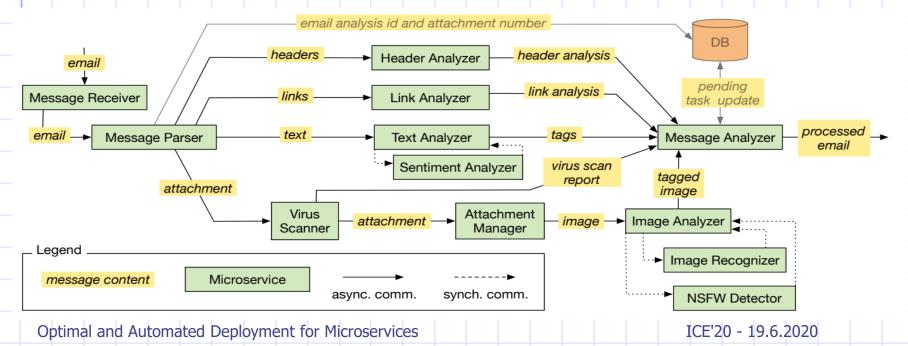
$$\begin{split} & \bigwedge_{\mathcal{T} \in U} \bigwedge_{p \in \mathcal{I}(U)} \bigwedge_{i \in 1...n} \bigwedge_{j \in (1...m) \setminus \{i | \mathcal{T} = \mathcal{T}'\}} \mathsf{b}(p, s_i^{\mathcal{T}}, s_j^{\mathcal{T}'}) \leq limProv(\mathcal{T}', p) \\ & \bigwedge_{\mathcal{T} \in U} \bigwedge_{p \in \mathsf{dom}(\mathcal{T}.\mathsf{req}_{\mathbf{S}})} \bigwedge_{i \in 1...n} \sum_{j \in (1...m) \setminus \{i | \mathcal{T} = \mathcal{T}'\}} \mathsf{b}(p, s_i^{\mathcal{T}}, s_j^{\mathcal{T}'}) \geq \mathcal{T}.\mathsf{req}_{\mathbf{S}}(p) \\ & \bigwedge_{\mathcal{T} \in U} \bigwedge_{p \in \mathsf{dom}(\mathcal{T}.\mathsf{req}_{\mathbf{W}})} \bigwedge_{i \in 1...n} \sum_{j \in (1...m) \setminus \{i | \mathcal{T} = \mathcal{T}'\}} \mathsf{b}(p, s_i^{\mathcal{T}}, s_j^{\mathcal{T}'}) \geq \mathcal{T}.\mathsf{req}_{\mathbf{W}}(p) \\ & \bigwedge_{\mathcal{T} \in U} \bigwedge_{p \notin \mathsf{dom}(\mathcal{T}.\mathsf{req}_{\mathbf{S}}) \cup \mathsf{dom}(\mathcal{T}.\mathsf{req}_{\mathbf{W}})} \bigwedge_{i \in 1...n} \sum_{j \in (1...m) \setminus \{i | \mathcal{T} = \mathcal{T}'\}} \mathsf{b}(p, s_i^{\mathcal{T}}, s_j^{\mathcal{T}'}) \geq 0 \end{split}$$

Step 3: orchestration synthesis (topological sort, assuming no circular strong dependencies)

Optimal and Automated Deployment for Microservices

Complexity is not encouraging

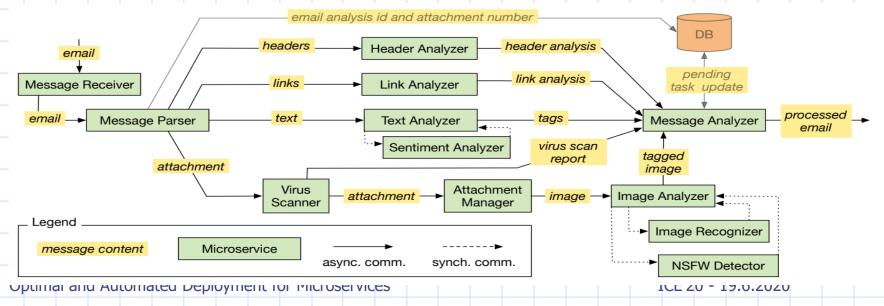
.. but ..


