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4

We present a novel and well automatable approach to formal verification of C programs with un- 5

derspecified semantics, i.e., a language semantics that leaves open the order of certain evaluations. 6

First, we reduce this problem to non-determinism of concurrent systems, automatically extracting 7

a distributed Active Object model from underspecified, sequential C code. This translation pro- 8

cess provides a fully formal semantics for the considered C subset. In the extracted model every 9

non-deterministic choice corresponds to one possible evaluation order. This step also automatically 10

translates specifications in the ANSI/ISO C Specification Language (ACSL) into method contracts 11

and object invariants for Active Objects. We then perform verification on the specified Active Ob- 12

jects model, using the Crowbar theorem prover, which verifies the extracted model with respect to 13

the translated specification and ensures the original property of the C code for all possible evaluation 14

orders. By using model extraction, we can use standard tools, without designing a new complex pro- 15

gram logic to deal with underspecification. The case study used is highly underspecified and cannot 16

be handled correctly by existing tools for C. 17

1 Introduction 18

Verification of programs relies on the availability of a formal, or at least a formalizable, semantics of the 19

used programming language. However, the semantics of mainstream programming languages contain 20

challenges that require special attention from programmers and verification tools alike. 21

In this work we consider the semantics of the C language, which in addition to fully specified behav- 22

ior contains undefined, unspecified and implementation defined behavior: these semantics describe not 23

exactly what should happen, but leave crucial decisions to the implementing compiler and/or the runtime 24

environment. Our focus here is on the unspecified evaluation order within the C standard, which we 25

refer to as underspecified. Importantly, the semantics for underspecified behavior is not undefined, as 26

the semantics limits the possible choices. This is not merely a fringe case, but is observable already in 27

natural and small programs. Consider the C program in Fig. 1. The C99 standard [23] does not specify 28

the order of evaluation of the subexpressions in the addition.1 Indeed, the two main compilers for C 29

return different values: gcc 7.4.0 returns 2 (evaluating the second summand first), clang 6.0.0 returns 1 30

(evaluating the first summand first). The reason is that gcc uses a stack-based translation of expressions, 31

while clang uses a queue-based one. 32

Verification of underspecified C code is still an open problem and merely fixing the choice is not 33

enough for verification: As the semantics is underspecified, compilers are not required to be consistent 34

in their choice even during the run of a single program and optimizations are not obligated to preserve 35

the choice of the compiler. 36

1This unspecified evaluation order is also prevalent in other C standards.
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1 int x;

2 int id_set_x(int val){

3 x=1;

4 return val;}

5 int main(void){
6 x=0;

7 return x + id_set_x(1);}

Figure 1: Addition with side-effect.

This effect is further amplified from a software engineering perspective, when program equivalence1

becomes a problem: For one, changing, updating the compiler, or indeed barely changing its parameters2

may result in different program behavior. For another, reengineering legacy software, a critical activity to,3

e.g., enable parallelization [18] cannot rely on analyses proving functional equivalence, if these analyses4

are not considering underspecification. Before attempting to prove program equivalence, one must be5

able to reason about functional behavior of programs in a language with underspecified semantics.6

Approach. At the core of this work is the idea to transform non-determinism in sequential programs7

arrising due to underspecification to non-determinism due to concurrency and then use tools to specify8

and verify concurrent behavior, which are more advanced and investigated in more detail. Each possible9

evaluation order is one possible interleaving order.10

More precisely, this work presents an approach to automatically verify functional behavior of C pro-11

grams with underspecified semantics, which is based on reducing underspecification to non-determinism12

in a fully specified language: We are able to verify functional properties of C programs without undefined13

behavior with respect to every possible standard-compliant semantics. In this work we build upon the14

model-extraction approach by Wasser et al. [37] for a subset of the C language and give an implemented15

system that verifies the functional behavior of the extracted model. The extracted model gives a fully16

formal and analyzable semantics for C in terms of an Active Object framework.17

We translate C code into an Active Objects language [13] and regard sequential C programs as parallel18

programs, in which the non-determinism arises from parallelism and not from underspecified semantics.19

Conceptually, this is a rare case where a problem of sequential programs is transformed to a problem20

of parallel programs, because the support for analysis of parallel systems is better than the support for21

reasoning about underspecified semantics.22

For Active Objects there are program logics [26] that enable modular reasoning and we are able23

to employ method contracts for asynchronous calls [27]. The expected behavior under all possible se-24

mantics is annotated with ACSL [8] and automatically translated into cooperative contracts and object25

invariants of Active Objects. Using this approach we give a case study to verify that a highly underspeci-26

fied recursive function that computes the nth Fibonacci number in one semantics returns a value between27

1 and the nth Fibonacci number in every standard-adhering semantics.28

Contributions. Our contributions are (1) an implemented approach to automatically verify functional29

behavior of C programs with underspecified semantics, and a deductive verification case study of under-30

specified C code which is (2) the biggest verification case study of such code that cannot be handled by31

existing approaches (see next section) (3) the biggest deductive verification case study for Active Ob-32

jects (in lines of code) to date. The case study can be proven fully automatically. Additionally to the33
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conceptual approach and case study, we also contribute a translation of ACSL specifications for C into 1

BPL specifiations for ABS. 2

State-of-the-Art. Underspecified (and to a lesser degree undefined) semantics are a rarely approached 3

challenge for deductive verification. Here, we review the tools that consider these kinds of semantics. 4

Frama-C [12] can find (some) undefined behavior related to read-write or write-write accesses be- 5

tween sequence points. However, it does not recognize unspecified behavior when these accesses occur 6

indeterminately sequenced as in our examples here, instead only examining a single fixed evaluation 7

order2 [10, p.40]. Further, while most of ACSL is utilized in Frama-C, this does not include global 8

invariants, which we are able to handle. Additionally, new tools must be built specifically for the C inter- 9

mediate representation only used within Frama-C, while our approach can profit from all tools available 10

for ABS, which has included so far model checking, simulation, deadlock analysis and deductive veri- 11

fication. RV-Match [1]—based on C semantics formalized [2, 19] in the K framework [3, 36]—is able 12

to find (some) undefined and implementation defined behavior in C programs, but like Frama-C chooses 13

only a single evaluation order when faced with underspecified behavior. This in turn prevents both from 14

finding undesired behavior that is only obvious when a different evaluation order is chosen. While our 15

approach currently works only with an admittedly smaller subset of C containing underspecification than 16

that allowed in RV-Match and Frama-C, it faithfully considers all possible evaluation paths allowed by 17

the standard. Cerberus [4, 33] is an analysis tool for undefined and underspecified behavior; however, it 18

cannot utilize any specifications and its treatment of unspecified evaluation order of side effects does not 19

match the C standard, as demonstrated in [37]. The separation logic system of Frumin et al. [17], based 20

on small-step semantics in Coq [30] correctly treats underspecification. They give a formal system to 21

verify a program in their toy language λMC and check effects of underspecified behavior with a modi- 22

fied separation logic. In contrast to the subset of C we consider, λMC is emphatically not a subset of C 23

and is described as merely a C-style language3. Verification of any C program therefore requires man- 24

ual translation into an equivalent λMC program and manual specification of the λMC program in Coq. 25

Our model-extraction based approach is fully automated, can be used with standard program logics and 26

analyses for Active Objects and does not rely on complex rule modifications to handle underspecified 27

behavior. We stress that this automation includes the verification, which needs not be performed by the 28

user in an interactive prover such as Coq [5]. 29

Holzmann and Smith [22] attempt to reuse the SPIN model checker by extracting Promela code 30

from a C program. However, their approach requires manual translation/adjustment (flattening) of the 31

underspecified parts. Furthermore, Promela/SPIN only support model checking and cannot be applied 32

to unbounded inputs. Concerning semantics, several formalizations [16, 34, 35] of the C semantics deal 33

with underspecified evaluation order without giving a reasoning system. 34

To conclude the overview of the state-of-the-art, there is no satisfying approach to verify underspec- 35

ified C code and the partial approaches are not suited for automatization. 36

Structure. In Sec. 2 we investigate the program in Fig. 1 in more detail. In Sec. 3 we give preliminar- 37

ies: the basics of ABS [24], the Active Object language used, and its contracts. In Sec. 4 we describe the 38

model-extraction, which we then use in Sec. 5 to verify the Fibonacci case study. We conclude in Sec- 39

tion 6. The accompanying technical report with formal details, proofs and a link to the implementation 40

is not referred to for the double-blind review. 41

2E.g., value analysis in Frama-C claims that the program in Fig. 1 can only return 2.
3Even this is debatable, but underspecified C-style behavior is present.
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2 Overview over Workflow1

Before we introduce the used systems, we illustrate our approach using the code in Fig. 2, which adds2

ACSL specifications to the previous example. The strong global invariant specifies a condition that must3

hold at every point during execution, while the requires/ensures clauses are standard pre/postconditions.4

5

Specified C-code is translated into specified ABS-code. ABS is object-oriented and uses the follow-6

ing concurrency model: (1) An object cannot access the fields of another object. (2) Every method call7

is asynchronous (i.e., does not block the caller) and returns a future. A future can be used to synchronize8

on the called method and read its eventual return value. (3) Only one process is active per object and a9

process can only be interrupted when executing an await g statement. An await g statement waits until10

all futures in the guard g are resolved, i.e., their process has terminated. There are no global variables11

and for specification, ABS supports object invariants and method contracts.12

The code in Fig. 3 shows a (prettified) part of the translation of Fig. 2. The global variables are13

handled by a special (singleton) class Global. In Global, each global variable is a field and the global14

invariant becomes the object invariant of this class. Similarly, the global invariant is also added as15

pre/postcondition to the setter and getter method handling the fields.16

Each C-function f is translated into an ABS-class C_f and an interface I_f with a call method that17

models its execution. The function contract of id_set_x becomes the method contract of I_id_set_x.18

call. We only show the translation of main in detail. Again, the function contract becomes the method19

contract of call. The other methods in the class C_main model memory accesses to global variable x,20

calling function id_set_x and addition with the + operator.21

The call method is a translation of the main function. It first sets x to 0 and than waits for this22

operation to finish — the await at line 21 models synchronization at the sequence point ;. The next23

three lines translate the addition operation and contain no await, because the C-expression contains no24

sequence point. The two calls to model evaluation of the subexpressions are called in one order, but may25

be executed in a different one.26

The method op_plus_fut_fut models evaluation of the addition expression. It takes two futures,27

i.e., two references to yet unfinished executions. It then synchronizes with both of them, i.e., it waits28

until both are resolved (line 34) and then adds the corresponding return values. It depends on the global29

scheduling which method is executed first and therefore whether the read triggered in C_main or the write30

in C_id_set_x takes place on Global first. Note that the specification of C_main is also automatically de-31

rived from the ACSL specification. The translated model can now be passed to the Crowbar verification32

system, which checks that the code adheres to its specification. It indeed does so and, as expected, fails33

to close the proof if the specification is wrong, i.e., if the results is specifed as only 1 or only 2.34

1 int x; //@ strong global invariant x == 0 || x == 1;
2 int id_set_x(int val)
3 /*@ requires val == 1; ensures \result == 1; @*/ {
4 x=1; return val;}
5 int main(void)
6 /*@ ensures \result == 1 || \result == 2; @*/ {
7 x=0; return x + id_set_x(1);}

Figure 2: Specified addition with side-effect.
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1 [Spec:ObjInv(this.x == 0||this.x == 1)]
2 class Global implements Global {
3 Int x = 0;
4 [Spec:Ensures(result == 0||result == 1)]
5 Int get_x() { return this.x; }
6 [Spec:Requires(value == 0||value == 1)]
7 Unit set_x(Int value) { this.x = value; }
8 }
9 class C_id_set_x(Global global)

10 implements I_id_set_x {
11 [Spec: Requires( val == 1 )]
12 [Spec: Ensures( result == 1 )]
13 Int call(Int val){...}// executes id set x(val)
14 ... }
15 class C_main(Global global)
16 implements I_main {
17 [Spec:Ensures(result == 1||result == 2)]
18 Int call() { // executes main()
19 Fut<Unit> tmp_4 =
20 this!set_global_x_val(0); // sets x to 0
21 await tmp_4?; // introduces sequence point ‘‘;’’
22 Fut<Int> tmp_5 =
23 this!get_global_x(); // reads x
24 Fut<Int> tmp_6 =
25 this!call_id_set_x_val_0(1);//calls id set x
26 Fut<Int> tmp_7 =
27 this!op_plus_fut_fut(tmp_5, tmp_6);//add
28 await tmp_7?; // introduces sequence point ‘‘;’’
29 return tmp_7.get; // returns result of addition
30 }
31 [Spec: Ensures(valueOf(fut_arg1) + valueOf(fut_arg2) == result)]
32 Int op_plus_fut_fut(Fut<Int> fut_arg1,
33 Fut<Int> fut_arg2) {
34 await fut_arg1? & fut_arg2?;
35 Int arg1 = fut_arg1.get;
36 Int arg2 = fut_arg2.get;
37 return ( arg1 + arg2 );
38 }
39 ... }

Figure 3: Partial translation of Fig. 2.

3 Active Objects and Their Verification 1

In this section we give the preliminaries for our work: the ABS language and cooperative contracts. For 2

space reasons, we refrain from introducing the full formalisms and refer to [26] for a full definition of 3

the underlying program logic and to [27] for a definition of the used ABS semantics and cooperative 4

contracts. We stress, however, that the approach is fully formal. 5

ABS [24] is an executable, object-oriented modeling languages based on Active Objects [13], de- 6

signed to model and analyze distributed systems. It has been applied to model a wide range of concurrent 7

software systems, such as cloud-based services [14, 31], YARN [32] or memory systems [28]. 8

Overview. ABS syntax is largely based on Java and we refrain from describing the full language here. 9

Instead, we introduce ABS in an example-driven way to demonstrate its concurrency model and formal 10

semantics. The main features of the concurrency model can be summarized with the points below: 11
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Strong Encapsulation. Every object is strongly encapsulated at runtime, such that no other object can1

access its fields, not even objects of the same class.2

Asynchronous Calls with Futures. The ABS language combines actors [21] with futures [6]. Each3

method call is asynchronous and generates a future. Futures can be passed around and are used to4

synchronize on the process generated by the call. Once the called process terminates, its future is5

resolved and the return value can be retrieved. We say that the process computes its future.6

Cooperative Scheduling. At every point in time, at most one process is active in an object. Active7

Objects are preemption-free: A running process cannot be interrupted unless it explicitly releases8

control over the object. This is done either by termination with a return statement or with an await9

g statement that waits until guard g holds. A guard polls a set of futures and holds iff all futures10

in it are resolved.11

These features ensure that a process has exclusive control over the heap memory of its object be-12

tween syntactically marked statements. This vastly simplifies deductive verification, as between such13

statements techniques from sequential program verification carry over directly.14

Example 1. As the extracted models from C code are rather unintuitive, we demonstrate the concurrency15

model of ABS with a more natural program.16

Fig. 4 gives an ABS model with two objects that folds some binary operation over three numbers:17

one object that performs the operation and a second object that performs the folding. Interface Fold18

defines an interface for the fold. Lines 2 and 3 give the specification, which we discuss in more detail19

below. Here, we specify that the input values must be positive (Requires) and that the result is positive20

(Ensures). Interface Comp specifies a single method, which performs some operation that also operates21

only on positive numbers. Class FoldC implements the folding and has a field comp that points to a Comp22

instance. We specify that the field is initialized with a non-null value (Requires) and stays non-null23

(ObjInv). It has a field last to store the intermediate result. ABS uses a main block to initialize the24

system, which here creates one instance of each class, starts two fold-processes and synchronizes on25

both. There is no await in the class – the processes executing C.fold do not overlap, so the value of last26

cannot change before it is returned and it is safe to save the intermediate value in this field.27

Cooperative Method Contracts. Here, we give the used fragment of the specification language for28

ABS: cooperative method contracts [27] and object invariants for Active Objects [15]. We recap the29

Behavioral Program Logic [26] used to verify cooperative method contracts.30

Cooperative Method Contracts use two kinds of preconditions for methods: parameter precondi-31

tions, which describe the expected parameters; and heap preconditions, which additionally describe the32

class fields. Splitting the precondition is necessary, because the parameters are controlled by the caller33

process (and must be guaranteed by the caller), while the fields are controlled by the last active process34

in the callee object (and must be guaranteed by this process). There are also two postconditions: the35

heap postcondition defines the final state upon termination of the method in terms of its fields and local36

variables plus a special program variable result for the return value; the parameter postcondition defines37

the return value in terms of the parameters. The parameter postcondition can be used upon reading from38

the future if the call parameters are known.39

We also use object invariants, which must hold at every point a method loses or regains control over40

the object: at method start, termination and await statements. The initial state of classes is specified with41

creation conditions.42
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1 interface Fold {
2 [Spec: Requires(a>0 && b>0 && c>0)]
3 [Spec: Ensures(result>0)]
4 Int fold(Int a, Int b, Int c);
5 }
6 interface Comp {
7 [Spec: Requires(a>0 && b>0)]
8 [Spec: Ensures(result>0)]
9 Int op(Int a, Int b);

10 }
11 class CompC implements Comp { ... }
12 [Spec: Requires(comp != null)]
13 [Spec: ObjInv(comp != null)]
14 class FoldC(Comp comp, Int last)
15 implements Fold{
16 Int fold(Int a, Int b, Int c){
17 Fut<Int> f = comp!op(a, b); last = f.get;
18 f = comp!op(last, c); last = f.get;
19 return last;
20 }
21 }
22 { Comp a = new CompC();
23 Fold c = new FoldC(a,0);
24 Fut<Int> f1 = c!fold(1,2,5);
25 Fut<Int> f2 = c!fold(1,2,4);
26 await f1? & f2?; }

Figure 4: Simple ABS Model, slightly beautified.

