Parameterized Verification with

Byzantine Model Checker (3)

Igor Konnov
<igor@informal.systems>

Tutorial at FORTE, June 15, 2020

streaming from Vienna / Austria to Valletta / Malta

informal C\)

INTERCHAIN

FOUNDATION

Timeline

O Fault-tolerant distributed algorithms and threshold automata

O Safety of asynchronous threshold-guarded algorithms

O Liveness and beyond asynchronous algorithms

Naive voting and termination

n = 7 processes: f = 2 Byzantine, n — f = 5 correct

QO looppo
DO

L7

deco - 2(so0

V1 .
snd ST loopse QD loopp:

termination: ¢ O fair — < (kyo =0A Kky1 =0 A kse =0)
—termination: <O fair AO(kvo # 0V Kyt # 0V ksg # 0)

Igor Konnov 3of24

Naive voting and termination

n = 7 processes: f = 2 Byzantine, n — f = 5 correct

QO looppo
DO

L7

deco - 2(so0

V1 .
snd ST loopse QD loopp:

termination: ¢ O fair — < (kyo =0A Kky1 =0 A kse =0)
—termination: <O fair AO(kvo # 0V Kyt # 0V ksg # 0)

sndg, sndg, sndp, snd4, snd, decg, decy,
(' loopsk, looppo, loopp1)*

O fairAO (kyo #0Vky1 #0VKse #£0)

Igor Konnov 3of24

From reachability to safety & liveness

A) A temporal logic for bad executions

B) Enumerating shapes of counterexamples

C) Property specific mover analysis

Details in [K., Lazi¢, Veith, Widder. POPL17]

Igor Konnov

E(p1 AOD (02 V g3))

r’\./—\

— N
™
&

4 of 24

Short counterexamples for safety or liveness

Safety & liveness (POPL17)

Every lasso can be transformed into a bounded one. The bound depends on
the process code and the specification, not the parameters.

Igor Konnov 50f 24

The shape of temporal formulas

Termination: every process eventually decides

OO0 Yoy — O (ky1 =0V Ky =0V K =0)

Igor Konnov 6 of 24

The shape of temporal formulas

Termination: every process eventually decides

OO0 Yoy — O (ky1 =0V Ky =0V K =0)

Propositional formulas: Temporal formulas:
(1) Aeeske=0 Y= prop [Oy [OP ¢V
2) Vieske #0

(2)
(3) Vscr Aieske =0
(4) Bool(Guards) — (1) A(2) A(3)

Igor Konnov

6 of 24

Warning about formulas

[POPL17] defines the logic ELTLgt for counterexamples

ELTLg talks about one execution (the shape of a counterexample)

ByMC uses the logic LTL for all executions

That is, ByMC accepts —¢ for ¢ € ELTLgt

Igor Konnov 7 of 24

The hard part: fairness

Sndo - 594, 100PDo

vO0

SE

V1 de

LS+t Cr: 2(31
snd loopse s, loopp;

All correct processes take infinitely many steps:

OD(HVo:O/\Rv1 :0)

Igor Konnov

8 of 24

The hard part: fairness

Sndo - 594, 100PDo

vO0

SE

V1 de

LS+t Cr: 2(31
snd loopse s, loopp;

All correct processes take infinitely many steps:
<>D(K’V0 :O/\Iﬁ'/v1 :0)

Every message sent by a correct process is...
eventually received by all correct processes:

<>|:J((ZSOSn \/KSEZO)/\/*deC1... */)

—ENABLED(decy)

Igor Konnov 8 of 24

More complex algorithm: BOSCO

One-step Byzantine asynchronous consensus

every process starts with a value v; € {0,1}
agreement: no two processes decide differently

validity: if a correct process decides on v,
then v was the initial value of at least one process

unanimity: if all correct processes are initialized with v,
every deciding correct process must decide on v

termination: all correct processes eventually decide

One-step Byzantine asynchronous consensus

every process starts with a value v; € {0,1}
agreement: no two processes decide differently

validity: if a correct process decides on v,
then v was the initial value of at least one process

unanimity: if all correct processes are initialized with v,
every deciding correct process must decide on v

termination: all correct processes eventually decide

decide in one communication step,

when there are “not too many faults”