 We can assume, due to limited resources and capacity constraints, that the orchestration size is **polynomial** (not exponential)

Optimal and Automated Deployment for Microservices

Experimental validation

We have modeled:


- a real-world microservice architecture
- computed optimal deployment and scaling orchestrations

Experimental validation

 Components/orhcestrations specified in ABS (Abstract Behavioural Specification language) executed with Erlang Backend

 Optimal deployments computed by using SmartDepl and Zephyrus2

ABS feature

- Thanks to ABS expressiveness we have modeled the system including explicit modeling of load balancers
- We have exploited Erlang Backend to execute our simulations
- We have exploited probabilistic properties to evenly distributed email's elementes
- We have exploited ABS time model to observe system's behavior over time
- 1 ABS time unit = 0.005 ms

Optimal and Automated Deployment for Microservices

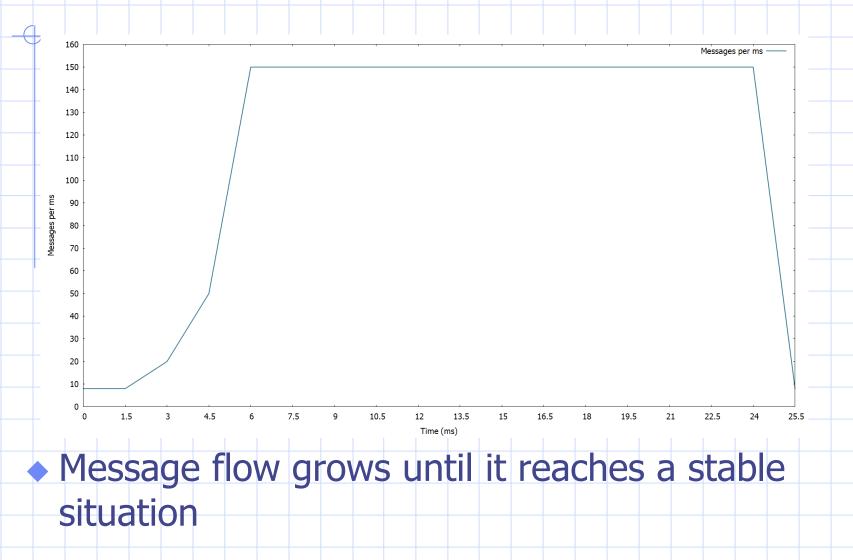
SmartDepl & Zephyrus2

SmartDepl is a tool to automatically generates ABS deployment code and
 Zephyrus2 is the engin

System modeling

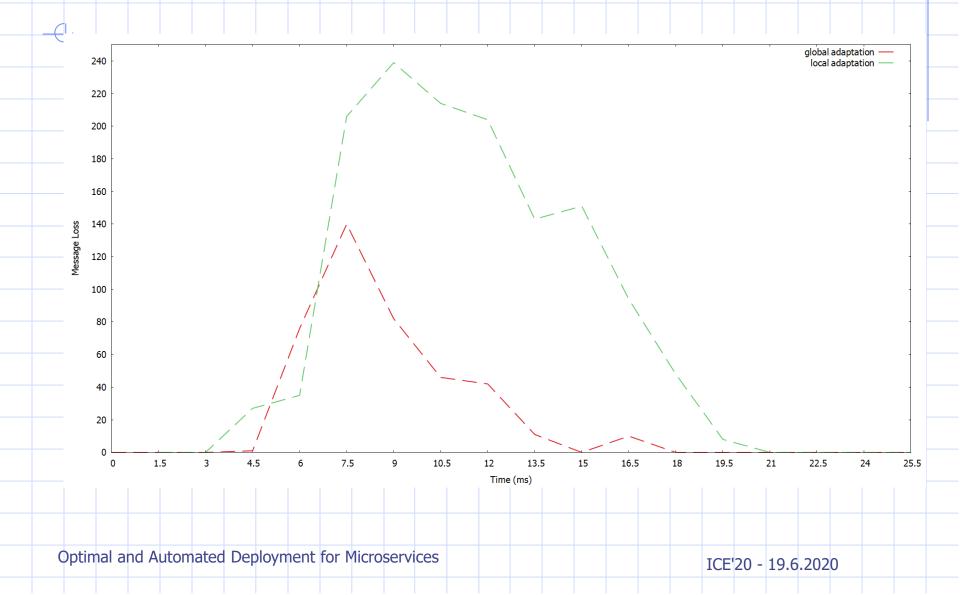
- Explicit Request queues of a fixed maximal size in order to prevent system from overloading
- Deployment component's speed adjusted at run-time to reflect unused cores