Specification. Method signatures in interfaces may be annotated with parameter preconditions of the 1

form [Spec:Requires(e)] and postconditions ([Spec:Ensures(e)]), where e is an expression of Boolean 2

type. Similarly, method implementations in classes may be annotated with heap pre- and postconditions. 3

A heap precondition that could be a parameter precondition is automatically transformed. Classes may 4

be annotated with object invariants [Spec: ObjInv(e)] and creation conditions [Spec: Requires(e)]. 5

Loops may be annotated with loop invariants [Spec: WhileInv(e)]. The specifications in Fig. 4 are 6

explained in Example 1. 7

Full cooperative contracts have mechanisms to specify and verify await statements with suspension 8

contracts and get statements with resolving contracts [27]. Similarly, so called context sets [27] are used 9

to specify and analyze the heap preconditions. As neither heap preconditions nor suspension or resolving 10

contracts are used by the extracted models, we refrain from introducing them in detail. 11

Verification Crowbar [29] is a verification system for ABS that implements symbolic execution (SE) 12

i.e., the step-wise execution of statements to generate a set of first-order logic formulas. Validity of all 13

generated formulas implies safety of the method. The resulting formulas are output in SMT-LIB [7] 14

format and passed to solvers such as Z3. 15

Additionally to verifying cooperative contracts, Crowbar implements a lightweight deadlock checker 16

for ABS that contrary to existing deadlock checkers for ABS [25, 20], requires no main block: The struc- 17

tural deadlock analysis deduces which methods cannot be part of a deadlock for any program: A dead- 18

lock is a cycle of dependencies caused by future (and condition) synchronizations [25] and is analyzed 19

in terms of cycles in dependency graphs between synchronizations, objects and methods. Any method 20

that contains no synchronization cannot be part of any dependency cycle, it is structurally deadlock-free. 21
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Similarly, all methods that only call deadlock-free methods and synchronize only on their futures are not1

part of any deadlock.2

Example 2. Consider Ex. 1. If the implementation of CompC.op contains no blocks or call, e.g., the3

statement return a*b, then we can show deadlock freedom.4

CompC.op is structurally deadlock-free: it contains no synchronization or suspension. C.fold de-5

pends only on CompC.op and is thus not part of any deadlock.6

4 Extraction of Annotated Model7

In order to extract an ABS model annotated with appropriate specifications from a (specified) C program,8

we extend the approach from [37] (which extracts a non-deterministic Active Objects model from C code9

containing underspecified behavior) by automatically generating some specifications which are sound by10

construction and generating all other specifications by translation of the specifications in the underlying11

C program. In order to translate ACSL function contracts into method contracts it was also required to12

slightly change the manner in which function parameters were modeled, from parameters of the class13

to parameters of the call method within the class. Otherwise, simple functional properties would have14

required reasoning about heap properties.15

ACSL16

The ANSI/ISO C Specification Language (ACSL) [8] is a behavioral specification language for C pro-17

grams, used by the state-of-the-art Frama-C [12] tool suite. ACSL can be used to specify function18

contracts (pre- and postconditions), data invariants over global variables and some further constructs,19

such as loop invariants, statement contracts (pre- and postconditions for a single statement or block of20

statements), assertions or ghost code.21

Function contracts consist of a requires clause for the precondition and an ensures clause for the22

postcondition. Both clauses can be simple C expressions of arithmetic type4, with the postcondition23

allowed to contain \result to refer to the return value. Additionally, an assigns clause to specify which24

locations may be accessed can be given. We ignore assigns clauses for now as they are not directly25

relevant for underspecified semantics.26

ACSL allows two types of data invariants on global variables: 1. strong global invariants, which27

hold at all times; and 2. weak global invariants, which hold before and after each execution of a function28

call and can thus equivalently be added as a requires and ensures clause to all functions. We therefore29

focus here only on strong global invariants, in particular as these cannot be easily dealt with in Frama-C.30

Furthermore, we restrict strong global invariants to properties about single variables and thus exclude31

relational properties.32

4.1 From C Code to ABS (C2ABS)33

C2ABS [37] is an Eclipse plugin which extracts an ABS model from a C program. Here we describe34

how this extraction takes place. In the next subsection we describe the novel extension of this model35

extraction: synthesizing specification annotations for the extracted model. Table 1 details how C concepts36

are translated into ABS. The basic idea is to have one Active Object which models access to global37

variables and further model each executed function call as its own Active Object. Within these function38

4Full ACSL allows more operators, which we ignore for now.



E. Kamburjan & N. Wasser 9

C ABS
Top-level declarations

Global variables Class Global with methods to get/set variable values
definition of function f class C_f with parameter global
Execution of function f Execution of call method on object of class C_f

Parameters and local variables
const parameter parameter of call method

non-const parameter parameter of call method stored in field
const local variable local variable

non-const local variable field
Local const read Direct variable/parameter access

Other (sub-)expressions Methods awaiting parameters and:
global read/write synchronous call to global object (write is side effect)

local non-const read/write get/set value of field
C built-in operators ⊕ return result of performing ⊕

invocation of function f await side effects, create C_f object, make synchronous call to method call of object
Unspecified evaluation order Asynchronous method calls to this object

Sequence points await statements

Table 1: Translation of C concepts into ABS

call objects each (sub)expression being evaluated is modeled as an asynchronous method call to itself 1

with await statements modeling sequence points: the point between evaluation of all arguments and side 2

effects of a function call, and the call itself; the semicolon at the end of an expression statement; etc. 3

Access to global variables is modeled by methods making blocking calls to the global object, while 4

(potentially recursive) function calls are modeled by creating new Active Objects for the appropriate 5

function and making blocking calls to these new objects. 6

Example 3. Consider the function main in Fig. 1 and the statement return x + id_set_x(1); inside, 7

where there is a sequence point between evaluation of the expression and returning from the function. 8

The ABS class extracted is shown in Fig. 5, where the method call models function execution and lines 5- 9

9 model the unspecified evaluation order of the the expression x + id_set_x(1) with the await at line 10 10

allowing non-deterministic choice in which order the methods to this are executed in. Once all futures 11

have been resolved, the await regains control, modeling the sequence point before returning. The method 12

call then returns the value of the addition. The method get_global_x models the memory access, by 13

making a synchronous call5 to the global parameter of the class, requesting the value of x. The method 14

call_id_set_x_val_0 models a call to the function id_set_x with an argument evaluated at compile 15

time and zero side effects from evaluating its argument6. This is done by first creating a new C_id_set_x 16

object with access to the same global object and then making a synchronous call to the call method of 17

that object with the evaluated function arguments as parameters. Finally, the method op_plus_fut_fut 18

models the addition of two subexpressions evaluated at runtime and therefore modeled as futures. First, 19

the method awaits the resolution of its subexpressions, then returns the sum. While the three methods 20

can be executed in arbitrary (and interleaving) order, the only visible difference depends on the order 21

of get_global_x and call_id_set_x_val_0, as op_plus_fut_fut immediately awaits resolution of the 22

5An asynchronous call to an object in another object immediately followed by a get.
6If the argument were a future or side effects (modeled as futures) were present, the method would immediately await

resolution of all these futures.
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1 class C_main(Global global)
2 implements I_main {
3 Int call() {
4 ...
5 Fut<Int> fut_x = this!get_global_x();
6 Fut<Int> fut_set =
7 this!call_id_set_x_val_0(1);
8 Fut<Int> fut_add =
9 this!op_plus_fut_fut(fut_x, fut_set);

10 await fut_x? & fut_set? & fut_add;
11 return fut_add.get;
12 }
13 Int get_global_x() {
14 Fut<Int> f = global!get_x();
15 return f.get;
16 }
17 Int call_id_set_x_val_0(Int arg1) {
18 I_id_set_x o = new C_id_set_x(global);
19 Fut<Int> f = o!call(arg1); return f.get;
20 }
21 Int op_plus_fut_fut(Fut<Int> fut_arg1,
22 Fut<Int> fut_arg2) {
23 await fut_arg1? & fut_arg2?;
24 Int arg1 = fut_arg1.get;
25 Int arg2 = fut_arg2.get;
26 return arg1 + arg2;
27 }
28 }

Figure 5: Class C_main extracted from function main in Fig. 1

other two methods.1

4.2 Automatically Synthesizing Specifications2

Due to the automated nature in which function-modelling classes and helper methods are generated, we3

can synthesize some specifications directly. For others we require ACSL specification of the underlying4

C program.5

Auto-generate specifications related to global object As each function-modelling class receives the6

global object as a parameter, uses it to access global variables and passes it on when instantiating any7

further function-modelling classes, we must (at least) specify that this class parameter (and field) is never8

null. To this end all function-modelling classes are specified with:9

[Spec : Requires(global != null)]
[Spec : ObjInv(global != null)]10

Auto-generate precise postconditions for operator methods C2ABS-generated methods from C built-11

in operators ⊕ all perform the same basic steps: await resolution of all future parameters and then return12

the result of performing ⊕ on the (resolved) parameters. Precise postcondition specifications for each13

of these methods can therefore be generated automatically, by ensuring that the result of the method is14



E. Kamburjan & N. Wasser 11

equal to the result of performing ⊕ on the (resolved) parameters. All C operator method declarations in 1

interfaces are thus automatically annotated with appropriate postcondition specifications. 2

Example 4. The interface I_main in the model extracted from the program in Fig. 1 contains the follow- 3

ing annotated method declaration: 4

[Spec : Ensures(valueof(fut_arg1) + valueof(fut_arg2) == result)]

Int op_plus_fut_fut(Fut<Int> fut_arg1,

Fut<Int> fut_arg2);
5

Translate ACSL requires/ensures function contracts ACSL requires/ensures clauses specify (rela- 6

tional) restrictions upon the function arguments and functional guarantees for the result. Following 7

similar steps to those for extracting C expressions—simplified somewhat due to lack of side effects— 8

these can be converted into pre- and postconditions of the call method in the interface modelling the 9

function. Additionally, similar pre- and postconditions are added to the indirect call methods in any 10

interfaces modelling functions calling the specified function. When an argument to an indirect call is a 11

future value, the pre- and postconditions must be formulated to hold for the resolved argument. 12

Example 5. Given the specified function id_set_x at line 3 in Fig. 2: 13

2 int id_set_x(int val)

3 /*@ requires val == 1; ensures \result == 1; @*/ { 14

We annotate both the call method in I_id_set_x and the call_id_set_x_val method in I_main 15

with the following specifications: 16

[Spec : Requires(val == 1)]

[Spec : Ensures(result == 1)] 17

Translate ACSL strong global invariants While a strong global invariant must hold at every point in 18

the program, it suffices to check that it holds at program start and whenever the global variable is changed. 19

The ACSL invariant is translated as above and added as an object invariant in the Global class and as 20

preconditions on the argument of all setter methods for said variable. When the argument to indirect 21

setters outside of Global is a future value, the precondition must be formulated to hold for the resolved 22

argument. In order to use the invariant, we add postconditions to all getter methods for the variable. 23

Example 6. Given the strong global invariant at line 1 in Fig. 2 that x == 0 || x == 1, the global state 24

is modeled as the code in Fig. 6. Additionally, I_id_set_x and I_main contain the annotated method 25

declarations in the lower code in Fig. 6. 26

Use ABS functions in lieu of ACSL logic functions ACSL allows pure logic functions to be defined 27

(inductively or axiomatically) and called in ACSL specifications. Translating these definitions is outside 28

of the scope of this work and we therefore instead allow ABS functions to be called directly in ACSL 29

specifications. If the ABS function is not inside the standard library, it must be defined inside an ACSL- 30

style comment in the C program. 31

Scope The C Standard lists 52 cases of unspecified behavior [23, Annex. J.1]. However, most of 32

these cases are not relevant to functional verification of runtime semantics, e.g., unspecified behavior 33

of macros; or concern well-investigated elements outside of the considered language fragment, such as 34



12 The Right Kind of Non-Determinism

interface Global {
[Spec : Ensures(result == 0||result==1)]
Int get_x();
[Spec : Requires(arg == 0||arg == 1)]
Unit set_x(Int arg);

}
[Spec : ObjInv(this.x == 0 || this.x == 1)]
class Global implements Global {
Int x = 0;
Int get_x() { return this.x; }
Unit set_x(Int arg) {
this.x = arg;
return unit;
}

}

[Spec:Requires(arg == 0 || arg == 1)]
Unit set_global_x_val(Int arg);
[Spec:Requires(valueof(fut_arg) == 0||valueof(fut_arg) == 1)]
Unit set_global_x_fut(Fut<Int> fut_arg);
[Spec:Ensures(result == 0||result == 1)]
Int get_global_x();

Figure 6: Example for translating strong global invariants.

floating points and string literals; or concern deprecated features of old compilers for rare hardware, such1

as the use of negative zeros in integer types. Our focus is therefore on those cases that touch on core2

aspects of the runtime semantics and are relevant for almost all programs: order of subexpression and side3

effect evaluation (except for some operators such as &&) [23, 6.5], of function argument evaluation [23,4

6.5.2.2] and of evaluation of complex assignments [23, 6.5.16]. All these aspects can be handled by our5

approach and reduced to non-determinism of concurrent systems.6

5 Case Study7

Underspecified behavior lurks at almost every binary operation7 and can have subtle effects in larger8

systems. To evaluate our verification approach, we use an extreme case of underspecification, inves-9

tigating the C program8 in Fig. 7 containing a function whose result heavily depends on unspecified10

evaluation order. The function in question is declared as int one_to_fib(int n) and should calculate11

a number between 1 and the nth Fibonacci number. The base cases are for inputs 1 and 2 (as well as12

all non-positive inputs), which return 1; as well as for input 3, which returns either 1 or 2 in the same13

manner as the program in Figure 1. Otherwise, one_to_fib(n) returns the sum of one_to_fib(n-2) and14

one_to_fib(n-1) with a potential decrement of 1 in the function pred_or_id ensuring that 1 is always15

a potential result, as otherwise {1, . . . ,Fib(n−1)}+{1, . . . ,Fib(n−2)} = {2, . . . ,Fib(n)}.16

Verification of this program is a challenging task due to the extensive non-determinism. In [37] the17

extracted model for this program was exhaustively checked for inputs up to 5, validating that all possible18

outputs (and no outputs outside this range) could be produced. Later experiments with an enhanced19

7Underspecified behavior also lurks at many function calls.
8Adapted from an idea on Derek Jones’s The Shape of Code blog at:

shape-of-code.coding-guidelines.com/2011/06/18/fibonacci-and-jit-compilers/
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1 //@ ABS def Int fib(Int n) = if n <= 2 then 1
2 //@ else fib(n−1) + fib(n−2);
3

4 /*@ strong global invariant x == 0 || x == 1; @*/ int x;

5

6 //@ ensures \result == val;
7 int id_set_x(const int val)

8 { x=1; return val; }

9 //@ ensures \result == 1 || \result == 2;
10 int one_or_two(void) {

11 x=0;

12 return x + id_set_x(1);

13 }

14 //@ ensures \result == val − 1 || \result == val;
15 int pred_or_id(const int val) {

16 x=0;

17 return val - x + id_set_x(0);

18 }

19 //@ ensures \result >= 1 && \result <= fib(n);
20 int one_to_fib(const int n) {

21 if (n > 3)

22 return one_to_fib(n-2)

23 + pred_or_id(one_to_fib(n-1));

24 else if (n == 3) return one_or_two();

25 else return 1; }

Figure 7: Calculate a number between 1 and the nth Fibonacci number in C

model extraction process partially validated models for inputs up to 10. In this work we verify that no 1

outputs outside of the range are produced for any (valid) inputs.9 The annotated extracted model for 2

this C program can be found in the technical report. The ABS function definition inside the ACSL-style 3

specification in line 2 is copied verbatim into the model, the helper methods for + (used in lines 10, 15 4

and 23) and - (line 15) receive precise specifications, the strong global invariant on x at line 4 produces 5

specifications throughout the model (Global interface and class, plus indirect getter and setter methods 6

of other interfaces), while the call methods and their indirect callers are specified with translations of 7

the contracts for the matching functions. As the program does not contain a main method and is not 8

executable, so the model it produces is therefore also not executable: the main block in the extracted 9

model is empty. As we are focused on proving a property of one_to_fib in general, rather than for a 10

specific actual call, this non-executability is not a problem. This shows an additional strength of our 11

approach, in that we can analyze library calls in isolation, rather than only being able to analyze a 12

complete program. Crowbar can close all proof obligations of the extracted model automatically. Note 13

that we prove the following for all inputs to one_to_fib. 14

Theorem 1. The extracted model is safe with respect to its specification. 15

In particular, the proof cannot be closed if we change the specification to express that one_to_fib 16

returns a value from a smaller range. 17

9The semantics of the program are underspecified but not undefined.



