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W3C service choreography:

Global view
Local
view

Local
systems

project comply

A major issue with choreographies is lack of modularity

“The basic pattern of my approach will be to compose the program in minute steps,
deciding each time as little as possible. As the problem analysis proceeds, so does the
further refinement of my program”

E. W. Dijkstra: Notes on Structured Programming

We propose a framework of step-by-step refinement of abstract choreographies into concrete ones
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Global choreographies

Syntax of global choreographies (g-choreographies for short), G:

G ::= 0 | A
m−→B | G; G′ | G | G′ | G + G′

Example:

C
md−−→S + C

req−−→S; S
done−−→C

Adding refinable (and multiple) interaction:

G ::= · · · | A
m1...mn
999999K B1. . .Bn

Which are legal refinements of the following?

C
md
999K S + C

req
999K S; S

done
9999K C

Sound and wrong refinements:

C
md−−→S + C

req−−→S; (S
stats−−→C; S

done−−→C) 3

(C
md−−→B; B

md−−→S) + C
req−−→S; (S

stats−−→C; S
done−−→C) 7

(C
md−−→B; B

md−−→S) + (C
start−−→B; B

req−−→S); (S
stats−−→C; S

done−−→C) 3
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Well-formed choreographies

[[G]] =

{
E if certain conditions are satisfied

⊥ otherwise

where E = (E ,≤,#, λ) is a labelled (prime) event structure, namely (E ,≤) is a poset, # ⊆ E 2

s.t. for all e, e′, e′′ ∈ E :

{e′ ∈ E | e′ ≤ e} is finite e#e′ & e′ ≤ e′′ =⇒ e#e′′

λ : E →M with

λ(e) = A B!m “A sends m to B” (whose subject is A)

λ(e) = A B?m “B receives m from A” (whose subject is B)

We say that G is well-formed if [[G]] 6= ⊥.
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Well-branched choice

A branch of E = (E ,≤,#, λ) is a maximal subest x ⊆ E of conflict free events (also called a
maximal configuration)

[[G1]] = E1 and [[G2]] = E2 are well-branched if

there is a unique active A that locally and unambiguously decides which branch to take in a
choice

all B 6= A either behaves the same in all branches, or its behaviour functionally depends on
the messages it receives on each branch A opted for: these are passive

where the actives and passives are participants of G1, G2 (and so subjects of labels of E1, E2)
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A well-formed choreography

Consider G = C
md−−→S + C

req−−→S; S
stats−−→C; S

done−−→C

[[C
md−−→S]] =

C S!md

C S?md

and [[C
req−−→S; S

stats−−→C; S
done−−→C]] =

C S!req

C S?req

S C!stats

S C?stats

S C!done

S C?done

The sum operation on event structures introduces conflicts between the events in [[C
md−−→S]] and

those in [[C
req−−→S; S

stats−−→C; S
done−−→C]], hence:

[[G]] = [[C
md−−→S]] + [[C

req−−→S; S
stats−−→C; S

done−−→C]] =

C S!md C S!req

C S?md C S?req

S C!stats

S C?stats

S C!done

S C?done

#
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Breaking well-branchedness

On the contrary G′ = C
md−−→B; B

md−−→S + C
req−−→S; S

done−−→C

[[C
md−−→B; B

md−−→S]] =

C B!md

C B?md

B S!md

B S?done

and [[C
req−−→S; S

stats−−→C; S
done−−→C]] =

C S!req

C S?req

S C!stats

S C?stats

S C!done

S C?done

but

C B!md C S!req

C B?md C S?req

S C!stats

S C?stats

S C!done

S C?done

B S!md

B S?done

#

is not well-branched because of B which is not passive in the right branch
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Abstracting properties of well-formed choreographies

To determine when [[G1 � G2]] 6= ⊥ it suffices to know:

the set Πi of participants of Gi

the set φi = min ([[Gi ]] � A) of the (labels of) the minimal events in the projection of [[Gi ]] to
A, for all A ∈ Πi

the set Λi = max ([[Gi ]] � A) of the (labels of) the maximal events in the projection of [[Gi ]] to
A, for all A ∈ Πi

Idea

We introduce a typing judgement

Π ` G : 〈φ,Λ〉

meaning that Π = P(G), φ and Λ are the minimal and maximal actions of all participants in G
respectively, and define typing rules that are sound w.r.t. well-formedness
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Type rules for interaction and sequencing

