
Parameterized Verification with

Byzantine Model Checker (3)

Igor Konnov
<igor@informal.systems>

Tutorial at FORTE, June 15, 2020

streaming from Vienna / Austria to Valletta / Malta

Timeline

Fault-tolerant distributed algorithms and threshold automata

Safety of asynchronous threshold-guarded algorithms

Liveness and beyond asynchronous algorithms

Naïve voting and termination

n = 7 processes: f = 2 Byzantine, n− f = 5 correct

V0

V1
SE

D0

D1

snd0 : s0++

snd1 : s1++

dec0 : 2(s0 + f) > n

dec1 : 2(s1 + f) > nloopSE

loopD0

loopD1

termination: 32 fair → 3 (κV0 = 0 ∧ κV1 = 0 ∧ κSE = 0)
¬termination: 32 fair ∧2 (κV0 6= 0 ∨ κV1 6= 0 ∨ κSE 6= 0)

snd0, snd0, snd0, snd1, snd1,dec0,dec1,

(loopSE, loopD0, loopD1︸ ︷︷ ︸
2 fair∧2 (κV0 6=0∨κV1 6=0∨κSE 6=0)

)ω

Igor Konnov 3 of 24

Naïve voting and termination

n = 7 processes: f = 2 Byzantine, n− f = 5 correct

V0

V1
SE

D0

D1

snd0 : s0++

snd1 : s1++

dec0 : 2(s0 + f) > n

dec1 : 2(s1 + f) > nloopSE

loopD0

loopD1

termination: 32 fair → 3 (κV0 = 0 ∧ κV1 = 0 ∧ κSE = 0)
¬termination: 32 fair ∧2 (κV0 6= 0 ∨ κV1 6= 0 ∨ κSE 6= 0)

snd0, snd0, snd0, snd1, snd1,dec0,dec1,

(loopSE, loopD0, loopD1︸ ︷︷ ︸
2 fair∧2 (κV0 6=0∨κV1 6=0∨κSE 6=0)

)ω

Igor Konnov 3 of 24

From reachability to safety & liveness

A) A temporal logic for bad executions E
(
ϕ1 ∧32 (ϕ2 ∨ ϕ3)

)

B) Enumerating shapes of counterexamples

C) Property specific mover analysis

Details in [K., Lazić, Veith, Widder. POPL’17]

Igor Konnov 4 of 24

Short counterexamples for safety or liveness

A B C D = B

A B C D = B

Safety & liveness (POPL’17)

Every lasso can be transformed into a bounded one. The bound depends on
the process code and the specification, not the parameters.

Igor Konnov 5 of 24

The shape of temporal formulas

Termination: every process eventually decides

32 ψfair −→ 3 (κV1 = 0 ∨ κV0 = 0 ∨ κSE = 0)

Propositional formulas:

(1)
∧

`∈S κ` = 0
(2)

∨
`∈S κ` 6= 0

(3)
∨

S⊆T
∧

`∈S κ` = 0
(4) Bool(Guards)→ (1)∧ (2)∧ (3)

Temporal formulas:

ψ ::= prop | 2ψ | 3ψ | ψ ∨ ψ

Igor Konnov 6 of 24

The shape of temporal formulas

Termination: every process eventually decides

32 ψfair −→ 3 (κV1 = 0 ∨ κV0 = 0 ∨ κSE = 0)

Propositional formulas:

(1)
∧

`∈S κ` = 0
(2)

∨
`∈S κ` 6= 0

(3)
∨

S⊆T
∧

`∈S κ` = 0
(4) Bool(Guards)→ (1)∧ (2)∧ (3)

Temporal formulas:

ψ ::= prop | 2ψ | 3ψ | ψ ∨ ψ

Igor Konnov 6 of 24

Warning about formulas

[POPL’17] defines the logic ELTLFT for counterexamples

ELTLFT talks about one execution (the shape of a counterexample)

ByMC uses the logic LTL for all executions

That is, ByMC accepts ¬ϕ for ϕ ∈ ELTLFT

Igor Konnov 7 of 24

The hard part: fairness

V0

V1
SE

D0

D1

snd0 : s0++

snd1 : s1++

dec0 : 2(s0 + f) > n

dec1 : 2(s1 + f) > nloopSE

loopD0

loopD1

All correct processes take infinitely many steps:

32 (κV0 = 0 ∧ κV1 = 0)

Every message sent by a correct process is...
eventually received by all correct processes:

32
(
(2s0 ≤ n︸ ︷︷ ︸
¬ENABLED(dec0)

∨ κSE = 0) ∧ /* dec1... */
)

Igor Konnov 8 of 24

The hard part: fairness

V0

V1
SE

D0

D1

snd0 : s0++

snd1 : s1++

dec0 : 2(s0 + f) > n

dec1 : 2(s1 + f) > nloopSE

loopD0

loopD1

All correct processes take infinitely many steps:

32 (κV0 = 0 ∧ κV1 = 0)

Every message sent by a correct process is...
eventually received by all correct processes:

32
(
(2s0 ≤ n︸ ︷︷ ︸
¬ENABLED(dec0)

∨ κSE = 0) ∧ /* dec1... */
)

Igor Konnov 8 of 24

More complex algorithm: BOSCO

One-step Byzantine asynchronous consensus

every process starts with a value vi ∈ {0,1}

agreement: no two processes decide differently

validity: if a correct process decides on v ,
then v was the initial value of at least one process

unanimity: if all correct processes are initialized with v ,
every deciding correct process must decide on v

termination: all correct processes eventually decide

decide in one communication step,

when there are “not too many faults”

One-step Byzantine asynchronous consensus

every process starts with a value vi ∈ {0,1}

agreement: no two processes decide differently

validity: if a correct process decides on v ,
then v was the initial value of at least one process

unanimity: if all correct processes are initialized with v ,
every deciding correct process must decide on v

termination: all correct processes eventually decide

decide in one communication step,

when there are “not too many faults”

BOSCO [Song & van Renesse, DISC 2008]

� �
1 input vp
2 send 〈VOTE, vp〉 to all processors;
3

4 wait until n − t VOTE messages have been received;
5

6 i f more than n+3t
2 VOTE messages contain the same value v

7 then DECIDE(v);
8

9 i f more than n−t
2 VOTE messages contain the same value v,

10 and there is only one such value v
11 then vp ← v;
12

13 call Underlying-Consensus(vp);� �
resilience: of n > 3t processes, f ≤ t processes are Byzantine

fast termination: when n > 5t and f = 0 and n > 7t

Threshold automaton

(
similar for V1, SE1, D1, U1, . . .

)

V0
SE0

D0

U0

TRUE 7→ s0++

φA ∧ s0 + f ≥ τD0

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 + f ≥ τU1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 < τU0 ∧ s1 < τU1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 < τU1

threshold guards, e.g., φA is defined as s0 + s1 + f ≥ n − t

increments of shared variables, e.g., s0++

run n − f copies provided that there are f ≤ t Byzantine faults
and n > 3t

Igor Konnov 12 of 24

Let’s run ByMC on BOSCO. . .

Performance tuning

Incremental vs. offline SMT: -O schema.incremental=(0|1)

Reachability optimization: -O schema.noreachopt=(0|1)

Dependencies between the guards: -O schema.noflowopt=(0|1)

e.g., x ≥ t + 1 precedes x ≥ 2t + 1

Liveness vs. parallel liveness vs. reachability:

-O schema.tech=(ltl|ltl-mpi|cav15)

Igor Konnov 14 of 24

More algorithms

More threshold guards. . .

Reliable broadcast
x ≥ t + 1
x ≥ n − t

[Srikanth, Toueg’86]

Hybrid broadcast
x ≥ tb + 1
x ≥ n − tb − tc

[Widder, Schmid’07]

Byzantine agreement x ≥ dn
2e+ 1 [Bracha, Toueg’85]

Non-blocking
atomic commitment

x ≥ n [Raynal’97], [Guerraoui’01]

Condition-based
consensus

x ≥ n − t
x ≥ dn

2e+ 1
[Mostéfaoui, Mourgaya,
Parvedy, Raynal’03]

Consensus in one
communication step

x ≥ n − t
x ≥ n − 2t

[Brasileiro, Greve,
Mostéfaoui, Raynal’03]

Byzantine one-step
consensus

x ≥ dn+3t
2 e+ 1 [Song, van Renesse’08]

In general, there is a resilience condition, e.g., n > 3t , n > 7t

Igor Konnov 14 of 24

Time to check the algorithms [ISOLA’18]