14 The Right Kind of Non-Determinism

Deadlock Freedom. Running Crowbar performs a simple analysis for structurally deadlock-free meth-1

ods and returns all methods for which it cannot deduce it. For the extracted model it returns 9 such2

methods. These are the methods that take futures as parameters, which is not supported by the deadlock3

analysis in Crowbar, and methods depending on these methods. However, all futures that are passed as4

parameters are always futures of free methods. Thus we can state the following lemma, which is proven5

in the technical report.6

Lemma 1. The extracted model is deadlock free for every extractable main block.7

8

Applying State-of-the-Art Tools. As detailed in Sec. 1, other automatic tools cannot handle the exam-9

ple correctly. They either fix an evaluation order and can (wrongly) prove a stronger result, i.e., that the10

result is always the nth Fibonacci number (Frama-C, RV-match), do not support specification of global11

invariants of ACSL (Frama-C) or do not support verification at all(Cerberus). We do not compare our12

approach explicitly with the theory presented by Frumin et al. [17], which does treat underspecifica-13

tion correctly, but not for C and requires manual translation and manual specification of the translated14

program in the target formalism and an interactive proof.15

6 Conclusion16

We have demonstrated a novel approach combining model extraction with deductive verification of a17

distributed active objects model in order to verify C programs with underspecified behavior by reducing18

the non-determinism of underspecification to non-determinism of parallelism. We have extended the19

C2ABS tool—which already gives C a formal semantics in terms of Active Objects— to automatically20

translate a large subset of ACSL specifications into BPL specifications and implemented the Crowbar21

tool based on [26] in order to verify the specified model and analyze it for deadlock freedom. Using22

a complex case study that exemplifies the challenges for verification of underspecified programs we23

showed that our approach of model extraction and verification is fully automatic. We reused a standard24

logic and deadlock analysis for ABS and did not need special amendments for underspecified behavior25

after the extraction.26

Future Work. For formalized parallelization of C code, we plan to integrate a formal, logic-based27

dependences analysis [9] and to consider further cases of underspecification of a larger fragment of C,28

e.g., in list initializers. The newest version of C2ABS uses different model extraction strategies [38] and29

we will investigate using Crowbar to verify these models as well. In cases where the input C program30

is not completely specified, we envisage generating the missing object invariants and method contracts31

automatically via counter-example guided refinement techniques [11] using the failed Crowbar proofs.32

Finally, it is worth investigating how our model extraction approach compares to an explicit handling33

of underspecifiation by branching for every possible evaluation order.34
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Demystifying Attestation in Intel Trust Domain Extensions (TDX) via
Formal Verification

Muhammad Usama Sardar and Christof Fetzer

Intel Trust Domain Extensions (TDX) is the next-generation confidential computing offering
of Intel. One of the most critical processes of Intel TDX is the remote attestation mechanism.
Since remote attestation bootstraps trust in remote applications, any vulnerability in the at-
testation mechanism can therefore impact the security of an application. Hence, we investigate
the use of formal methods to ensure the correctness of the attestation mechanisms. The sym-
bolic security analysis of remote attestation protocol in Intel TDX reveals a number of subtle
inconsistencies found in the specification of Intel TDX that could potentially lead to design and
implementation errors as well as attacks. These inconsistencies have been reported to Intel and
Intel is in process of updating the specifications. We also explain how formal specification and
verification using ProVerif could help avoid these flaws and attacks.
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This paper builds on prior work investigating the adaptation of session types to provide behavioural
information about Elixir modules. A type system called ElixirST has been constructed to statically
determine whether functions in an Elixir module observe their endpoint specifications, expressed as
session types; a corresponding tool automating this typechecking has also been constructed. In this
paper we formally validate this type system. An LTS-based operational semantics for the language
fragment supported by the type system is developed, modelling its runtime behaviour when invoked
by the module client. This operational semantics is then used to prove session fidelity for ElixirST.

1 Introduction

In order to better utilise recent advances in microprocessor design and architecture distribution, modern
programming languages offer a variety of abstractions for the construction of concurrent programs. In the
case of message-passing programs, concurrency manifests itself as spawned computation that exhibits
communication as a side-effect, potentially influencing the execution of other (concurrent) computation.
Such side-effects inevitably increase the complexity of the programs produced and lead to new sources
of errors. As a consequence, program correctness becomes harder to verify and language support for
detecting errors at the development stage can substantially decrease the number of concurrency errors.

Elixir [34], based on the actor model [1, 14], is one such example of a modern programming language
for concurrency. As depicted in Figure 1, Elixir programs are structured as a collection of modules that
contain functions, the basic unit of code decomposition in the language. A module only exposes a subset
of these functions to external invocations by defining them as public; these functions act as the only entry
points to the functionality encapsulated by a module. Internally, the bodies of these public functions may
then invoke other functions, which can either be the public ones already exposed or the private functions
that can only be invoked from within the same module. For instance, Figure 1 depicts a module m which
contains several public functions (i.e., f1, . . . , fn) and private functions (i.e., g1, . . . ,g j). For example, the
public function f1 delegates part of its computation by calling the private functions g1 and g j, whereas
the body of the public function fn invokes the other public function f1 when executed. Internally, the
body of the private function g1 calls the other private function g2 whereas the private function g j can
recursively call itself.

A prevalent Elixir design pattern is that of a server listening for client requests. For each request, the
server spawns a (public) function to execute independently and act as a dedicated client handler: after the
respective process IDs of the client and the spawned handler are made known to each other, a session of
interaction commences between the two concurrent entities (via message-passing). For instance, in Fig-
ure 1, a handler process running public function f1 is assigned to the session with client client1 whereas
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Figure 1: An Elixir module consisting of public and private functions, interacting with client processes

the request from clientk is assigned a dedicated handler running function fn. Although traditional inter-
face elements such as function parameters (used to instantiate the executing function body with values
such as the client process ID) and the function return value (reporting the eventual outcome of handled
request) are important, the messages exchanged between the two concurrent parties within a session are
equally important for software correctness. More specifically, communication incompatibilities between
the interacting parties could lead to various runtime errors. For example, if in a session a message is
sent with an unexpected payload, it could cause the receiver’s subsequent computation depending on it
to crash (e.g. multiplying by a string when a number should have been received instead). Also, if mes-
sages are exchanged in an incorrect order, they may cause deadlocks (e.g. two processes waiting forever
for one another to send messages of a particular kind when a message of a different kind has been sent
instead).

In many cases, the expected protocol of interactions within a session can be statically determined
from the respective endpoint implementations, namely the function bodies; for simplicity, our discussion
assumes that endpoint interaction protocols are dual, e.g. S1 and S1 in Figure 1. Although Elixir provides
mechanisms for specifying (and checking) the parameters and return values of a function within a mod-
ule, it does not provide any support for describing (and verifying) the interaction protocol of a function in
terms of its communication side-effects. To this end, in earlier work [32] we devised the tool1 ElixirST,
assisting module construction in two ways: (a) it allows module designers to formalise the session end-
point protocol as a session type, and ascribe it to a public function; (b) it implements a type-checker that
verifies whether the body of a function respects the ascribed session type protocol specification.

Contribution. This paper validates the underlying type system on which the ElixirST type-checker is
built. More concretely, in Section 3 we formalise the runtime semantics of the Elixir language fragment
supported by ElixirST as a labelled transition system (LTS), modelling the execution of a spawned han-
dler interacting with a client within a session. This operational semantics then allows us to prove session
fidelity for the ElixirST type system in Section 4. In Section 2 we provide the necessary background on
the existing session type system from [32] to make the paper self-contained.

1ElixirST is available on GitHub: https://github.com/gertab/ElixirST
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2 Preliminaries

We introduce a core Elixir subset and review the main typing rules for the ElixirST type system [32].

2.1 The Actor Model

Elixir uses the actor concurrency model [1, 14]. It describes computation as a group of concurrent
processes, called actors, which do not share any memory and interact exclusively via asynchronous
messages. Every actor is identified via a unique process identifier (pid) which is used as the address
when sending messages to a specific actor. Messages are communicated asynchronously, and stored in
the mailbox of the addressee actor. An actor is the only entity that can fetch messages from its mailbox,
using mechanisms such as pattern matching. Apart from sending and reading messages, an actor can
also spawn other actors and obtain their fresh pid as a result; this pid can be communicated as a value to
other actors via messaging.

2.2 Session Types

The ElixirST type system [32] assumes the standard expression types, including basic types, such as
boolean, number, atom and pid, and inductively defined types, such as tuples ({T1, . . . , Tn}) and lists
([T ] ); these already exist in the Elixir language and they are dynamically checked. It extends these with
(binary) session types, which are used to statically check the message-passing interactions.

Expression types T ::= boolean | number | atom | pid | {T1, . . . , Tn} | [T ]

Session types S ::= &
{

?li
(
T̃i
)
.Si
}

i∈I Branch | rec X .S Recursion

| ⊕
{

!li
(
T̃i
)
.Si
}

i∈I Choice | X Variable

| end Termination

The branching construct, &
{

?li
(
T̃i
)
.Si
}

i∈I , requires the code to be able to receive a message that is
labelled by any one of the labels li, with the respective list of values of type T̃i (where T̃ stands for
T 1, . . . ,T k for some k ≥ 0), and then adhere to the continuation session type Si. The choice construct
is its dual and describes the range and format of outputs the code is allowed to perform. In both cases,
the labels need to be pairwise distinct. Recursive types are treated equi-recursively [27], and used inter-
changeably with their unfolded counterparts. For brevity, the symbols & and ⊕ are occasionally omitted
for singleton options, e.g., ⊕

{
!l(number).S1

}
is written as !l(number).S1; similarly end may be omit-

ted as well, e.g., ?l() stands for ?l().end. The dual of a session type S is denoted as S.

2.3 Elixir Syntax

Elixir programs are organised as modules, i.e., defmodule m do P̃ D̃ end. Modules are defined by
their name, m, and contain two sets of public D̃ and private P̃ functions, declared as sequences. Public
functions, def f (y, x̃)do t end, are defined by the def keyword, and can be called from any module. In
contrast, private functions, defp f (y, x̃)do t end, can only be called from within the defining module.
Functions are defined by their name, f , and their body, t, and parametrised by a sequence of distinct
variables, y, x̃, the length of which, |y, x̃|, is called the arity. As an extension to [32], the first parameter
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Module M ::= defmodule m do P̃ D̃ end

Public fun. D ::= K B def f (y, x̃)do t end

Private fun. P ::= B defp f (y, x̃)do t end

Type ann. B ::= @spec f
(
T̃
)

:: T

Session ann. K ::= @session “X= S”

| @dual “X”

Expressions e ::= w

| not e | e1 � e2

| [e1 | e2 ] | {e1, . . . , en}
Operators � ::= < | > | <= | >= | ==

| != | + | − | ∗ | / | and | or

Basic val. b ::= boolean | number | atom | pid

| [ ]
Values v ::= b | [v1 | v2 ] | {v1, . . . , vn}

Identifiers w ::= b | x
Patterns p ::= w | [w1 | w2 ] | {w1, . . . , wn}

Terms t ::= e

| x = t1; t2
| send(w,{:l,e1, . . . , en})
| receive do
({
:li, p1

i , . . . , pn
i
}
→ ti

)
i∈Iend

| f (w, e1, . . . , en)

| case e do (pi→ ti)i∈Iend

Figure 2: Elixir syntax

(y), is reserved for the pid of the dual process. Although a module may contain functions with the same
name, their arity must be different.

In our formalisation, Elixir function parameters and return values are assigned a type using the @spec
annotation, f (T̃ ) :: T , describing the parameter types, T̃ , and the return type, T . This annotation is
already used by Dialyzer for success typing [21]. In addition to this, we decorate public functions with
session types, defined in Section 2.2, to describe their side-effect protocol. Public functions can be
annotated directly using @session “X= S”, or indirectly using the dual session type, @dual “X”, where
X= S is shorthand for rec X .S.

The body of a function consists of a term, t, which can take the form of an expression, a let state-
ment, a send or receive construct, a case statement or a function call; see Figure 2. In the case of the let
construct, x = t1; t2, the variable x is a binder for the variables in t2 acting as a placeholder for the value
that the subterm t1 evaluates to. We write t1; t2, as syntactic sugar for x = t1; t2 whenever x is not used in
t2. The send statement, send(x,{:l,e1, . . . , en}), allows a process to send a message to the pid stored
in the variable x, containing a message {:l,e1, . . . , en}, where :l is the label. The receive construct,
receive do

({
:li, p1

i , . . . , pn
i
}
→ ti

)
i∈Iend, allows a process to receive a message tagged with a label

that matches one of the labels :li and a list of payloads that match the patterns p1
i , . . . , pn

i , branching to
continue executing as ti. Patterns, p, defined in Figure 2, can take the form of a variable, a basic value,
a tuple or a list (e.g. [x | y ], where x is the head and y is the tail of the list). The remaining constructs
are fairly standard. Variables in patterns p1

i , . . . , pn
i employed by the receive and case statements are

binders for the respective continuation branches ti. We assume standard notions of open (i.e., fv(t) 6= /0)
and closed (i.e., fv(t) = /0) terms and work up to alpha-conversion of bound variables.
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2.4 Type System

The session type system from [32] statically verifies that public functions within a module observe the
communication protocols ascribed to them. It uses three environments:

Variable binding env. Γ ::= /0 | Γ , x : T

Session typing env. ∆ ::= /0 | ∆ , f/n : S

Function inf. env. Σ ::= /0 | Σ , f/n :

{
params= x̃, param_types= T̃ ,

body= t, return_type= T, dual= y

}

The variable binding environment, Γ , maps (data) variables to basic types (x : T ). We write Γ ,x : T
to extend Γ with the new mapping x : T , where x /∈ dom(Γ ). The session typing environment, ∆ , maps
function names and arity pairs to their session type ( f/n : S). If a function f/n has a known session type,
then it can be found in ∆ , i.e., ∆( f/n) = S. Each module has a static function information environment,
Σ , that holds information related to the function definitions. For a function f , with arity n, Σ( f/n) returns
the tail list of parameters (params) and their types (param_types), the function’s body (body), and its
return type (return_type). In contrast to the original type system from [32], Σ( f/n) also returns the
variable name that represents the interacting process’ pid, i.e., the option dual. We assume that func-
tion information environments, Σ , are well-formed, meaning that all functions mapped ( f/n ∈ dom(Σ))
observe the following condition requiring that the body of function f/n is closed:

fv
(
Σ( f/n).body

)
\
(
Σ( f/n).params∪Σ( f/n).dual

)
= /0

Session typechecking is initiated by analysing an Elixir module, rule [TMODULE]. A module is type-
checked by inspecting each of its public functions, ascertaining that they correspond and fully consume
the session types ascribed to them. The rule uses three helper functions. The function functions(D̃)
returns a list of all function names (and arity) of the public functions (D̃) to be checked individually. The
function sessions(D̃) obtains a mapping of all the public functions to their expected session types stored
in ∆ . This ensures that when a function f with arity n executes, it adheres to the session type associated
with it using either the @session or @dual annotations. The helper function details populates the func-
tion information environment (Σ ) with details about all the public (D̃) and private functions (P̃) within
the module.