φ = Λ = {A B!m,A B?m}

{A,B} ` A
m−→B : 〈φ, Λ〉

t-int

Π1 ` G1 : 〈φ1,Λ1〉 Π2 ` G2 : 〈φ2,Λ2〉

Π1 ∪ Π2 ` G1; G2 : 〈φ1 ∪ (φ2 − Π1),Λ2 ∪ (Λ1 − Π2)〉
t-seq

where for L ⊆ L and Π ⊆ P we set L− Π = {l ∈ L | sbj l 6∈ Π}

Example:
φ1 = Λ1 = {C S!req,C S?req}

{C, S} ` C
req−−→S : 〈φ1, Λ1〉

φ2 = Λ2 = {S C!done, S C?done}

{C, S} ` S
done−−→C : 〈φ2, Λ2〉

{C, S} ` C
req−−→S; S

done−−→C : 〈φ1, Λ2〉

de’Liguoro, Melgratti, Tuosto
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Type rule for choice

Let L̂(A) = {l ∈ L | sbj l = A} for L ⊆ L

Π ` G1 : 〈φ1,Λ1〉 Π ` G2 : 〈φ2,Λ2〉 φ1 ./Π φ2

Π ` G1 + G2 : 〈φ1 ∪ φ2,Λ1 ∪ Λ2〉
t-ch

where the condition φ1 ./Π φ2 is defined by the clauses:

there is a unique A ∈ Π such that φ̂1(A) and φ̂2(A) are disjoint sets of output actions and
both non-empty;

for all B 6= A ∈ Π, φ̂1(B) and φ̂2(B) are disjoint sets of input actions and φ̂1(B) = ∅ if and

only if φ̂2(B) = ∅

Example:

φ1 = Λ1 = {C S!md,C S?md}

{C, S} ` C
md−−→S : 〈φ1, Λ1〉 {C, S} ` C

req−−→S; S
done−−→C : 〈φ2, Λ3〉

{C, S} ` C
md−−→S + C

req−−→S; S
done−−→C : 〈φ1 ∪ φ2, Λ1 ∪ Λ3〉

where φ2 = Λ2 = {C S!req,C S?req} and φ3 = Λ3 = {C B!md,C B?md}
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Towards Refinable Choreographies



Introduction Choreographies A type system Refinement Conclusions

The type system

∅ ` 0 : 〈∅, ∅〉
t-emp

φ = Λ = {A B!m,A B?m}

{A,B} ` A
m−→B : 〈φ, Λ〉

t-int

Π1 ` G1 : 〈φ1,Λ1〉 Π2 ` G2 : 〈φ2,Λ2〉

Π1 ∪ Π2 ` G1; G2 : 〈φ1 ∪ (φ2 − Π1),Λ2 ∪ (Λ1 − Π2)〉
t-seq

Π1 ` G1 : 〈φ1,Λ1〉 Π2 ` G2 : 〈φ2,Λ2〉 Π1 ∩ Π2 = ∅

Π1 ∪ Π2 ` G1 | G2 : 〈φ1 ∪ φ2,Λ1 ∪ Λ2〉
t-par

Π ` G1 : 〈φ1,Λ1〉 Π ` G2 : 〈φ2,Λ2〉 φ1 ./Π φ2

Π ` G1 + G2 : 〈φ1 ∪ φ2,Λ1 ∪ Λ2〉
t-ch
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Theorem (Soundness)
If Π ` G : 〈φ,Λ〉 is derivable then [[G]] 6= ⊥, Π = P(G), and

φ̂(A) = min([[G]] � A) and Λ̂(A) = max([[G]] � A)

holds for all A ∈ Π.

Remark: a choreography G has at most one typing Π ` G : 〈φ,Λ〉 and it is computable

de’Liguoro, Melgratti, Tuosto
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The refinement relation

Let A
m
99K B ≡ A

m1...mn
999999K B1. . .Bn, then a ground g-choreography G refines A

m
99K B, written

G ref A
m
99K B, if

[[G]] = E 6= ⊥;

sbj min(E) = {A}, by which we say that A is the (unique) initiator of G;

for all branch x of E and 1 ≤ h ≤ n there exists C ∈ P(G) such that
C Bh?mh ∈ max(x � Bh)

de’Liguoro, Melgratti, Tuosto
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Axioms for refinable interactions

Lemma
Let A

m
99K B ≡ A

m1...mn
999999K B1. . .Bn If Π ⊆ P and φ, Λ ⊆ L are such that

sbj φ = sbj Λ = Π,

sbj (φ ∩ L!) = {A}, and

for all 1 ≤ h ≤ n there exists C such that Λ̂(Bh) = {C Bh?mh}

then Π ` G : 〈φ,Λ〉 implies G ref A
m
99K B.