BOSCO [Song & van Renesse, DISC 2008]
input v,

send (VOTE,v,) to all processors;

wait until n—t VOTE messages have been received;

if more than %3’ VOTE messages contain the same value v
then DECIDE(v);

© o N o g A~ W N =

if more than ”T_' VOTE messages contain the same value v,
10 and there is only one such value v
11 then vy < v;

13 call Underlying-Consensus(Vp);

resilience: of n > 3t processes, f < t processes are Byzantine

fast termination: whenn>5tandf=0and n > 7t

Threshold automaton

O TRUE — Sg++ daA NSy < Tpo NSy < Tp1 ASo + f > Tuo ASt+ > Ty
vO0 luO
SEO >
DO ¢A/\S1<7‘Do/\S1<7'D1/\So<TUo/\S1<Tu1

@0

@A A So + f > 7o da NSt < Tpo AS1 < Tp1 ASo+ f > Tup AS1 < Tus

('similar for v1,sE1,D1,U1,...)

threshold guards, e.g., ¢4 is definedas sg +s1 +f>n—1t
increments of shared variables, e.g., Sg++

run n — f copies provided that there are f < t Byzantine faults
and n > 3t

Igor Konnov 12 of 24

Let’s run ByMC on BOSCO.

0] Userohyme: ~ffaulticlerant benchmarks/iorie2o
=

@byme:
-limit-time: limit (in seconds) cpu time of subprocesses (ulimit -t)
--limit-mem: limit (in MB) virtual memory of subprocesses (ulimit -v)
-h|--help: show this help message

byme_options are as follows:

-0 schema.tech=1t1 (default, safety + liveness as in POPL'17)
-0 schema. tech=1t1-mpi (parallel safety + liveness as in ISOLA'18)
-0 schema. tech—cavls (reachability as in CAV'15)
--smt '1ib2|z3|-smt2|-in' (default, use z3 as the backend solver)
-smt lthlmysolverlargl\argzlarg!‘ (use an SHT2 solver)
-smt ‘'yices' (use yices 1.x as the backend solver, DEPRECATED)
v (verbose output, all debug messages get printed)

Fine tuning of schema.tech=1t1:
-0 schema.incremental=1 (enable the incremental solver, default: @)

-0 schema.noflowopt=1 (dlsable the control flow optimizations, default: 0
0 a combinatorial explosion of guards)
-0 schena.noreachopt=1 (dJsable the reachability optimization, default: @
i.e., reachability is not checked on-the-fly)
-0 schena. noadaptive=L (disable the adaptive reachability optimization, defaul
t:

.e., the tool will not try to choose between
enabling/disabling the reachability optimization)
-0 schema.noguardpreds=1 (do not introduce predicates for
the threshold guards, default: ©)
-0 schema. compute-nschemas=1 lalways compute the total number of
hemas, even if takes long, default: 0)
user@bymc:~/fault-tolerant- benchmarks/fcrtezas 0

Performance tuning

Incremental vs. offline SMT: -0 schema.incremental=(0|1)

Reachability optimization: -0 schema.noreachopt=(0|1)

Dependencies between the guards: -0 schema.noflowopt=(0|1)

e.g., x > t+ 1 precedes x > 2t + 1

Liveness vs. parallel liveness vs. reachability:

-0 schema.tech=(1tl]|ltl-mpi|cavl5)

Igor Konnov 14 of 24

More algorithms

More threshold guards...

X>t+1

Reliable broadcast
XxX>n-—t

[Srikanth, Toueg'86]

X>tp+1

Hybrid broadcast X>n—t,—t

[Widder, Schmid’07]

Byzantine agreement x> [5]+1 [Bracha, Toueg'85]
Non-blockin
. g. X>n [Raynal’97], [Guerraoui’01]

atomic commitment
Condition-based xX>n—t [Mostéfaoui, Mourgaya,
consensus x> [3]+1 Parvedy, Raynal’03]
Consensus in one x>n—t [Brasileiro, Greve,
communication step xX>n-2t Mostéfaoui, Raynal’03]
Byzantine one-ste

y P x> [T 41 [Song, van Renesse’08]
consensus

In general, there is a resilience condition, e.g., n > 3t, n > 7t

Igor Konnov 14 of 24

Time to check the algorithms [ISOLA’18]