∆ = sessions(D̃) Σ = details(P̃ D̃)

∀ f/n ∈ functions(D̃) ·





∆( f/n) = S Σ ( f/n) = Ω
Ω.params= x̃ Ω.param_types= T̃
Ω .body= t Ω .return_type= T Ω .dual= y
∆ ·
(
y : pid, x̃ : T̃

)
`y

Σ SB t : T Cend
[TMODULE]

` defmodule m do P̃ D̃ end

For every public function f/n in functions(D̃), [TMODULE] checks that its body adheres to it session
type using the highlighted term typing judgement detailed below:
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∆ · Γ ` w
Σ S B t : T C S′

environmentsvariable binding&session typing

session typesresidual&initialdual pid

term expression type

This judgement states that “the term t can produce a value of type T after following an interaction pro-
tocol starting from the initial session type S up to the residual session type S′, while interacting with a
dual process with pid identifier w. This typing is valid under some session typing environment ∆ , vari-
able binding environment Γ and function information environment Σ .” Since the function information
environment Σ is static for the whole module (and by extension, for all sub-terms), it is left implicit in
the term typing rules. We consider four main rules, and relegate the rest to Appendix B.1.

∀i ∈ I ∀ j ∈ 1..n `w
pat p j

i : T j
i B Γ j

i ∆ ·
(
Γ ,Γ 1

i , . . . , Γ n
i
)
`w SiB ti : T CS′

[TBRANCH]
∆ ·Γ `w &

{
?li
(
T̃i
)
.Si
}

i∈IBreceive do ({:li, p̃i}→ ti)i∈Iend : T CS′

The receive construct is typechecked using the [TBRANCH] rule. It expects an (external) branching
session type &

{
. . .
}

, where each branch in the session type must match with a corresponding branch in
the receive construct, where both the labels (li) and payload types (T̃i) correspond. The types within
each receive branch are computed using the pattern typing judgement, `w

pat p : T B Γ , which assigns
types to variables present in patterns (see Appendix B.3). Each receive branch is then checked w.r.t.
the common type T and a common residual session type S′.

∃i ∈ I l= li ∀ j ∈ 1..n Γ `exp e j : T j
i[TCHOICE]

∆ ·Γ `w ⊕
{

!li
(
T̃i
)
.Si
}

i∈IBsend(w,{:l,e1, . . . , en}) :
{
atom,T 1

i , . . . , T n
i
}
CSi

The rule [TCHOICE] typechecks the sending of messages. This rule requires an internal choice session
type ⊕

{
. . .
}

, where the label tagging the message to be sent must match with one of the labels (li)
offered by the session choice. The message payloads must also match with the corresponding types
associated with the label (T̃i of li) stated via the expression typing judgement Γ `exp e : T (see Ap-
pendix B.2). The typing rule also checks the pid of the addressee of the send statement which must
match with the dual pid (w) states in the judgment itself to ensure that messages are only sent to the
correct addressee.

∆ ( f/n) = S ∀i ∈ 2..n ·
{

Γ `exp ei : Ti
}

Σ ( f/n) = Ω Ω .return_type= T Ω .param_types= T̃
[TRECKNOWNCALL]

∆ ·Γ `w SB f (w, e2, . . . , en) : T C end

Since public functions are decorated with a session type explicitly using the @session (or @dual) anno-
tation, they are listed in dom(∆). Calls to public functions are typechecked using the [TRECKNOWNCALL]
rule, which verifies that the expected initial session type is equivalent to the function’s known session type
(S) obtained from the session typing environment, i.e., ∆ ( f/n) = S. Without typechecking the function’s
body, which is done in rule [TMODULE], this rule ensures that the parameters have the correct types (us-
ing the expression typing rules). From the check performed in rule [TMODULE], it can also safely assume
that this session type S is fully consumed, thus the residual type becomes end. Rule [TRECKNOWNCALL]
also ensures that the pid (w) is preserved during a function call, by requiring it to be passed as a parameter
and comparing it to the expected dual pid (i.e., ∆ ·Γ ` w SB f ( w , . . .) : T C end).
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Σ ( f/n) = Ω f/n /∈ dom(∆) Ω .dual= y

Ω .params= x̃ Ω .param_type= T̃ Ω .body= t Ω .return_type= T

(∆ , f/n : S) ·
(
Γ ,y : pid, x̃ : T̃

)
`y SB t : T CS′ ∀i ∈ 2..n ·

{
Γ `exp ei : Ti

}
[TRECUNKNOWNCALL]

∆ ·Γ `w SB f (w, e2, . . . , en) : T CS′

Contrastingly, a call to a (private) function, f/n, with an unknown session type associated to it is type-
checked using the [TRECUNKNOWNCALL] rule. As in the other rule, it ensures that parameters have
the correct types (Γ `exp ei : Ti). However, it also analyses the function’s body t (obtained from Σ ) with
respect to the session type S inherited from the initial session type of the call, Furthermore, this session
type is appended to the session typing environment ∆ for future reference, i.e., ∆ ′ = (∆ , f/n : S) which
allows it to handle recursive calls to itself; should the function be called again, rule [TRECKNOWNCALL]
is used thus bypassing the need to re-analyse its body.

2.5 Elixir System

The ElixirST provides a bespoke spawning function called session/4 which allows the initiation of two
concurrent processes executing in tandem as part of a session. This session/4 function takes two pairs
of arguments: two references of function names (that will be spawned), along with their list of arguments.
Its participant creation flow is shown in Figure 3. Initially the actor (pre-server) is spawned, passing its
pid (ιserver) to the second spawned actor (pre-client). Then, pre-client relays back its pid (ιclient) to pre-
server. In this way, both actors participating in a session become aware of each other’s pids. From
this point onwards, the two actors execute their respective function to behave as the participants in the
binary session; the first argument of each running function is initiated to the respective pid of the other
participant. Figure 3 shows that the server process executes the body t, where it has access to the mailbox
M . As it executes, messages may be sent or received (shown by the action α) and stored in the mailbox
M ′. The specific working of these transitions is explained in the following section.

pre-server

pre-client c l i en tFn (ιserver ,
arg2 ,
arg3 , . . . )

serverFn (ιclient ,
arg2 ,
arg3 , . . . )

ιserver ιclient

[tCM ]ιserver

[. . . ]ιclient

[t ′CM ′]ιserver
α . . .α ′

. . .

Figure 3: Spawning two processes (green boxes represent spawned concurrent processes)

3 Operational Semantics

We describe the operational semantics of the Elixir language subset of Figure 2 as a labelled transition
system (LTS) [18] describing how a handler process within a session executes while interacting with the
session client, as outlined in Figure 1. The transitions t α−→ t ′ describes the fact that a handler process
in state t performs an execution step to transition to the new state t ′ while producing action α as a side-
effect. External actions are visible by, and bear an effect on the client, whereas internal actions do not.
In our case, an action α can take the following forms:
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α ∈ ACT ::= ι!{:l, ṽ} Output message to ι tagged as :l with payload ṽ

| ?{:l, ṽ} Input message tagged as :l with payload ṽ

| f/n Call function f with arity n

| τ Internal reduction step

external action

internal action

Both output and input actions constitute external actions that affect either party in a session; the type
system from Section 2.4 disciplines these external actions. Internal actions, include silent transition
(τ) and function calls ( f/n); although the latter may be formalised as a silent action, the decoration
facilitates our technical development. We note that, function calls can only transition subject to a well-
formed function information environment (Σ ), which contains details about all the functions available in
the module. Since Σ remains static during transitions, we leave it implicit in the transitions rules.

The transitions are defined by the term transition rules listed in Figure 4. Rules [RLET1] and [RLET2]
deal with the evaluation of a let statement, x = t1; t2 modelling a call-by-value semantic, where the first
term t1 has to transition fully to a value before being substituted for x in t2 denoted as [v/x] (or [v1,v2/x1,x2] for
multiple substitutions). The send statement, send(ι ,{:l,e1, . . . , en}), evaluates by first reducing each

t α−→
Σ

t ′
t1

α−→ t ′1[RLET1]
x = t1; t2

α−→ x = t ′1; t2
[RLET2]

x = v; t τ−→ t [v/x]

ek→ e′k[RCHOICE1]
send(ι ,{:l,v1, . . . , vk−1, ek, . . . , en}) τ−→ send

(
ι ,
{
:l,v1, . . . , vk−1, e′k, . . . , en

})

[RCHOICE2]

send(ι ,{:l,v1, . . . , vn})
ι!{:l, v1, ..., vn}−−−−−−−−−→ {:l,v1, . . . , vn}

∃ j ∈ I l j = l match(p̃ j, v1, . . . , vn) = σ
[RBRANCH]

receive do ({:li, p̃i}→ ti)i∈Iend
?{:l, v1, ..., vn}−−−−−−−−→ t jσ

ek→ e′k[RCALL1]
f (v1, . . . , vk−1, ek, . . . , en)

τ−→ f
(
v1, . . . , vk−1, e′k, . . . , en

)

Σ ( f/n) = Ω Ω .body= t Ω .params= x2, . . . , xn Ω .dual= y
[RCALL2]

f (ι ,v2, . . . , vn)
f/n−→ t [ι/y] [v2, . . . , vn/x2, . . . , xn]

e→ e′[RCASE1]
case e do (pi→ ti)i∈Iend

τ−→ case e′ do (pi→ ti)i∈Iend

∃ j ∈ I match(p j,v) = σ
[RCASE2]

case v do (pi→ ti)i∈Iend
τ−→ t jσ

e→ e′
[REXPRESSION]

e τ−→ e′

Figure 4: Term transition semantic rules



G. Tabone & A. Francalanza 9

e→ e′ e1→ e′1[REOPERATION1] e1 � e2→ e′1 � e2

e2→ e′2[REOPERATION2] v1 � e2→ v1 � e′2

v = v1 � v2[REOPERATION3] v1 � v2→ v
e→ e′[RENOT1]

not e→ e′
v′ = ¬v[RENOT2]

not v→ v′

e1→ e′1[RELIST1]
[e1 | e2 ]→ [e′1 | e2 ]

e2→ e′2[RELIST2]
[v1 | e2 ]→ [v1 | e2 ]

ek→ e′k[RETUPLE] {v1, . . . , vk−1, ek, . . . , en}→ {v1, . . . , ,vk−1, e′k, . . . , en}

Figure 5: Expression reduction rules

part of the message to a value from left to right. This is carried out via rule [RCHOICE1] which produces
no observable side-effects. When the whole message is reduced to a tuple of values {:l,v1, . . . , vn},
rule [RCHOICE2] performs the actual message sending operation. This transition produces an action
ι!{:l,v1, . . . , vn}, where the message {:l,v1, . . . , vn} is sent to the interacting process, which has a
pid value of ι . The operational semantics of the receive construct, receive do ({:li, p̃i}→ ti)i∈Iend,
is defined by rule [RBRANCH]. When a message is received (i.e., α =?{:l, ṽ}), it is matched with a
valid branch from the receive construct, using the label :l. Should one of the labels match (∃ j ∈ I such
that :l j = :l), the payload of the message (ṽ) is compared to the corresponding patterns in the selected
branch (p̃ j) using match(p̃ j, ṽ). If the values match with the pattern, the match function (Definition 3.1)
produces the substitutions σ , mapping the matched variables in the pattern p̃ j to values from ṽ. This
substitution σ is then used to instantiate the free variables in continuation branch t j.

Definition 3.1 (Pattern Matching). The match function pairs patterns with a corresponding value, result-
ing in a sequence of substitutions (called σ ), e.g., match(p,v) = [v1/x1] [v2/x2] = [v1,v2/x1,x2]. Note that, a
sequence of match outputs are combined together, where the empty substitutions (i.e., [ ]) are ignored.
The match function builds a meta-list of substitutions, which is a different form of lists defined by the
Elixir syntax in Figure 2.

match(p̃, ṽ) def
= match(p1,v1), . . . , match(pn,vn)

where p̃ = p1, . . . , pn and ṽ = v1, . . . , vn

match(p,v) def
=





[ ] p = b,v = b and p = v
[v/x] p = x
match(w1,v1), match(w2,v2) p = [w1 | w2 ] ,v = [v1 | v2 ]

match(w1,v1), . . . , match(wn,vn) p = {w1, . . . , wn} and
v = {v1, . . . , vn} �

Example 3.1. For the pattern p1 = {x,2,y} and the value tuple v1 = {8,2, true}, match(p1,v1) = σ
where σ = [8/x] [true/y] (written also as σ = [8, true/x,y]). However for pattern p2 = {x,2, false}, the operation
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match(p2,v1) fails, since p2 expects a false value as the third element, but finds a true value instead. �

Using rule [RCALL1] from Figure 4, a function call is evaluated by first reducing all of its parameters
to a value, using the expression reduction rules in Figure 5; again this models a call-by-value seman-
tics. Once all arguments have been fully reduced, [RCALL2], the implicit environment Σ is queried for
function f with arity n to fetch the function’s parameter names and body. This results in a transition to
the function body with its parameters instantiated accordingly, t [ι/y] [v2, . . . , vn/x2, . . . , xn], decorated by the
function name, i.e., α = f/n. Along the same lines a case construct first reduces the expression which
is being matched using rule [RCASE1]. Then, rule [RCASE2] matches the value with the correct branch,
using the match function, akin to [RBRANCH]. Whenever a term consists solely of an expression, it
silently reduces using [REXPRESSION] using the expression reduction rules e→ e′ of Figure 5. These
are fairly standard.

4 Session Fidelity

We validate the static properties imposed by the ElixirST type system [32], overviewed in Section 2.4, by
establishing a relation with the runtime behaviour of a typechecked Elixir program, using the transition
semantics defined in Section 3. Broadly, we establish a form of type preservation, which states that if a
well-typed term transitions, the resulting term then remains well-typed [27]. However, our notion of type
preservation, needs to be stronger to also take into account (i) the side-effects produced by the execution;
and (ii) the progression of the execution with respect to protocol expressed as a session type. Following
the long-standing tradition in the session type community, these two aspects are captured by the refined
preservation property called session fidelity. This property ensures that: (i) the communication action
produced as a result of the execution of the typed process is one of the actions allowed by the current
stage of the protocol; and that (ii) the resultant process following the transition is still well-typed w.r.t.
the remaining part of the protocol that is still outstanding.

Before embarking on the proof for session fidelity, we prove an auxiliary proposition that acts as a
sanity check for our operational semantics. We note that the operational semantics of Section 3 assumes
that only closed programs are executed; an open program (i.e., a program containing free variables) is
seen as an incomplete program that cannot execute correctly due to missing information. To this end,
Proposition 1 ensures that a closed term remains closed even after transitioning.

Proposition 1 (Closed Term). If fv(t) = /0 and t α−→ t ′, then fv(t ′) = /0

Proof. By induction on the structure of t. Refer to Appendix C.1 for details.