Axiom schema for refinable interactions:

sbj φ = sbj Λ = Π sbj (φ ∩ L!) = {A} ∀h ∃C ∈ Π. Λ̂(Bh) = {C Bh?mh}

Π ` A
m1...mn
999999K B1. . .Bn : 〈φ,Λ〉

t-ref
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Let Π = {C, S}:

φ1 = Λ1 = {C S!md,C S?md}

Π ` C
md
999K S : 〈φ1,Λ1〉

φ2 = Λ2 = {C S!req,C S?req}

Π ` C
req
999K S : 〈φ2,Λ2〉

φ3 = Λ3 = {S C!done, S C?done}

Π ` S
done
9999K C : 〈φ3,Λ3〉

Π ` C
req
999K S; S

done
9999K C : 〈φ2,Λ3〉

t-ch

Π ` C
md
999K S + C

req
999K S; S

done
9999K C : 〈φ1 ∪ φ2,Λ1 ∪ Λ3〉

Consider G1 ≡ C
md−−→B; B

md−−→S s.t. G1 ref C
md
999K S, then compute

Π ∪ {B} ` C
md−−→B; B

md−−→S : 〈φ1 ∪ {C B?md},Λ1 ∪ {B S!md}〉

Let Π′ = Π ∪ {B}, φ′
1 = φ1 ∪ {C B?md}, Λ′

1 = Λ1 ∪ {B S!md}; then

t-ref

Π
′ ` C

md
999K S : 〈φ′

1,Λ
′
1〉

but now rule t-ch doesn’t apply since Π′ 6= Π
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Let Π = {C, S}:

φ1 = Λ1 = {C S!md,C S?md}

Π ` C
md
999K S : 〈φ1,Λ1〉

φ2 = Λ2 = {C S!req,C S?req}

Π ` C
req
999K S : 〈φ2,Λ2〉

φ3 = Λ3 = {S C!done, S C?done}

Π ` S
done
9999K C : 〈φ3,Λ3〉

Π ` C
req
999K S; S

done
9999K C : 〈φ2,Λ3〉

t-ch

Π ` C
md
999K S + C

req
999K S; S

done
9999K C : 〈φ1 ∪ φ2,Λ1 ∪ Λ3〉

Consider G1 ≡ C
md−−→B; B

md−−→S which is s.t. G1 ref C
md
999K S, then compute

Π ∪ {B} ` C
md−−→B; B

md−−→S : 〈φ1 ∪ {C B?md},Λ1 ∪ {B S!md}〉

Consider G2 ≡ C
x−→B; B

req−−→S which is s.t. G2 ref C
req
999K S, and compute

Π
′ ` C

x−→B; B
req−−→S : 〈φ′

2,Λ
′
2〉

where Π′ = Π ∪ {B}, φ′
2 = {C B!x,C B?x,B S!rep} and Λ′

2 = {C B?x,B S!rep,B S?rep}, and

take G3 ≡ S
done−−→C ref S

done
9999K C s.t.

Π ` S
done−−→C〈φ3,Λ3〉

de’Liguoro, Melgratti, Tuosto
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We end up with:

Π
′ ` G1 : 〈φ′

1,Λ
′
1〉

Π
′ ` G2 : 〈φ′

2,Λ
′
2〉 Π ` G3 : 〈φ3,Λ3〉

Π
′ ` G2; G3 : 〈φ′

2,Λ
′
3〉

t-ch
Π

′ ` G1 + G2; G3 : 〈φ′
1 ∪ φ

′
2,Λ

′
1 ∪ Λ

′
3〉

where

G1 ≡ C
md−−→B; B

md−−→S G2 ≡ C
x−→B; B

req−−→S G3 ≡ S
done−−→C

and

Π = {C, S} Π′ = Π ∪ {B}

φ′
1 = {C S!md,C S?md,C B?md} Λ′

1 = {C S!md,C S?md,B S!md}

φ′
2 = {C B!x,C B?x,B S!rep} Λ′

2 = {C B?x,B S!rep,B S?rep}

φ3 = Λ3 = {S C!done, S C?done} Λ′
3 = Λ3 ∪ {B S!rep}
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Achievements and future work

the type system provides a means to establish which concrete choreographies
refine which abstract ones

the mechanism for choosing how to type refinable interactions needs more
investigation

we will addres the study of properties of abstract protocols that curry over to
concrete ones
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Thank You
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