Parameterized Verification with

Byzantine Model Checker

Igor Konnov
<igor@informal.systems>

Tutorial at FORTE, June 15, 2020

streaming from Vienna / Austria to Valletta / Malta

informal C\)

INTERCHAIN

FOUNDATION

Co-authors and contributors:

llina Stoilkovska Jure Kukovec

; Marijana Lazi¢
I’?

Florian Zuleger

Francesco Spegni

Nathalie Bertrand Annu Gmeiner
Josef Widder

Roderick Bloem

Igor Konnov 20of 15

Timeline

O Fault-tolerant distributed algorithms and threshold automata

O Safety of asynchronous threshold-guarded algorithms

O Liveness and beyond asynchronous algorithms

our inspiration:

distributed consensus

19,116.768

0812

Chorus One %
rx sk 2esx

Castionode 2as%

@, StakingFacities o

19,116.768

S

I 19,116.768 I

0812
Glaim

Chorus One .

b sk o

Castionode e

< 2%

19,116.768

10612

Chorus One

Castonode

StakingFacitios

Claim

19,116.768

Chorus One o

Castionode

Staking Facites o

19,116.768

10612

Claim

Castonode

StakingFacitios

Igor Konnov 50f 15

1. propose(Jtol)

4

1. propose(Itod)

Igor Konnov 50f 15

1. propose(Jtol)

2.decide(Jtol)

2.decide(Jtol)

¢

. decide(JtoI)

Igor Konnov 5of 15

Problem of Distributed Consensus

A distributed algorithm for n replicas
every replica proposes a value w € V

Termination
every correct replica eventually decides on a value v € V

Agreement
if a replica decides on v, no replica decides on V \ {v}

Validity
if a replica decides on v, the value v was proposed earlier

Igor Konnov 6 of 15

Problem of Distributed Consensus

A distributed algorithm for n replicas
every replica proposes a value w € V

Termination
every correct replica eventually decides on a value v € V

Agreement
if a replica decides on v, no replica decides on V \ {v}

Validity
if a replica decides on v, the value v was proposed earlier

crucial to verify safety and liveness

Igor Konnov 6 of 15

T imati
every replica eventually decides on avalue v € V

Agreement
if a replica decides on v, no replica decides on V' \ {v}

Validity
if a replica decides on v, the value v was proposed earlier

Igor Konnov 7 of 15

consensus without termination:

do nothing!

1. propose(Jtol)

1. propose(Itod)

Igor Konnov 8of 15

-
-

Naive majority voting

n replicas follow the code:

input u; € {0,1}

send u; to all

wait until some value v; € {0,1} is received [Z}'] times
decide on v;

AW N =

Does it satisfy Validity, Agreement, and Termination?

Igor Konnov 9of 15

n replicas follow the code:

input u; € {0,1}

send u; to all

wait until some value v; € {0,1} is received [Z}'] times
decide on v;

AW N =

Does it satisfy Validity, Agreement, and Termination?

What is the computation model?

Igor Konnov 9of 15

Asynchronous systems with faults
Various processor speeds

Various message delays, unbounded but finite

crashes

! propose(l)
~ 3 later today,

Byzantine

Xpropose(O)

Formalizing pseudo-code...

input u; € {0,1}

send u; to all

wait until some value v; € {0,1} is received [Z}1] times
decide on v;

AW N =

as a threshold automaton:

SO~/~.,~

T e

A D1

vO

Igor Konnov 11 of 15

Formalizing pseudo-code...

input u;j€{0,1}

send u; to all

wait until some value v; € {0,1} is received [Z}1] times
decide on y;

AW N =

as a threshold automaton:

O

SO+*

v1 D1
nfaulty < F
nfaulty++

CR

vO

Igor Konnov 11 of 15

Formalizing the distributed system...

So++

replical: u; =0 vO0 — SE

S1++

replica2: uw, =1 Vi — SE
replica3: u; =0

Sp++

replicad: u, =0 vO0 — SE

as a counter system:

Kyo =3 Kyp=2 Kyo =1
Ky =1 ky1 =0

kKse =0 Kege=1 Ksg = 2 Ksg = 3
so=0 sp =1 Sp =2

s1=0 sy =1

Formalizing properties...

Termination: every replica eventually decides on a value v € V
Agreement: if a replica decides on v, no replica decides on V \ {v}

Validity: if a replica decides on v, the value v was proposed earlier
as temporal formulas:

Termination: fairness — < (kyo = 0 A ky1 = 0 A kse = 0)
Agreement: O (kpg =0V kp1 = 0)
0-Validity: xy1 =0 — O(kp1 =0)

1-Validity: xyo = 0 — O (kpo = 0)

Igor Konnov 13 of 15

Let’s ask ByMC.

@ user@byme: ~/faulttolerant-benchmarks/forte20 o x
B

-linit-tine: linit (in seconds) cpu time of subprocesses (ulimit -t)
--limit-mem: limit (in MB) virtual memory of subprocesses (ulimit -v)
-h|--help: show this help message

byme_options are as follows:

-0 schema.tech=1t1 (default, safety + liveness as in POPL'17)

-0 schema. tech=1t1-mpi (parallel safety + liveness as in ISOLA'18)

-0 schema. tech—cavls (reachability as in CAV'15)

--smt '1ib2|z3|-smt2|-in' (default, use z3 as the backend solver)

-smt - Libz|nysolver|argl arg2larga" " (use an SHTZ solver)

-smt ‘'yices' (use yices 1.x as the backend solver, DEPRECATED)
v (verbose output, all debug messages get printed)

Fine tuning of schema.tech=1t1:
-0 schema.incremental=1 (enable the incremental solver, default: @)

-0 schema.noflowopt=1 (dlsable the control flow optimizations, default: 0
0 a combinatorial explosion of guards)
-0 schena.noreachopt=1 (dJsahle the reachability optimization, default: @
i.e., reachability is not checked on-the-fly)
-0 schena. noadaptive=L (disable the adaptive reachability optimization, defaul
t:

.e., the tool will not try to choose between
enabling/disabling the reachability optimization)
-0 schema.noguardpreds=1 (do not introduce predicates for
the threshold guards, default: ©)
-0 schema. compute-nschemas=1 lalways compute the total number of
hemas, even if takes long, default: 0)
user@bymc:~/fault-tolerant- benchmarks/fortezas 0

Time for questions!

[bit.ly/2z8mE51]

(the examples and links for this talk)

http://bit.ly/2z8mE51