The statement of the session fidelity property relies on the definition of a partial function called after
(Definition 4.1), which takes a session type and an action as arguments and returns another session type
as a result. This function serves two purposes: (a) the function after(S,α) is only defined for actions α
that are (immediately) permitted by the protocol S, which allows us to verify whether a term transition
step violated a protocol or not; and (b) since S describes the current stage of the protocol to be followed,
we need a way to evolve this protocol to the next stage should α be a permitted action, and this is
precisely S′, the continuation session type returned where after(S,α) = S′.
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Definition 4.1 (After Function). The after function is partial function defined for the following cases:

after(S,τ) def
= S

after(S, f/n) def
= S

after(⊕
{

!li
(
T̃i
)
.Si
}

i∈I, ι!
{
l j, ṽ

}
)

def
= S j where j ∈ I

after(&
{

?li
(
T̃i
)
.Si
}

i∈I,?
{
l j, ṽ

}
)

def
= S j where j ∈ I

This function is undefined for all other cases. The after function is overloaded to range over session
typing environments (∆ ) in order to compute a new session typing environment given some action α and
session type S:

after(∆ , f/n,S) def
= ∆ , f/n : S

after(∆ ,α,S) def
= ∆ if α 6= f/n

Intuitively, when the action produced by the transition is f/n, the session typing environment is extended
by the new mapping f/n : S. For all other actions, the session typing environment remains unchanged. �

Recall that module typechecking using rule [TMODULE] entails typechecking the bodies of all the
public functions w.r.t. their ascribed session type, ∆ ·

(
y : pid, x̃ : T̃

)
`y

Σ SB t : T C S′ (where S′ = end

for this specific case). At runtime, a spawned client handler process in a session starts running the
function body term t where the parameter variables y, x̃ are instantiated with the PID of the client, say
ι , and the function parameter values, say ṽ, respectively, t [ι/y] [ṽ/̃x], as modelled in rule [RCALL2] from
Figure 4. The instantiated function body is thus closed and can be typed w.r.t. an empty variable binding
environment, Γ = /0. Session fidelity thus states that if a closed term t is well-typed, i.e.,

∆ · /0 `w SB t : T CS′ (1)

(where S and S′ are initial and residual session types, respectively, and T is the basic expression type)
and this term t transitions to a new term t ′ with action α , i.e.,

t α−→ t ′ (2)

the new term t ′ remains well-typed, i.e.,

∆ ′ · /0 `w S′′B t ′ : T CS′ (3)

where the evolved S′′ and ∆ ′ are computed as after(S,α) = S′′ and after(∆ ,α,S) = ∆ ′. This ensures
that the base type of the term is preserved (note the constant type T in eqs. (1) and (3)). Furthermore, it
ascertains that the term t follows an interaction protocol starting from the initial session type S up to the
residual session type S′ (eq. (1)), since the updated session type S′′ is defined for after(S,α).

Theorem 2 (Session Fidelity). If ∆ · /0 `w
Σ SB t : T CS′ and t α−→

Σ
t ′, then there exists some S′′ and ∆ ′, such

that ∆ ′ · /0 `w
Σ S′′B t ′ : T CS′ for after(S,α) = S′′ and after(∆ ,α,S) = ∆ ′

Proof. By induction on the typing derivation ∆ · /0 `w
Σ SB t : T CS′. Refer to Appendix C.2.
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t1

S1

t2

after(S1,α1) = S2

. . . v

after(Sn,αn) = end

α1 α2 αn \

Figure 6: Repeated applications of session fidelity

As shown in Figure 6, by repeatedly applying Theorem 2, we can therefore conclude that all the
(external) actions generated as a result of a computation (i.e., sequence of transition steps) must all be
actions that follow the protocol described by the initial session type. Since public functions are always
typed with a residual session type end, certain executions could reach the case where the outstanding
session is updated to end as well, i.e., after(Sn,αn) = end. In such a case, we are guaranteed that the
term will not produce further side-effects, as in the case of Figure 6 where the term is reduced all the
way down to some value, v.

Example 4.1. We consider a concrete example to show the importance of session fidelity. The function
called pinger/1 is able to send ping and receive pong repeatedly.

1 @session "X = !ping().?pong().X"

2 def pinger(pid) do

3 x = send(pid, {:ping})

4
5 receive do

6 {:pong} -> IO.puts("Received pong.")

7 end

8 pinger(pid)

9 end

This function adheres to the following protocol:

X= !ping().?pong().X

A process evaluating the function pinger executes by first sending a message containing a ping

label to the interacting processes’ pid (ιpong), as shown below.

x = send(ιpong, {:ping})

receive do # ...

x = {:ping}

receive do # ...

t t ′
α = ιauct !{ping}

As the process evaluates, the initial term t transitions to t ′, where it sends a message as a side-effect.
This side-effect is denoted as an action α , where α = ιpong!{ping}. By the After Function Definition,
X evolves to a new session type X’:

X’= after(!ping().?pong().X,α) = ?pong().X

For t ′ to remain well-typed, it must now match with the evolved session type X’, where it has to
be able to receive a message labelled pong, before recursing. Although the process keeps executing
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indefinitely, by the session fidelity property, we know that each step of execution will be in line with the
original protocol. �

5 Related Work

In this section, we compare ElixirST with other type systems and implementations.

Type Systems for Elixir Cassola et al. [4, 5] presented a gradual type system for Elixir. It statically
typechecks the functional part of Elixir modules, using a gradual approach, where some terms may be left
with an unknown expression type. In contrast to ElixirST, Cassola et al. analyse directly the unexpanded
Elixir code which results in more explicit typechecking rules. Also, they focus on the static type system
without formulating the operational semantics.

Another static type-checker for Elixir is Gradient [8]. It is a wrapper for its Erlang counterpart tool
and takes a similar approach to [5], where gradual types are used. Another project, TypeCheck [35], adds
dynamic type validations to Elixir programs. TypeCheck performs runtime typechecking by wrapping
checks around existing functions. Gradient and TypeCheck are provided as an implementation only,
without any formal analysis. In contrast to ElixirST, the discussed type-checkers [5, 8, 35] analyse the
sequential part of the Elixir language omitting any checks related to message-passing between processes.

Some implementations aim to check issues related to message-passing. Harrison [11] statically
checks Core Erlang for such issues. For instance, it detects orphan messages (i.e., messages that will
never be received) and unreachable receive branches. Harrison [12] extends [11] to add analyse Er-
lang/OTP behaviours (e.g., gen_server, which structures processes in a hierarchical manner) by in-
jecting runtime checks in the code. Compared to our work, [11, 12] perform automatic analysis of the
implementation, however they do not verify communication with respect to a general protocol (e.g.,
session types).

Another type system for Erlang was presented Svensson et al. [31]. Their body of work covers a
larger subset of Erlang to what would be its equivalent in Elixir covered by our work. Moreover, its
multi-tiered semantics captures an LTS defined over systems of concurrent actors. Although we opted
for a smaller subset, we go beyond the pattern matching described by Svensson et al. since we perform
a degree of typechecking for base types (e.g. in the premise of [TBRANCH]).

Session Type Systems. Closest to our work is [23], where Mostrous and Vasconcelos introduced ses-
sion types to a fragment of Core Erlang, a dynamically typed language linked to Elixir. Their type system
tags each message exchanged with a unique reference. This allows multiple sessions to coexist, since
different messages could be matched to the corresponding session, using correlation sets. Mostrous and
Vasconcelos takes a more theoretic approach, so there is no implementation for [23]. Their type system
guarantees session fidelity by inspecting the processes’ mailboxes where, at termination, no messages
should be left unprocessed in their mailboxes. Our work takes a more limited but pragmatic approach,
where we introduce session types for functions within a module. Furthermore, we offer additional fea-
tures, including variable binding (e.g., in let statements), expressions (e.g., addition operation), inductive
types (e.g., tuples and lists), infinite computation via recursion and explicit protocol definition.

A session-based runtime monitoring tool for python was initially presented by Neykova and Yoshida [24,
25]. They use the Scribble [15] language to write multiparty session type (MPST) [16] protocols, which
are then used to monitor the processes’ actions. Different processes are ascribed a role (defined in
the MPST protocol) using function decorators (akin to our function annotations). Similar to [24, 25],
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Fowler [9] presented an MPST implementation for Erlang. This implementation uses Erlang/OTP be-
haviours (e.g., gen_server), which take into account Erlang’s let it crash philosophy, where processes
may fail while executing. In contrast, although our work accepts a more limited language, ElixirST pro-
vides static guarantees where issues are flagged at pre-deployment stages, rather than flagging them at
runtime.

Scalas and Yoshida [29] applied binary session types to the Scala language, where session types
are abstracted as Scala classes. Session fidelity is ensured using Scala’s compiler, which complains if
an implementation does not follow its ascribed protocol. Linearity checks are performed at runtime,
which ensure that an implementation fully exhausts its protocol exactly once. Bartolo Burlò et al. [3]
extended the aforementioned work [29], to monitor one side of an interaction statically and the other side
dynamically using runtime monitors.

Harvey et al. [13] presented a new actor-based language, called EnsembleS, which offers session
types as a native feature of the language. EnsembleS statically verifies implementations with respect to
session types, while still allowing for adaptation of new actors at runtime, given that the actors obey a
known protocol. Thus, actors can be terminated and discovered at runtime, while still maintaining static
correctness.

There have been several binary [17, 19] and multiparty [6, 20] session type implementations for Rust.
These implementations exploit Rust’s affine type system to guarantee that channels mirror the actions
prescribed by a session type. Padovani [26] created a binary session type library for OCaml to provide
static communication guarantees. This project was extended [22] to include dynamic contract monitoring
which flags violations at runtime. The approaches used in the Rust and OCaml implementations rely
heavily on type-level features of the language, which do not readily translate to the dynamically typed
Elixir language.

6 Conclusion

In this work we established a correspondence between the ElixirST type system [32] and the runtime
behaviour of a client handler running an Elixir module function that has been typechecked w.r.t. its
session type protocol. In particular, we showed that this session-based type system observes the standard
session fidelity property, meaning that processes executing a typed function always follow their ascribed
protocols at runtime. This property provides the necessary underlying guarantees to attain various forms
of communication safety, whereby should two processes following mutually compatible protocols (e.g. S
and its dual S̄), they avoid certain communication errors (e.g., a send statement without a corresponding
receive construct). An extended version of this work can be found in the technical report [33].

Future work. There are a number of avenues we intend to pursue. One line of investigation is the
augmentation of protocols that talk about multiple entry points to a module perhaps from the point of
view of a client that is engaged in multiple sessions at one time, possibly involving multiple modules. The
obvious starting points to look at here are the well-established notions of multiparty session types [16, 30]
or the body of work on intuitionistic session types organising processes hierarchically [2, 28]. Another
natural extension to our work would be to augment our session type protocol in such a way to account
for process failure and supervisors, which is a core part of the Elixir programming model. For this, we
will look at previous work on session type extensions that account for failure [13]. Finally, we also plan
to augment our session typed protocols to account for resource usage and cost, along the lines of [7, 10].
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Appendix
A Additional Definitions

In this appendix, we formalise some auxiliary definitions that were used in Sections 2–4.

Definition A.1 (Free Variables). The set of free variables is defined inductively as:

fv(e) def
=





{x} e = x
/0 e = b
fv(e1)∪ fv(e2) e = e1 � e2 or e = [e1 | e2 ]

fv(e′) e = not e′

∪i∈1..nfv(ei) e = {e1, . . . , en}

fv(t) def
=





fv(t1)∪ (fv(t2)\{x}) t = (x = t1; t2)
∪i∈1..nfv(ei)∪ fv(w) t = send(w,{:l,e1, . . . , en})
∪i∈I[fv(ti)\vars(p̃i)] t = receive do ({:li, p̃i}→ ti)i∈Iend

∪i∈2..nfv(ei)∪ fv(w) t = f (w,e2, . . . , en)

∪i∈I[fv(ti)\vars(pi)]∪ fv(e) t = case e do (pi→ ti)i∈Iend �

Definition A.2 (Bound Variables).

bv(t) def
=





/0 t = e or t = send(w,{:l, ẽ}) or t = f (ẽ)
{x}∪bv(t1)∪bv(t2) t = (x = t1; t2)
∪i∈I[bv(ti)∪vars(p̃i)] t = receive do ({:li, p̃i}→ ti)i∈Iend

∪i∈I[bv(ti)∪vars(pi)] t = case e do (pi→ ti)i∈Iend �

Definition A.3 (Variable Substitution).

e [v/x]
def
=





v e = x
y e = y, y 6= x
b e = b
e1 [v/x] � e2 [v/x] e = e1 � e2

not (e′ [v/x]) e = not e′

[e1 [v/x] | e2 [v/x] ] e = [e1 | e2 ]

{e1 [v/x] , . . . , en [v/x]} e = {e1, . . . , en}

t [v/x]
def
=





send(w [v/x] ,{: l, e1 [v/x] , . . . , en [v/x]}) t = send(w,{: l, e1, . . . , en})
receive do ({li, p̃i}→ ti [v/x])i∈Iend t = receive do ({li, p̃i}→ ti)i∈Iend

f (e1 [v/x] , . . . , en [v/x]) t = f (e1, . . . , en)

case e [v/x] do (pi→ ti [v/x])i∈Iend t = case e do (pi→ ti)i∈Iend

y = t1 [v/x] ; t2 [v/x] t = (y = t1; t2), x 6= y, y 6= v �
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Definition A.4 (Type).

type(boolean) def
= boolean type(number) def

= number

type(atom)
def
= atom type(ι) def

= pid, where ι is a pid instance �

Definition A.5 (Variable Patterns). Computes an ordered set of variables from a given pattern p.

vars(p̃) def
= vars(p1, . . . , pn)

def
= vars(p1)∪·· ·∪vars(pn)

vars(p) def
=





/0 p = b
{x} p = x
vars(w1)∪vars(w2) p = [w1 | w2 ]

∪i∈1..nvars(wi) p = {w1, . . . , wn} �

Definition A.6 (Function Details). We can extract function details (i.e., params, body, param_types,
return_type, dual) from a list of functions (Q̃) and build a mapping, using set-comprehension, as
follows. The list of functions (Q̃) may consist of public (D) and private (P) functions.

details(Q̃)
def
=





f/n :



dual= y, params= x̃,

param_types= T̃ ,

return_type= T, body= t




∣∣∣∣∣∣∣∣




[@session “S”]

@spec f
(
pid, T̃

)
:: T

def[p] f (y, x̃)do t end


 ∈ Q̃





�

Definition A.7 (Functions Names and Arity). This definition (functions()) takes the set of all public
function (D̃) as input, and returns a set of all public function names and their arity.

functions(D̃)
def
=

{
f/n

∣∣∣∣∣

[
@session . . . ; @spec . . .

def f (y, x2, . . . , xn)do t end

]
∈ D̃

}

�

Definition A.8 (All Session Types). The function sessions(D̃), returns the session type corresponding to
each annotated public function.

sessions(D̃)
def
=

{
f/n : S

∣∣∣∣∣

[
@session “S”; @spec . . .

def f (y, x2, . . . , xn)do t end

]
∈ D̃

}

In case the @dual annotation is used instead of @session , the dual session type is computed automati-
cally. �
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B Type System Rules

In this appendix, we present the full typing rules of the type system, adapted from [32], which were
omitted from the Preliminaries Section.

B.1 Term Typing

In Section 2.4, we explained a few term typing rules, including [TBRANCH] and [TCHOICE]. In Figure 7,
we present the full list of term typing rules.