1

10
0

10
00

0

FR
B

ST
RB

NB
AC

G

NB
AC

R

BO
SC
O

C1
CS

CF
1S CB

C
AB
A

Promela abstractions Threshold automata

Igor Konnov 15 of 24

Beyond asynchrony and threshold automata

Extending threshold automata

standard TA

`1 `2

n > x , x++

piecewise monotone (PMTA)

`1 `2

n > x2, x++

reversible (RTA)

`1 `21 ≤ x , x--

1 > x , x++

increments in loops (NCTA)

`1 `2

n ≤ x
x++

bounded difference (BDTA)

`1 `21 ≤ x − y , y++

1 > x − y , x++

reversal bounded (RBTA)
Like reversible automata, but increments
and decrements of variables may
alternate a bounded number of times.

All flavors of threshold automata [CONCUR’18]

Level Reversals Canonical Bounded
diameter Flattable Decidable

reachability Fragment

x 0 3 3 3 3 TA
p.m. f (x) 0 3 3 3 3 PMTA

x ≤ k 3 3 3 3 RBTA
x 0 7 7 3 3 NCTA

x − y 0 3 7 7 7 BDTA
x ∞ 3 7 7 7 RTA

Jure Kukovec I.K. Josef Widder

Igor Konnov 17 of 24

Probabilistic threshold-guarded algorithms [CONCUR’19]

No consensus algorithm for asynchronous systems (FLP’85)

Coin toss to break ties: value := random({0,1})

Ben-Or’s, Bracha’s consensus, RS-Bosco, k -set agreement

Compositional reasoning and reduction for multiple rounds

ByMC to reason about a single round

Nathalie Bertrand I.K. Marijana Lazić Josef Widder

Igor Konnov 18 of 24

Synchronous threshold-guarded algorithms

V0

V1 SE ACr1 : true

r2 : φ2

r3 : φ1

r4 : φ2

r5 : φ2

r6 : φ3

r8 : true
r7 : φ4

All processes move in lockstep

Counting processes in local states, not the sent messages, e.g.:

φ1 is #{V1,SE,AC} ≥ t + 1− f
φ2 is #{V1,SE,AC} ≥ n − t − f

Synchronous threshold automata

Igor Konnov 19 of 24

Reachability for synchronous TA [TACAS’19]

In general, even reachability is undecidable!

Bounded diameter for trapped synchronous TA

A procedure for finding diameters with SMT

Reliable broadcast, phase king/queen, k -set agreement, FloodSet

tiny diameters from 1 to 4

Ilina Stoilkovska I.K. Josef Widder Florian Zuleger

Igor Konnov 20 of 24

Industrial distributed algorithms in Tendermint blockchain

I read that paper about Byzantine Model Checker

Model the algorithm as a threshold automaton

Verify safety and liveness for all n, t , f : n > 3t ∧ t ≥ f ≥ 0

I have heard this talk by Leslie Lamport

Let’s write it in TLA+

Run the TLC model checker for fixed parameters

TLC takes forever...

Run APALACHE for fixed parameters

Igor Konnov 21 of 24

Industrial distributed algorithms in Tendermint blockchain

I read that paper about Byzantine Model Checker

Model the algorithm as a threshold automaton

Verify safety and liveness for all n, t , f : n > 3t ∧ t ≥ f ≥ 0

I have heard this talk by Leslie Lamport

Let’s write it in TLA+

Run the TLC model checker for fixed parameters

TLC takes forever...

Run APALACHE for fixed parameters

Igor Konnov 21 of 24

Symbolic model checker for TLA+ [OOPSLA’19]

TLA+ Reduction
rules

SMT
(Z3)

Focus on distributed algorithms

Invariants Fixed parameters, bounded executions
Inductive invariants Fixed parameters

[github.com/konnov/apalache]

Igor Konnov 22 of 24

https://github.com/konnov/apalache

What we were doing in the last months...

Specifying several Tendermint protocols in TLA+:

- fast synchronization

- light client

- consensus, tuned for fork detection

[github.com/informalsystems/verification]

Igor Konnov 23 of 24

github.com/informalsystems/verification

Conclusions

Reasoning about fault-tolerant algorithms is hard

. . . but fun!

Practical algorithms are even harder

Threshold guards are everywhere

Specialized tools for narrow classes, e.g., ByMC
vs.

General tools for broader classes, e.g., Apalache