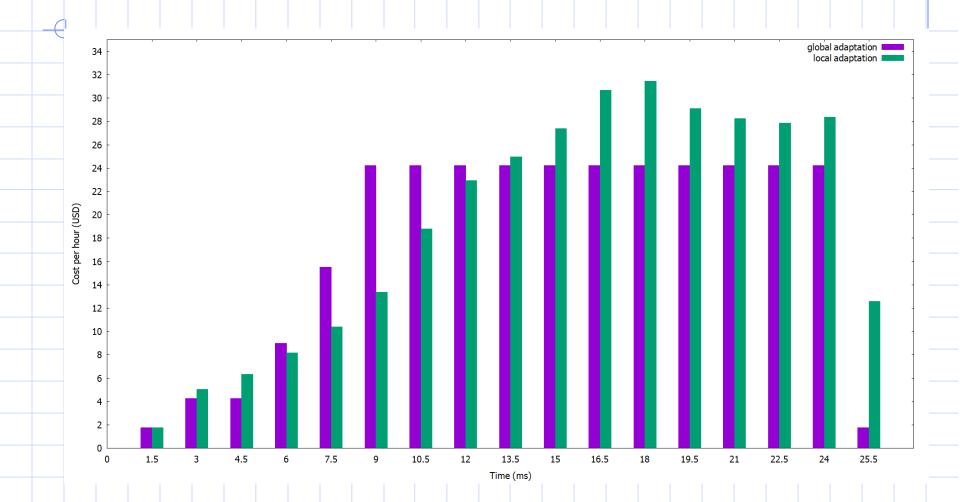
Automatically computed orchestrations

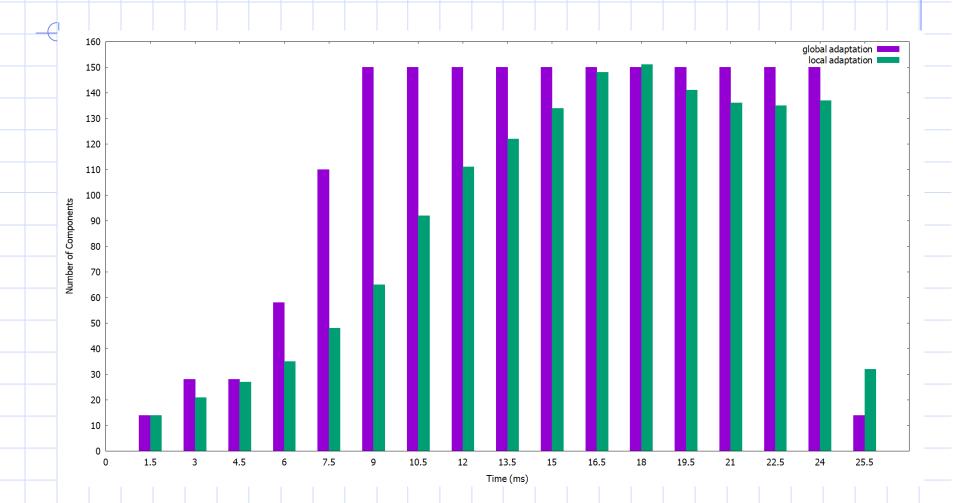

Microservice	Base $(10 \mathrm{K/sec})$	$+20\mathrm{K/sec}$	$+50\mathrm{K/sec}$	$+80\mathrm{K/sec}$
Message Receiver	1	+0	+0	+0
Message Parser	1	+0	+1	+1
Header Analyser	1	+0	+1	+1
Link Analyser	1	+0	+1	+1
Text Analyser	1	+1	+2	+2
Sentiment Analyser	2	+3	+5	+5
Virus Scanner	2	+3	+5	+4
Attachment Manager	1	+1	+2	+1
Image Analyser	1	+1	+2	+1
NSFW Detector	1	+2	+4	+3
Image Recognizer	1	+2	+4	+3
Message Analyser	1	+1	+3	+2

Models and orchestrations available at:


https://github.com/LBacchiani/ABS-Simulations-Comparison


Optimal and Automated Deployment for Microservices


Scalability experiment


Optimal and Automated Deployment for Microservices

Optimal and Automated Deployment for Microservices

Optimal and Automated Deployment for Microservices

Conclusion & Future work

 (Optimal) deployment of microservice architectures is decidable and fully automatable

 Our approach has outperformed the classic one

Optimal and Automated Deployment for Microservices

Conclusion & Future work

Future work:

 On-line computation of deployment orchestrations (relax optimality to reduce computation time)