∆ ·Γ `w
Σ SB t : T CS′

Γ `exp e : T
[TEXPRESSION] ∆ ·Γ `w SB e : T CS

∆ ·Γ `w SB t1 : T ′CS′′ ∆ · (Γ ,x : T ′) `w S′′B t2 : T CS′ x 6= w
[TLET]

∆ ·Γ `w SB x = t1; t2 : T CS′

∀i ∈ I ·
{
∀ j ∈ 1..n ·

{
`w

pat p j
i : T j

i B Γ j
i

}

∆ ·
(
Γ ,Γ 1

i , . . . , Γ n
i
)
`w SiB ti : T CS′

[TBRANCH]
∆ ·Γ `w &

{
?li
(
T̃i
)
.Si
}

i∈IBreceive do ({:li, p̃i}→ ti)i∈Iend : T CS′

∃i ∈ I l= li ∀ j ∈ 1..n ·
{

Γ `exp e j : T j
i

}

[TCHOICE]
∆ ·Γ `w ⊕

{
!li
(
T̃i
)
.Si
}

i∈IBsend(w,{:l,e1, . . . , en}) :
{
atom,T 1

i , . . . , T n
i
}
CSi

∆ ( f/n) = S ∀i ∈ 2..n ·
{

Γ `exp ei : Ti
}

Σ ( f/n) = Ω Ω .return_type= T Ω .param_types= T̃
[TRECKNOWNCALL]

∆ ·Γ `w SB f (w, e2, . . . , en) : T C end

Σ ( f/n) = Ω f/n /∈ dom(∆) Ω .dual= y

Ω .params= x̃ Ω .param_type= T̃ Ω .body= t Ω .return_type= T

(∆ , f/n : S) ·
(
Γ ,y : pid, x̃ : T̃

)
`y SB t : T CS′ ∀i ∈ 2..n ·

{
Γ `exp ei : Ti

}
[TRECUNKNOWNCALL]

∆ ·Γ `w SB f (w, e2, . . . , en) : T CS′

Γ `exp e : U

∀i ∈ I `w
pat pi : U B Γ ′i ∆ · (Γ ,Γ ′i ) `w SB ti : T CS′

[TCASE]
∆ ·Γ `w SBcase e do (pi→ ti)i∈Iend : T CS′

Figure 7: Term typing rules
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B.2 Expression Typing

Expression are typechecked using the Γ `exp e : T judgement, which states that “an expression e has type
T , subject to the variable binding environment Γ .” The expression typing rules are listed in Figure 8.

Γ `exp e : T ∀i ∈ 1..n Γ `exp ei : Ti
[TTUPLE]

Γ `exp {e1, . . . , en} : {T1, , . . . , Tn}

type(b) = T b 6= []
[TLITERAL] Γ `exp b : T

Γ (x) = T
[TVARIABLE] Γ `exp x : T

Γ `exp e1 : T Γ `exp e2 : [T ]
[TLIST]

Γ `exp [e1 | e2 ] : [T ]
[TELIST]

Γ `exp [ ] : [T ]

Γ `exp e1 : number Γ `exp e2 : number � ∈ {+, −, ∗, /}
[TARITHMETIC] Γ `exp e1 � e2 : number

Γ `exp e1 : boolean Γ `exp e2 : boolean � ∈ {and, or}
[TBOOLEAN] Γ `exp e1 � e2 : boolean

� ∈ {<, >, <=, >=, ==, !=}
Γ `exp e1 : T Γ `exp e2 : T

[TCOMPARISONS] Γ `exp e1 � e2 : boolean
Γ `exp e : boolean

[TNOT] Γ `exp not e : boolean

Figure 8: Expression typing rules

B.3 Pattern Typing

New variables may be created using patterns in the [TBRANCH] and [TCASE] rules. These variables are
matched to a type using the judgement, `w

pat p : T B Γ . This judgement states that “a pattern p is matched
to type T , where it produces new variables and their types are collected Γ ; under the assumption that the
variable containing the dual pid, w, remains unchanged.” The pattern typing rules are found in Figure 9.

`w
pat p : T B Γ

/0 `exp b : T b 6= []
[TPLITERAL] `w

pat b : T B /0
x 6= w

[TPVARIABLE] `w
pat x : T B x : T

∀i ∈ 1..n `w
pat wi : Ti B Γi

[TPTUPLE] `w
pat {w1, . . . , wn} : {T1, . . . , Tn} B Γ1, . . . , Γn

`w
pat w1 : T B Γ1 `w

pat w2 : [T ] B Γ2
[TPLIST] `w

pat [w1 | w2 ] : [T ] B Γ1,Γ2
[TPELIST] `w

pat [ ] : [T ] B /0

Figure 9: Pattern typing rules
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C Proofs

In this appendix, we present the proofs of Proposition 1 and Theorem 2, which were omitted from the
main text.

C.1 Proofs for Proposition 1

Before proving Proposition 1, we must analyse some properties related to closed terms, where we see
how they affect variable substitutions (Definition A.3). Lemma 3 states that if a variable x does not
exist inside a term t, then, if we initiate x with some value, term t must remain unaffected, i.e., t [v/x] = t.
Restricting this statement, Corollary 4 states that, if x is not a free variable in t, then the same result should
hold. Lemma 5 consists of two statements that compare the free variables in terms (or expressions) with
those that include a substitution.

Lemma 3. x /∈ fv(t)∪bv(t) implies t [v/x] = t

Proof. By induction on the structure of t.

Corollary 4. x /∈ fv(t) implies t [v/x] = t

Proof. A consequence of Lemma 3.

Lemma 5.

i. x ∈ fv(t) implies fv(t [v/x]) = fv(t)\{x}
ii. x ∈ fv(e) implies fv(e [v/x]) = fv(e)\{x}

Proof. By induction on the structures of t and e for Items i and ii respectively.

Lemma 6. match(p,v) = [v1, . . . , vn/x1, . . . , xn], implies vars(p) = {x1, . . . , xn}

Proof. By induction on the structure of p.

[p= b] The function match(b,v) succeeds only when v = b. So, by the match definition, when v = b,

match(b,b) = [ ] (4a)

By the vars definition, vars(b) = /0, which matches the result from eq. (4a) since no variables
where substituted.

[p= x] By the match definition, for any v,

match(x,v) = [v/x] (4b)

By the vars definition, vars(x) = {x}, which matches the variable in the substitution of eq. (4b).

[p= [w |w ]] By the match definition, for v = [v1 | v2 ],

match(p,v) = match(w1,v1),match(w2,v2) = [ṽ1/x̃1] [ṽ2/x̃2] where (4c)

match(w1,v1) = [ṽ1/x̃1] (4d)

match(w2,v2) = [ṽ2/x̃2] (4e)
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By case analysis of w1 and w2 from eqs. (4d) and (4e), we conclude that

vars(w1) = {x̃1} (4f)

vars(w2) = {x̃2} (4g)

We need to show that vars([w1 | w2 ]) = {x̃1, x̃2}. By the vars definition and eqs. (4f) and (4g),
vars([w1 | w2 ]) = vars(x̃1)∪ vars(x̃2) = {x̃1} ∪ {x̃2}. This result matches the variables in the
substitutions of eq. (4c).

[p= {w, . . . , wn}] Similar to the previous case.

Lemma 7 (Closed Expression). fv(e) = /0 and e→ e′ implies fv(e′) = /0

Proof. By induction on the structure of e.

Lemmata 3–7 allow us to prove Closed Term Proposition (Proposition 1). By this proposition, we
can say that a closed term t remains closed, even after t transitions to some new term t ′, producing an
action α . Lemma 7 is analogous; it states that expressions remain closed after reductions.

Proposition 1 (Closed Term). If fv(t) = /0 and t α−→ t ′, then fv(t ′) = /0

Proof. By induction on the structure of t.

[t= e] Holds immediately by the rule [REXPRESSION] and the Closed Expression Lemma.

[t= (x= t; t)] Given that current structure of t, we can derive t α−→ t ′ using two cases:

1. [RLET1] From the rule, t ′ = (x = t ′1; t2) and

t1
α−→ t ′1 (6a)

From the premise, fv(t) = /0, so by the fv definition, fv(t1)∪ (fv(t2)\{x}) = /0, or equivalently

fv(t1) = /0 (6b)

fv(t2)\{x}= /0 (6c)

If we apply the inductive hypothesis to eqs. (6a) and (6b), we get

fv(t ′1) = /0 (6d)

So, by eqs. (6c) and (6d) and the definition of fv, we get fv(x = t ′1; t2) = /0 as required.
2. [RLET2] From the rule, t = (x = v; t2) and t ′ = t2 [v/x]. Since fv(t) = /0, by the Free Variables

Definition, fv(v)∪ (fv(t2)\{x}) = /0, or equivalently

fv(v) = /0 (6e)

fv(t2)\{x}= /0 (6f)

We need to show that fv(t ′) = /0, or fv(t2 [v/x]) = /0, so we consider two sub-cases:
a. If x /∈ fv(t2), then by Corollary 4, t2 = t2 [v/x]. Substituting this in eq. (6f), results in

fv(t2 [v/x]) = /0, as required.
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b. If x ∈ fv(t2), then by Lemma 5, we get fv(t2 [v/x]) = fv(t2) \ {x}. If we substitute this in
eq. (6f), the case holds.

[t= send(w,{:l,e, . . . , en})] Given that current structure of t, we can derive t α−→ t ′ using two cases:

1. [RCHOICE1] From this rule, we know that α = τ and

t ′ = send
(
ι ,
{
:l,v1, . . . , vk−1, e′k, . . . , en

})

ek→ e′k (7a)

Since fv(t) = /0, then by the fv definition

fv(ι) = /0 (7b)

fv(vi) = /0 for i ∈ 1..k−1 (7c)

fv(ei) = /0 for i ∈ k..n (7d)

Applying the Closed Expression Lemma to eqs. (7a) and (7d), results in fv(ek) = /0. Using this
information along with eqs. (7b–d) and the fv definition, results in fv(t ′) = /0 as required.

2. [RCHOICE2] In this case t = {:l,v1, . . . , vn} and t ′ = {:lµ ,v1, . . . , vn}. Since from the
premise fv(t) = /0, then using the fv definition,

fv(ι) = /0, fv(vi) = /0 for i ∈ 1..n (7e)

To show that fv({:lµ ,v1, . . . , vn}) = /0, we can apply eq. (7e) to the fv definition.

[t= receive do ({:li, p̃i}→ ti)i∈Iend] From the premise, we know that fv(t) = /0, so by the fv
definition,

fv(ti)\vars(p̃i) = /0 for all i ∈ I (8a)

Given that current structure of t, we can deduce t α−→ t ′ using [RBRANCH], where α =
?
{
:l j, v1, . . . , vn

}
for some j ∈ I, and

match(p̃ j, ṽ) = σ where σ = [v′1, . . . , v′k/x1, . . . , xk] (8b)

t ′ = t jσ

From eq. (8b), we can apply Lemma 6 to get

vars(p̃ j) = {x1, . . . , xk} (8c)

Substituting eq. (8c) in eq. (8a) (for i = j), we get fv(t j)\{x1, . . . , xk}= /0. Our aim is to get t jσ =
/0, so we check if x ∈ fv(t j). If this is valid, then by Lemma 5, we can conclude that fv(t j [v

′
1/x1])\

{x2, . . . , xk} = /0. In case when x /∈ fv(t j), the same can be concluded by Corollary 4. Applying
the same procedure for a total of k times, results in fv(t j [v

′
1, . . . , v′k/x1, . . . , xk]) = /0, as required.

[t= f (w,e, , . . . , en)] Given the current structure of t, we can derive t α−→ t ′ using two cases:

1. [RCALL1] From this rule, we know that α = τ , t = f (v1, . . . , vk−1, ek, . . . , en),
t ′ = f

(
v1, . . . , vk−1, e′k, . . . , en

)
and

ek→ e′k (9a)
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Since fv(t) = /0, then by the fv definition,

fv(vi) = /0 for all i ∈ 1..k−1 (9b)

fv(ei) = /0 for all i ∈ k..n (9c)

Applying the Closed Expression Lemma to eqs. (9a) and (9c) (for i = k), we get

fv(ek) = /0 (9d)

So, using the fv definition with eqs. (9b–d), result fv(t ′) = /0 holds as expected.
2. [RCALL2] From the rule, we know that α = f/n and

t = f (ι ,v2, . . . , vn) (9e)

t ′ = t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn]

Σ ( f/n) = Ω Ω .body= t Ω .params= x2, . . . , xn Ω .dual= y (9f)

Since term reduction can only happen with respect to a well-formed function information en-
vironment Σ , we can assume that the only free variables in a function body are the parameter
types, or formally, for all f/n ∈ dom(Σ), we have

fv
(
Σ( f/n).body

)
\
(
Σ( f/n).params∪Σ( f/n).dual

)
= /0

Thus, using this information and substituting the information from eq. (9f), we get

fv(t̄)\{y,x2, . . . , xn}= /0 (9g)

To obtain the expected result (i.e., fv(t ′) = /0), we check if y ∈ fv(t̄). If this is true, then by
Lemma 5, we can conclude that fv(t̄ [ι/y])\{x2, . . . , xn}= /0. In case when x /∈ fv(t̄), the same
can be concluded by Corollary 4. Applying the same procedure for the remaining free variables
(i.e., x2, . . . , xn), we get fv(t j [v

′
1, . . . , v′k/x1, . . . , xk]) = /0, as expected.

[t= case e do (pi→ ti)i∈Iend] Given that current structure of t, we can derive t α−→ t ′ using two cases:

1. [RCASE1] From the rule we know that t ′ = case e′ do (pi→ ti)i∈Iend, and from the premise
we know that

e→ e′ (10a)

Since fv(t) = /0, by the fv definition, we know that

fv(ti)\vars(pi) = /0 for all i ∈ I (10b)

fv(e) = /0 (10c)

Applying Closed Expression Lemma to eqs. (10a) and (10c), results in fv(e′) = /0. Thus, using
this information, along with eq. (10b) and the fv definition, we get fv(t ′) = /0 as needed.

2. [RCASE2] From the rule, we know that t = case v′ do (pi→ ti)i∈Iend, e = v′ and for some
j ∈ I,

match(p j,v′) = σ where σ = [v1, . . . , vn/x1, . . . , xn] (10d)

t ′ = t jσ (10e)
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From the premise, we know that fv(t) = /0, so by the fv definition, fv(v′) = /0 and

fv(ti)\vars(p̃i) = /0 for all i ∈ I (10f)

From eq. (10d), we can apply Lemma 6, to get

vars(p j) = {x1, . . . , xk} (10g)

Substituting eq. (10g) in eq. (10f) (for i = j), we get fv(t j) \ {x1, . . . , xk} = /0. By similar
reasoning from previous cases, we get fv(t ′) = /0, as required.

C.2 Proofs for Theorem 2

Before proving Theorem 2, we consider some other necessary lemmata. The ∆ -Weakening Lemma
weakens (i.e., extends) the session typing environment (∆ ) without affecting the overall typing result.

Lemma 8 (∆ -Weakening). If ∆ ·Γ `w SB t : T CS′, then (∆ ,∆ ′) ·Γ `w SB t : T CS′

Proof. Follows by induction on the derivation of ∆ ·Γ `w SB t : T CS′. We analyse the significant cases:

[TRECUNKNOWNCALL] From the rule, we know that

(∆ , f/n : S) · (Γ ,Γ ′) `y SB t̄ : T CS′ (11a)

Γ `exp ei : Ti for all i ∈ 2..n (11b)

Applying the inductive hypothesis to eq. (11a) results in (∆ ,∆ ′, f/n : S) · (Γ ,Γ ′) `y SB t : T CS′,
where we assume that f/n /∈dom(∆ ′). So, using the latter result, eq. (11b) and [TRECUNKNOWNCALL]
results in (∆ ,∆ ′) ·Γ `w SB t : T CS′, as required.

[TRECKNOWNCALL] From the rule, we know that

∆ ( f/n) = S (12a)

Γ `exp ei : Ti for all i ∈ 2..n (12b)

If we extend ∆ by ∆ ′, then (∆ ,∆ ′)( f/n) = S remains valid. So, using this information, along with
eq. (12b) in [TRECKNOWNCALL], we get (∆ ,∆ ′) ·Γ `w SB t : T C end, as required.

Cases [TCHOICE] and [TEXPRESSION] hold immediately since ∆ is unused. The remaining cases hold
effortlessly by the inductive hypothesis.

The type system observes the session fidelity property if well-typed terms remain well-typed after
transitioning. As terms transition, in particular in the rules [RLET2], [RCALL2] and [RBRANCH], vari-
ables are substituted with values. The Substitution Lemma (Lemma 9) ensures that when free variables
inside of terms and expressions are substituted with a closed value, the resulting terms and expressions
remain well-typed. As a result, the substituted variables become redundant in variable binding environ-
ment (Γ ), and thus can be removed from Γ . This lemma consists of two statements, where substitution
is performed in (i) terms, and (ii) expressions.

