
ICE@DISCOTEC2020 (virtually in Malta)

Taming Software Development 
Complexity via Reversibility
Claudio Antares Mezzina 
Università di Urbino (Italy)



Reversibility (thermodynamics)?

A reversible process is a process whose direction can be returned to its original 
position by inducing infinitesimal changes to some property of the system via 
its surroundings


The level of entropy of a system is minimised when a process is nearly 
reversible


There is a tight connection between reversibility and entropy




Entropy 

•Entropy measures the degree to which the probability of the system is 
spread out over different possible micro-states

•Entropy is related to the number of internal (or micro)-states that a 
system can have 

•If we take this level of definition, and apply it to information theory, 
then we could say that entropy is related to the number of bits that are 
necessary to describe the state of a system

•Therefore, the more complex a system is, the more bits we need to 
describe it



Stephen Lower: Thermodynamics of Chemical Equilibrium 

Entropy, and hence system complexity, is 
minimised when a system is reversible



Software Development DevOps

• Very tedious and complex process

• Coordination and management of different activities

• DevOps is a novel approach to software delivery (Developers + 

Operations)

• Involves two techniques: Continuous Integration and Continuous 

Delivery



DevOpsDEVOPS PRACTICES

THE THREE WAYSIrreversible and complex process 
Reversible but complex process 

Reversible and simple process 



Reversible DevOps?

• One of the CAMS principle of DevOps is Automation

• The deployment workflow should be automated and treated as part 

of the software being developed

• CI/CD pipelines allow to automate such phase

• This calls for pipelines and scripting language which support natively 

reversibility



Where to reverse?

• Adding an automatic staging policy for commits could be an idea (in 
order to rollback to a previous state)


• If deployment fails, then automatically the previous artefact should 
be put back (sort of rollback/recovery)


• Quite often a failed test leave the system in an unstable state which 
has to be fixed in a manual way



Where to reverse?

Tagging strategy in order to rollback to previous states
Failed tests leave the system in an unstable state 

If deployment fails we have to restore the previous artefact



Reversible Global Graphs

Reversible Choreographies via Monitoring in Erlang

Adrian Francalanza1, Claudio Antares Mezzina2, and Emilio Tuosto2

1 University of Malta, Malta adrian.francalanza@um.edu.mt

2 IMT Advanced Studies Lucca, Italy claudio.mezzina@imtlucca.it

3 University of Leicester, UK emilio@le.ac.uk

Abstract. We render a model advocating an extension of choreographies to de-
scribe reverse computation via monitoring. More precisely, our extension imbues
the communication behaviour of multi-party protocols with minimal decorations

specifying the conditions triggering monitor adaptations. We show how, from
these extended global descriptions, how one can (i) synthesise actors implement-
ing the normal local behaviour of the system prescribed by the global graph,
but also (ii) synthesise monitors that are able to coordinate a distributed rollback
when certain conditions (denoting abnormal behaviour) are met.

1 Introduction

Monitoring techniques complement more traditional verification techniques such as
model checking and testing [3, 9, 17]. They provide the opportunity for offloading to
a post-deployment phase checks that are either too expensive to perform statically or
cannot be performed pre-deployment because they rely on missing run-time informa-
tion. Experience has also shown that computation misbehaviour often still arises even
after the software has undergone rigorous scrutiny prior deployment. In such cases,
monitors provide a natural mechanism to mitigate this misbehaviour.

The goal of this work is to show how monitoring can realise reversible compu-

tation in distributed settings that feature asynchronous message-passing. Reversible
computing [21] is proving to be a suitable abstraction for a range of application do-
mains (e.g., transactions and fault tolerant schemes [13, 10]). Programming recovery
strategies for asynchronous communicating software is an hard and error-prone task.
Recently mechanisms to deal with backward execution in actor models have been in-
troduced. A reversible Erlang dialect has been proposed in [20]; interestingly, this work
maintains the fundamental features of Erlang, but requires to develop a new run-time
support to handle reversibility. An approach based on checkpoints to cope with trans-
actional behaviour in actor models has been identified in [12]. A main disadvantage of
this approach is that the burden of specifying checkpoints is on the programmers.

We combine “correctness-by-design” of choreographies, checkpoint-based mecha-
nisms, and run-time monitoring to attain disciplined interweaving of forward and back-
ward execution. Unlike existing approaches, we fully exploit the benefit of choreogra-
phies that guarantee communication soundness by construction. Also, unlike [12], our
checkpoints are automatically derived from global views of choreographies. Finally,
the use of monitors to handle backward executions avoids to modify the semantics of
Erlang as done in [20].

Graphical way to describe a reversible pipeline
Automatic scripting generation



Conclusions

• Reversibility can be seen as a tool to decrease system complexity

• DevOps reduces soft development to a sequence of small repeatable 
loops

• Small loops can be reverted in an automatic way by introducing 
reversibility into pipelines

• This calls for a new generation of automated tools for soft dev which 
natively supports reversibility

• Starting from reversible global graphs 