3 Promela abstractions < Threshold automata

\)
O
O
2O
\)
S
YR @ & & O & e & o
IX
« & & \&vo Q,o""o ¢ & & ®

Igor Konnov 15 of 24

Beyond asynchrony and threshold automata

Extending threshold automata

standard TA

n> x,x++O
Lo

4

piecewise monotone (PMTA)

n>x xt++

O

£

reversible (RTA)

1> x, x++

OOO

1<x,x--

increments in loops (NCTA)

X++ nsx O
Lo

44

bounded difference (BDTA)

1>x—y, xt+

O—— —=0O

61 1§X_ysy++ ég

reversal bounded (RBTA)

Like reversible automata, but increments
and decrements of variables may
alternate a bounded number of times.

All flavors of threshold automata

[CONCUR’18]

Bounded

Decidable

Level Reversals Canonical diameter Flattable reachability Fragment

X 0 v v TA
p.m. f(x) 0 v PMTA
X <k v RBTA
X 0 X X NCTA
X—y 0 v X X X BDTA

X 00 v X X X RTA

E S
Jure Kukovec LK. Josef Widder
Igor Konnov 17 of 24

Probabilistic threshold-guarded algorithms [CONCUR’19]
No consensus algorithm for asynchronous systems (FLP’85)
Coin toss to break ties: value := random({0,1})

Ben-Or’s, Bracha’s consensus, RS-Bosco, k-set agreement

Compositional reasoning and reduction for multiple rounds

ByMC to reason about a single round

A2 A &

Nathalie Bertrand I.K. Marijana Lazi¢ Josef Widder

Igor Konnov 18 of 24

Synchronous threshold-guarded algorithms

r: ¢z

fe: ¢
6- 3M r7: ¢4 s oo 1
() 18 true
Oﬂ' nié. AC}

All processes move in lockstep

Counting processes in local states, not the sent messages, e.g.:

1 is #{V1,SE,AC} > t +1—f
¢ois #{V1,SE,AC} >n—t—f

Synchronous threshold automata

Igor Konnov 19 of 24

Reachability for synchronous TA [TACAS’19]

In general, even reachability is undecidable!

Bounded diameter for trapped synchronous TA /

A procedure for finding diameters with SMT \l

Reliable broadcast, phase king/queen, k-set agreement, FloodSet

tiny diameters from 1 to 4

A 8 & §

llina Stoilkovska I.K. Josef Widder Florian Zuleger

Igor Konnov 20 of 24

Industrial distributed algorithms in Tendermint blockchain

| read that paper about Byzantine Model Checker

=y Model the algorithm as a threshold automaton

A
Verify safety and liveness for all n,t,f: n>3tAt>f>0

| have heard this talk by Leslie Lamport
Let’s write it in TLA™

% Run the TLC model checker for fixed parameters

Igor Konnov 21 of 24

Industrial distributed algorithms in Tendermint blockchain

| read that paper about Byzantine Model Checker

=y Model the algorithm as a threshold automaton

A
Verify safety and liveness for all n,t,f: n>3tAt>f>0

| have heard this talk by Leslie Lamport
Let's write it in TLA™
% Run the TLC model checker for fixed parameters
TLC takes forever...

Run APALACHE for fixed parameters

Igor Konnov 21 of 24

Symbolic model checker for TLA™" [OOPSLA’19]

Reduction SMT
+

Focus on distributed algorithms

@ Invariants 2 Fixed parameters, bounded executions
@ Inductive invariants > Fixed parameters

[github.com/konnov/apalache]

Igor Konnov 22 of 24

https://github.com/konnov/apalache

What we were doing in the last months...

Specifying several Tendermint protocols in TLA™:
- fast synchronization
- light client

- consensus, tuned for fork detection

[github.com/informalsystems/verification]

Igor Konnov 23 of 24

github.com/informalsystems/verification

Conclusions

Reasoning about fault-tolerant algorithms is hard
... but fun!

Practical algorithms are even harder

Threshold guards are everywhere

Specialized tools for narrow classes, e.g., ByMC
VS.
General tools for broader classes, e.g., Apalache