Lemma 9 (Substitution).

i. If Γ `exp v : T ′ and ∆ · (Γ ,x : T ′) `w SB t : T CS′, then ∆ ·Γ `w[v/x] SB t [v/x] : T CS′
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ii. If Γ `exp v : T ′ and Γ ,x : T ′ `exp e : T , then Γ `exp e [v/x] : T

Proof. By induction on the derivation of ∆ · (Γ ,x : T ′) `w SB t : T C S′ for Item i, and by induction on
the derivation of Γ ,x : T ′ `exp e : T for Item ii. We show the main cases for Item i:

[TLET] From the rule, we know that t = (x′ = t1; t2), and

x′ 6= w (13a)

Γ `exp v : T ′ (13b)

∆ · (Γ ,x : T ′) `w SB t1 : T ′′CS′′ (13c)

∆ · (Γ ,x : T ′,x′ : T ′′) `w S′′B t2 : T CS′ (13d)

The variable binding environment of eq. (13d) can be reordered to

∆ · (Γ ,x′ : T ′′,x : T ′) `w S′′B t2 : T CS′ (13e)

We need to show that ∆ ·Γ `w[v/x] SB (x′ = t1; t2) [v/x] : T CS′, which by the Variable Substitution
Definition, is equivalent to

∆ ·Γ `w[v/x] SB x′ = t1 [v/x] ; t2 [v/x] : T CS′ (13f)

for x 6= x′ and x′ 6= v. To obtain eq. (13f), we need some preliminary results. Applying the inductive
hypothesis to eqs. (13b) and (13c), and similarly to eqs. (13b) and (13e), results in

∆ ·Γ `w[v/x] SB t1 [v/x] : T ′′CS′′ (13g)

∆ · (Γ ,x′ : T ′′) `w[v/x] S′′B t2 [v/x] : T CS′ (13h)

From eq. (13a) and the Variable Substitution Definition we know that x 6= w [v/x]. Applying this
information, along with eqs. (13g) and (13h) to the premise of [TLET] results in eq. (13f), as
required.

[TBRANCH] From the rule, [TBRANCH], we know that for some n ∈ N and

Γ `exp v : T ′ (14a)

S = &
{

?li
(
T 1

i , . . . , T n
i
)
.Si
}

i∈I

t = receive do
({
:li, p1

i , . . . , pn
i
}
→ ti

)
i∈Iend (14b)

From the premise, we also know that, for all i ∈ I:

`w
pat p j

i : T j
i B Γ j

i for all j ∈ 1..n (14c)

∆ ·
(
Γ ,x : T ′,Γ 1

i , . . . , Γ n
i
)
`w SiB ti : T CS′ (14d)

This case holds if the following statement is obtained:

∆ ·Γ `w[v/x] SiB ti [v/x] : T CS′ (14e)

where t [v/x] = receive do
({
:li, p1

i , . . . , pn
i
}
→
)

i∈Iend. To obtain eq. (14e) we need to use the
[TBRANCH] rule which requires multiple premises. Applying the inductive hypothesis to eqs. (14a)
and (14d) results in

∆ ·
(
Γ ,Γ 1

i , . . . , Γ n
i
)
`w[v/x] SiB ti [v/x] : T CS′ for all i ∈ I (14f)
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If w 6= x, then eq. (14c)
`w[v/x]

pat p j
i : T j

i B Γ j
i for all j ∈ 1..n (14g)

since by the Variable Substitution Definition, w = w [v/x]. Therefore, eqs. (14f) and (14g) can be
applied to the premise of [TBRANCH] to obtain eq. (14e):

∆ ·Γ `w[v/x] SiB ti [v/x] : T CS′

which is the required result. In case when w= x, then an additional mapping may be obtained from
the pattern type rule which maps the dual pid to some type. However, since in this case x would
be substituted to a variable, then the extra mapping does not affect the result, obtaining eq. (14e)
as required.

[TCHOICE] From the rule, we know that for some i ∈ I, T = {atom,T 1
i , . . . , T n

i }, S =⊕
{

!li
(
T̃i
)
.Si
}

i∈I
and

t = send(ι ,{:li,e1, . . . , en}) (15a)

Γ ,x : T ′ `exp e j : T j
i for all j ∈ 1..n (15b)

Γ `exp v : T ′ (15c)

Applying eqs. (15b) and (15c) to Item ii of Lemma 9 results in Γ `exp e j [v/x] : T j
i for all j ∈ 1..n.

Applying this result to [TCHOICE] results in

∆ ·Γ `w[v/x] SB t [v/x] : T CS′

which is the required result, since t [v/x] = send(w [v/x],{:li,e1 [v/x] , . . . , en [v/x]}).

Lemma 10 links expression types to the basic values (and vice versa), e.g. the value 5 has type
number.

Lemma 10 (Value Typing).
i. Γ `exp v : boolean iff v = boolean

ii. Γ `exp v : number iff v = number
iii. Γ `exp v : atom iff v = atom

iv. Γ `exp v : pid iff v = ι
v. Γ `exp v : [T ] iff v = [v1 | v2 ] or v = []

vi. Γ `exp v : {T̃} iff v = {ṽ}
Proof. By case analysis on the expression typing rules.

Lemma 11 provides a guarantee that the variables inside the substitutions produced by the match
function have the expected types. It also ensures that the variables from the same substitutions, which are
stored in Γ , are assigned with the same types. Consequently, Corollary 12 provides the same guarantees
but for a sequence of patterns and values.

Lemma 11. For all patterns p and values v,

match(p,v) = [v1, . . . , vn/x1, . . . , xn]

`w
pat p : T B Γ

/0 `exp v : T





=⇒
{

Γ = x1 : T1, . . . , xn : Tn

/0 `exp vi : Ti for i ∈ 1..n
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Proof. By induction on the definition match(p,v). We proceed by case analysis:
[p= b,v = b] By the definition, match(b,b) = [ ], so no substitutions are expected. By `w

pat b : T B
Γ and [TPLITERAL], the variable binding environment (i.e., Γ ) must be empty, so case holds
immediately.

[p= x] By definition, match(x,v) = [v/x], and from the premise we know that

/0 `exp v : T. (16a)

From `w
pat x : T B Γ and [TPVARIABLE], we know that Γ must contain x : T only. Therefore, case

holds by eq. (16a).

[p= [w |w ] ,v = [v | v ]]
Using the match definition, match([w1 | w2 ] , [v1 | v2 ]) =
match(w1,v1),match(w2,v2), or equivalently

match(w1,v1) = [v′1, . . . , v′j/x1, . . . , x j] (17a)

match(w2,v2) = [v′k, . . . , v′n/xk, . . . , xn] where k = j+1 (17b)

From the premise, applying [TLIST] to /0 `exp [v1 | v2 ] : [T ] , results in

/0 `exp v1 : T and /0 `exp v2 : [T ] (17c)

Applying also [TPLIST] to `w
pat [w1 | w2 ] : [T ] B Γ , results in

`w
pat w1 : T B Γ ′ and `w

pat w2 : [T ] B Γ ′′ (17d)

Applying the inductive hypothesis twice to eqs. (17a–d) results in

Γ ′ = x1 : T1, . . . , x j : Tj and Γ ′′ = xk : Tk, . . . , xn : Tn (17e)

/0 `exp v′i : Ti for all i ∈ 1..n (17f)

Therefore, case holds by eqs. (17e) and (17f), since Γ = Γ ′,Γ ′′.
[p= {w, . . . , wm} ,v = {v, . . . , vm}]

Using the match definition, match({w1, . . . , wm} ,{v1, . . . , vm}) =
match(w1,v1), . . . , match(wm,vm) = σ , or equivalently, for i ∈ 1..m,

match(wi,vi) = σi given that σ = σ1, . . . , σm (18a)

From /0 `exp {v1, . . . , v2} : {T1, . . . , Tm}, by [TTUPLE], we know that

/0 `exp vi : Ti (18b)

Applying also [TPTUPLE] to `w
pat {w1, . . . , wm} : {T1, . . . , Tm} B Γ1, . . . , Γm, results in

`w
pat wi : Ti B Γi (18c)

Applying the inductive hypothesis m times to eqs. (18a–c) results in

Γ = Γ1, . . . , Γm = x1 : T1, . . . , xn : Tn

/0 `exp v j : Tj for all j ∈ 1..n

as required.
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Corollary 12. For all patterns p̃ = p1, . . . , pn, values ṽ = v1, . . . , vn and ∀ j ∈ 1..n, then the following
implication holds.

match(p̃, ṽ) = [v′1, . . . , v′k/x1, . . . , xk]

`y
pat p j : T j B Γ j

/0 `exp v j : T j





=⇒
{

Γ̃ = Γ 1, . . . , Γ j = x1 : T1, . . . , xk : Tk

/0 `exp v′i : Ti for i ∈ 1..k

Proof. Take j = 1, where we know that match(p1,v1) = σ1, `y
pat p1 : T 1 B Γ 1 and /0 `exp v1 : T 1. Then,

applying this information to Lemma 11, we get

Γ 1 = x1
1 : T 1

1 , . . . , x1
m : T 1

m (19a)

/0 `exp v1
i : T 1

i for i ∈ 1..m (19b)

Generalising for j ∈ 1..n, then Γ̃ =Γ 1, . . . , Γ n holds by generalising eq. (19a). Also, /0 `exp v′i : Ti for i∈
1..k holds by eq. (19b). Thus, Corollary 12 holds by applying Lemma 11 n times.

Lemma 13 shows that the type of expressions remains unchanged (or preserved) after an expression is
reduced. This means that expressions have a constant type in all steps of reductions, until the expression
cannot be reduced further.

Lemma 13 (Preservation (Expressions)). If /0 `exp e : T and e→ e′, then /0 `exp e′ : T

Proof. Follows by induction on /0 `exp e : T . We consider the main cases:

[TTUPLE] From the rule, we know that e = {e1, . . . , ek, . . . , en}, T = {T1, . . . , Tn} and

/0 `exp ei : Ti for all i ∈ 1..n (20a)

Deriving e→ e′ using [RETUPLE] results in e′ =
{

v1, . . . , vk−1, e′k, . . . , en
}

and

ek→ e′k (20b)

Applying eqs. (20a) and (20b) to the inductive hypothesis results in /0 `exp e′k : Tk. By the latter,
eq. (20a) and [TTUPLE], we get /0 `exp e′ : T , as required.

[TARITHMETIC] From the rule we know that e = e1 � e2, T = number and

/0 `exp e1 : number (21a)

/0 `exp e2 : number (21b)

e→ e′ can be derived using different rules, so we consider three sub-cases:

1. [REOPERATION1] From this rule we know that e′ = e′1 � e2 and

e1→ e′1 (21c)

Applying eqs. (21a) and (21c) to the inductive hypothesis results in /0 `exp e′1 : number. Using
this information, along with eq. (21b) in [TARITHMETIC], results in /0 `exp e′ : number, as
required.
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2. [REOPERATION2] Analogous to [REOPERATION1].
3. [REOPERATION3] From the rule, we know that e = v1 � v2 and e′ has some value v = v1 � v2.

Since we know that /0 `exp e : T , or /0 `exp v1 � v2 : T , then /0 `exp e′ : T follows immediately
given that e′ = v = v1 � v2.

Regarding the remaining cases: Cases [TLITERAL], [TVARIABLE] and [TELIST] hold trivially, since
e→ e′ does not apply. Cases [TCOMPARISON] and [TBOOLEAN] are analogous to [TARITHMETIC].
Cases [TLIST] and [TNOT] take a similar approach to [TTUPLE].

Lemmata 8–13 allow us to prove the Session Fidelity Theorem. This is the main result of Section 4.

Theorem 2 (Session Fidelity). If ∆ · /0 `w
Σ SB t : T CS′ and t α−→

Σ
t ′, then there exists some S′′ and ∆ ′, such

that ∆ ′ · /0 `w
Σ S′′B t ′ : T CS′ for after(S,α) = S′′ and after(∆ ,α,S) = ∆ ′

Proof. By induction on the typing derivation ∆ · /0 `w
Σ SB t : T CS′.

[TLET] From the rule, we know that x 6= w, and

t = (x = t1; t2) (22a)

∆ · /0 `w SB t1 : T ′CS′′′ (22b)

∆ ·
(
x : T ′

)
`w S′′′B t2 : T CS′ (22c)

From the structure of t (eq. (22a)), term transitions (t α−→ t ′) can be derived using two rules, so we
consider two sub-cases:

1. [RLET1] From this rule, we know that t ′ = (x = t ′1; t2) and

t1
α−→ t ′1 (22d)

By eqs. (22b) and (22d) and the inductive hypothesis we obtain

∆ ′ · /0 `w S′′B t ′1 : T ′CS′′′ (22e)

where after(S,α) = S′′ and after(∆ ,α,S) = ∆ ′. Also, by the After Function Definition, we
know that ∆ ′ is an extension of ∆ , so we can apply the ∆ -Weakening Lemma on eq. (22c) to
get

∆ ′ ·
(
x : T ′

)
`w S′′′B t2 : T CS′ (22f)

Using eqs. (22e) and (22f) as the premise for rule [TLET], we obtain:

∆ ′ · /0 `w S′′B t ′1 : T ′CS′′′ ∆ ′ · (x : T ′) `w S′′′B t2 : T CS′ x 6= w
[TLET]

∆ ′ · /0 `w S′′B x = t ′1; t2 : T CS′

where ∆ ′ · /0 `w S′′B t ′ : T CS′ is the expected result.
2. [RLET2] From the rule, we know that t = (x = v; t2), t ′ = t2 [v/x] and α = τ . Since t1 = v,

by eq. (22b) and [TEXPRESSION], then /0 `exp v : T ′ holds. If we apply this latter information
and eq. (22c) to the Substitution Lemma, we obtain ∆ · /0 `w[v/x] S′′′B t2 [v/x] : T C S′. This is
the expected result, since by the Variable Substitution Definition, w [v/x] = w; and by the after
definition, S′′′ = S and ∆ ′ = ∆ .
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[TBRANCH] From the rule, we know that for some n ∈ N and

S = &
{

?li
(
T 1

i , . . . , T n
i
)
.Si
}

i∈I (23a)

t = receive do
({
:li, p1

i , . . . , pn
i
}
→ ti

)
i∈Iend (23b)

From the premise, we also know that some properties regarding each individual branch from the
receive construct:

∀i ∈ I

{
`w

pat p j
i : T j

i B Γ j
i for all j ∈ 1..n (23c)

∆ ·
(
Γ 1

i , . . . , Γ n
i
)
`w SiB ti : T CS′ (23d)

From the structure of t (eq. (23b)), term reduction (t α−→ t ′) can only be derived using [RBRANCH],
where execution progresses to a single branch (i.e., tµ ), rather than all branches. The right branch
is chosen by matching its label, li∈I , to the label received in the incoming message, lµ . Thus, for
some k ∈ N, there exists some µ ∈ I where lµ = li, and

α = ?
{
:lµ , v1, . . . , vn

}
(23e)

match((p1
µ , . . . , pn

µ),(v1, . . . , vn)) = [v′1, . . . , v′k/x1, . . . , xk] (23f)

t ′ = tµ [v
′
1, . . . , v′k/x1, . . . , xk]

From eq. (23e), α refers to the message received from the dual process. We can compare the
contents of this message to the original session type S (eq. (23a)), to obtain information regarding
the types of the individual values inside α . We know that α contains a label lµ and n values. Thus
for j ∈ 1..n, each value v j, has a corresponding type T jµ from the session type S, where S contains
?lµ
(
T µ , . . . , T

n
µ

)
.Sµ . Formally, this can be written as

/0 `exp v j : T j
µ for all j ∈ 1..n (23g)

Applying eqs. (23c), (23f) and (23g) into Corollary 12, results in Γ̃µ =Γ 1
µ , . . . , Γ n

µ = x1 : T1, . . . , xk :
Tk and

/0 `exp v′m : Tm for m ∈ 1..k (23h)

Applying eq. (23h) and ∆ · Γ̃µ `w Sµ B tµ : T C S′ (from eq. (23d) for i = µ) repeatedly to the
Substitution Lemma, we get

∆ · /0 `w Sµ B tµ [v
′
1, . . . , v′k/x1, . . . , xk] : T CS′ (23i)

Since after(&
{

?li
(
T̃i
)
.Si
}

i∈I,α) = Sµ and after(∆ ,α,S) =∆ , then eq. (23i) is the expected result.

[TCHOICE] From the rule, we know that for some µ ∈ I, T = {atom,T 1
µ , . . . , T n

µ } and

S =⊕
{

!li
(
T̃i
)
.Si
}

i∈I (24a)

t = send
(
ι ,
{
:lµ ,e1, . . . , en

})
(24b)

/0 `exp e j : T j
µ for all j ∈ 1..n (24c)

From the structure of t (eq. (24b)), term reduction (t α−→ t ′) can be derived by several rules, so we
have to consider two sub-cases:
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1. Derived by the rule [RCHOICE1], we know that α = τ and

t ′ = send
(
ι ,
{
:l,v1, . . . , vk−1, e′k, . . . , en

})

ek→ e′k (24d)

Applying eq. (24c) (for j = k) and eq. (24d) to the Preservation (Expressions) Lemma, we get
/0 `exp e′k : Tk. Applying this and eq. (24c) to [TCHOICE] results in ∆ · /0 `w SB t ′ : T CSµ . Since
after(S,τ) = S and after(∆ ,α,S) = ∆ , this holds.

2. [RCHOICE2] From this rule we know that

t ′ = {:lµ ,v1, . . . , vn}
α = ι!

{
:lµ ,v1, . . . , vn

}
(24e)

where α (eq. (24e)) is the message being sent to the dual process with pid ι .
Recall eq. (24c), where we have /0 `exp e j : Tj

¯ for j ∈ 1..n. Notice, that the types T jµ were
obtained from the session type S (eq. (24a)), where S contains !lµ

(
T µ , . . . , T

n
µ

)
.Sµ . Now, by

the premise of [RCHOICE2], since e j = v j, then

/0 `exp v j : T j
µ for all j ∈ 1..n (24f)

By the Value Typing Lemma, we also know that /0 `exp :lµ : atom. Using this latter information
and eq. (24f) in [TTUPLE] and [TEXPRESSION], we get the required result:

/0 `exp :lµ : atom ∀ j ∈ 1..n /0 `exp v j : T j
µ

[TTUPLE]
/0 `exp {:lµ ,v1, . . . , vn} : {atom,T 1

µ , . . . , T n
µ }

[TEXPRESSION]
∆ · /0 `y Sµ B{:lµ ,v1, . . . , vn} : T CSµ

(24g)

Result from eq. (24g) holds as required, since after(S,α) = Sµ and after(∆ ,α,S) = ∆ .

[TRECKNOWNCALL] From the rule, we know that

t = f (w,e2, . . . , en) (25a)

/0 `exp ei : Ti for all i ∈ 2..n (25b)

From the structure of t (eq. (25a)), term transitions (t α−→ t ′) can be derived using two rules, so we
consider two sub-cases:
1. [RCALL1] From this rule, we know that t = f (v1, . . . , vk−1, ek, . . . , en), α = τ , w = v1 and

t ′ = f
(
v1, . . . , vk−1, e′k, . . . , en

)

ek→ e′k (25c)

Applying eq. (25b) (for i = k) and eq. (25c) to the Preservation (Expressions) Lemma, we get

/0 `exp e′k : Tk (25d)

By eqs. (25b) and (25d) and [TRECKNOWNCALL], we get

∆ · /0 `w SB f
(
v1, . . . , vk−1, e′k, . . . , en

)
: T CS′ (25e)

eq. (25e) holds since after(S,τ) = S and v1 = w.
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2. [RCALL2] From the rule, we know that α = f/n, w = ι and

t = f (ι ,v2, . . . , vn) (25f)

t ′ = t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn]

Σ ( f/n) = Ω where

{
Ω .return_type= T
Ω .param_types= T2, . . . , Tn

(25g)

∆ ( f/n) = S (25h)

Since all known functions (i.e., f/n ∈ dom(∆)) by eq. (25h)) are already typechecked once
before, then from the function information environment (i.e., Σ ) and eq. (25g), we can assume
that

∆ ·Γ ′ `y SB t̄ : T C end (25i)

where Γ ′ contains only the mapping from the parameter names to their types, i.e., Γ ′ = (y :
pid,x2 : T2, . . . , xn : Tn) – our aim is to change Γ ′ to /0. This assumption in eq. (25i) is possible
since a well-formed Σ dictates that the only free variables in a function body are the parameter
types, or formally, for all f/n ∈ dom(Σ), we have

fv
(
Σ( f/n).body

)
\
(
Σ( f/n).params∪Σ( f/n).dual

)
= /0

By eq. (25f) and Value Typing Lemma we know that /0 `exp ι : pid. Applying this information
and eq. (25i) to the Substitution Lemma results in

∆ · (x2 : T2, . . . , xn : Tn) `y[ι/y] SB t̄ [ι/y] : T C end (25j)

where by the Variable Substitution Definition, y [ι/y] = ι = w.
Applying the Substitution Lemma multiple times to eqs. (25b) and (25j), results in

∆ · /0 `w SB t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn] : T C end (25k)

as required, since after(S, f/n) = S and S′ = end. Also, after(∆ , f/n,S) = (∆ , f/n : S), but from
eq. (25h), f/n is already mapped to S in the session typing environment, therefore (∆ , f/n : S) =
∆ , as needed.

[TRECUNKNOWNCALL] From the rule, we know

t = f (w,e2, , . . . , en) (26a)

/0 `exp ei : Ti for all i ∈ 2..n (26b)

From the premise we also know that

(∆ , f/n : S) ·
(
y : pid, x̃ : T̃

)
`y SB t̄ : T CS′ where x̃, T̃ , t̄,T and y are

obtained from the function information environment(i.e.,Σ) (26c)

From the structure of t (eq. (26a)), term transitions (t α−→ t ′) can be derived using two rules, so we
consider two sub-cases:
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1. [RCALL1] From this rule we know that α = τ , and

t ′ = f
(
v1, . . . , vk−1, e′k, . . . , en

)

ek→ e′k (26d)

Applying eq. (26b) (for i = j) and eq. (26d) to the Preservation (Expressions) Lemma, we get

/0 `exp e′j : Tj (26e)

Using eq. (26b) and eq. (26e) in the rule [TRECUNKNOWNCALL], results in

∆ · /0 `w SB f
(
v1, . . . , vk−1, e′k, . . . , en

)
: T CS′

This holds since after(S,τ) = S and after(∆ ,τ,S) = ∆ .
2. [RCALL2] From the rule, we know that α = f/n and

t = f (ι ,v2, . . . , vn) (26f)

w = ι (26g)

t ′ = t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn]

By eq. (26f) and the Value Typing Lemma we know that /0`exp ι : pid. Applying this information
and eq. (26c) to the Substitution Lemma results in

(∆ , f/n : S) ·
(
x̃ : T̃

)
`y[ι/y] SB t̄ [ι/y] : T CS′ (26h)

where by the Variable Substitution Definition and eq. (26g), y [ι/y] = ι = w.
Applying the Substitution Lemma repeatedly to eqs. (26b) and (26h), results in

(∆ , f/n : S) · /0 `w SB t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn] : T CS′

where after(S, f/n) = S and after(∆ , f/n,S) = (∆ , f/n : S), as required.

[TCASE] From the rule, we know that for some type U ,

t = case e do (pi→ ti)i∈Iend (27a)

/0 `exp e : U (27b)

`w
pat pi : U B Γ ′i for all i ∈ I (27c)

∆ ·Γ ′i `w SB ti : T CS′ for all i ∈ I (27d)

By eq. (27a), term reduction, t α−→ t ′, can be derived using two rules, so we consider two sub-cases:
1. [RCASE1] From the rule we know that t ′ = case e′ do (pi→ ti)i∈Iend, and from the premise

we know that
e→ e′ (27e)

By eqs. (27b) and (27e) and the Preservation (Expressions) Lemma, we get

/0 `exp e′ : U (27f)

Using eqs. (27c), (27d), (27f), and [TCASE], we get

∆ · /0 `w SBcase e′ do (pi→ ti)i∈Iend : T CS′

which holds as expected since after(S,τ) = S and after(∆ ,τ,S) = ∆ .
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2. [RCASE2] From the rule, we know that t = case v do (pi→ ti)i∈Iend, e = v and for some j ∈ I,

match(p j,v) = σ where σ = [v1, . . . , vn/x1, . . . , xn] (27g)

t ′ = t jσ (27h)

By eqs. (27b), (27c) and (27g) and lemma 11, we know that Γ ′j = x1 : T1, . . . , xn : Tn and

/0 `exp vk : Tk for all k ∈ 1..n (27i)

Then, by repeatedly applying the Substitution Lemma to eq. (27i), (27d for i = j), we get

∆ · /0 `w SB t jσ : T CS′

This holds since after(S,τ) = S and after(∆ ,τ,S) = ∆ .
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Choreographic languages describe possible sequences of interactions among a set of agents. Typical
denotational models are based on languages or automata over sending and receiving actions. Pom-
sets provide a more compact alternative by using a partial order over these actions and by not making
explicit the possible interleaving of concurrent actions. However, pomsets offer no compact repre-
sentation of choices. For example, if an agent Alice can send one of two possible messages to Bob
three times, one would need a set of 2×2×2 distinct pomsets to represent all possible branches of
Alice’s behaviour. This paper proposes an extension of pomsets, named branching pomsets, with a
branching structure that can represent Alice’s behaviour using 2+2+2 ordered actions. We encode
choreographies as branching pomsets and show that the pomset semantics of the encoded choreogra-
phies are bisimilar to their operational semantics.

1 Introduction

Choreographic languages describe possible sequences of interactions, or communication protocols, among
a set of agents. Their use is well established [9, 1, 7, 8, 2, 5], and it typically includes (1) reason-
ing statically over interaction properties and (2) generating code that facilitates the implementation of
the concurrent protocols. Static properties include deadlock absence or the equivalence between global
protocols and the parallel composition of local protocols for each agent. The code generated from chore-
ographic languages include skeleton code for concurrent code, generated behavioural types that can be
used to type-check agents, or dedicated orchestrators that dictate how the agents can interact. In this
work we focus on how to analyse choreographies by proposing a new structure to compactly represent
their behaviour, based on partial-ordered multisets (pomsets). We foresee applications of this work in
both aforementioned areas.

We use two simple running examples to motivate our approach.

1. Master-workers (MW) protocol [11]. A master (m) concurrently sends tasks (t) to some number
of workers (w1, . . . ,wn). Once workers finish their task, they inform the master that they are done
(d). This protocol is expressed in our choreographic language as follows for the case of two
workers.

(m�w1:t ;w1�m:d) ‖ (m�w2:t ;w2�m:d).

Here, m�w1:t represents an asynchronous communication from m to w1 of a message of type t,
‘;’ represents sequential composition and ‘‖’ represents parallel composition.
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Figure 1: An automaton (left) and a pomset (right) representing the master-workers protocol.

2. Distributed voting (DV) protocol. Three participants – Alice (a), Bob (b) and Carol (c) – send
their vote (yes (y) or no (n)) to every other participant in parallel. This is expressed as follows,
where + indicates nondeterministic choice.

(
(a�b:y ‖ a�c:y)+
(a�b:n ‖ a�c:n)

)
‖
(
(b�a:y ‖ b�c:y)+
(b�a:n ‖ b�c:n)

)
‖
(
(c�a:y ‖ c�b:y)+
(c�a:n ‖ c�b:n)

)

A protocol can evolve by performing sequences of sending and receiving actions. E.g., ab!x denotes
a sending action from a to b with a message of type x, and ab?x denotes the dual receiving action on
b. Protocols with parallel interactions can have an explosion of states, such as our MW protocol, whose
full state machine can be found on the left of Figure 1. To avoid this explosion, the state space can
be represented more compactly using so-called partially ordered multisets, or simply pomsets [10, 6].
The right of Figure 1 shows a graphical pomset representation of the same MW protocol. The pomset
contains eight events, whose labels are shown. The arrows visualise the partial order: an event precedes
any other event to which it has an outgoing arrow, either directly or transitively. In this example, the
event with label mw1!t precedes the event with label mw1?t directly and the events with labels w1m!d
and w1m?d transitively. However, it is independent of the events involving w2.

The behaviour represented by a pomset is the set of all its linearisations, i.e., all sequences of the
labels of its events that respect their partial order. The set of linearisations of the pomset in Figure 1 con-
sists of all interleavings of the two threads mw1!tmw1?tw1m!dw1m?d and mw2!tmw2?tw2m!dw2m?d.
This explicit concurrency yields a compact representation of the possible interleavings using just 4+ 4
events, whereas the state machine needs 5× 5 states to represent all interleavings. If we were to add a
third worker, the automaton would grow by another factor 5, while the pomset would expand by just four
additional events.

While pomsets can compactly represent concurrent behaviour, choices need to be represented as sets
of pomsets: one for every branch. As a consequence, one might need an exponential number of pomsets
to represent a protocol with many choices. The exponential growth is visible in our DV protocol with
three participants, depicted on the left side of Figure 2. This diagram represents a set of pomsets that
capture the protocol’s possible behaviour, counting 2× 2× 2 different pomsets. If we were to add a
fourth participant, the set would grow by another factor 2.

This paper proposes an extension to pomsets, named branching pomsets, with a branching structure
that can compactly represent choices. A branching pomset initially contains all branches of choices,
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CHOICE

CHOICE

CHOICE

ca!n ca?n cb!n cb?n

ca!y ca?y cb!y cb?y

ba!n ba?n bc!n bc?n

ba!y ba?y bc!y bc?y

ab!n ab?n ac!n ac?n

ab!y ab?y ac!y ac?y

Figure 2: A set of pomsets (left) and a branching pomset (right) representing a three-participant dis-
tributed vote.

and discards non-chosen branches when firing events that require resolving a choice. The right side of
Figure 2 depicts an example of a branching pomset for our DV protocol: where we would traditionally
need 2×2×2 pomsets (with six pairs of events each), we can represent the same behaviour as a single
branching pomset with 2+2+2 choices (with four pairs of events each). Adding an additional participant
would double the number of pomsets in the set of pomsets, while it would add a single choice to the
branching pomset.

To aid in the understanding of branching pomsets and their semantics, we provide a prototype tool
to visualise them, available at https://arca.di.uminho.pt/b-pomset/. The tool provides a web
interface where one can submit an input choreography, which is then visualised as a branching pomset
and can be simulated. The examples and figures in the paper are already available as preset inputs. We
note that the pomset simulation in our prototype currently does not support loops, for reasons which will
become apparent later in the paper; however, all other operators are supported and we are most interested
in (combinations of) choice and parallel composition.

Contribution This paper provides three core contributions: (1) an extension of pomsets with a branch-
ing structure, named branching pomsets, (2) an encoding from a choreographic language into branching
pomsets, and (3) a formal proof that the operational semantics of a choreography and of its encoded
branching pomset are equivalent, i.e., bisimilar.

Structure of the paper Section 2 presents the syntax of our choreography language and its operational
semantics. Section 3 formalises branching pomsets and their semantics. Section 4 formalises how to
obtain a branching pomset from a choreography and shows that a choreography and its derived branching
pomset are behaviourally equivalent. Finally, Section 5 presents our conclusions and a brief discussion
about future work and related work.
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c ::= 0 | a�b:x | ab?x | c ; c | c+ c | c ‖ c | c∗

Figure 3: Syntax of choreographies, where a and b are participants (a 6= b) and x is a message type.

2 Choreographies

In this section, we formally define the syntax and semantics of our choreographic language, examples of
which have been shown in the previous section.

LetA be the set of all participants a,b, . . .. Let L be the set of actions {ab!x,ab?x} for all participants
a 6= b and message types x. For all actions the subject of the action is its active participant: the subject
of a send action ab!x is a and the subject of a receive action ab?x is b.

The syntax is formally defined in Figure 3. Its components are standard: ‘0’ is the empty chore-
ography; ‘a�b:x’ is the asynchronous communication from a to b of a message of type x; the boxed
term ‘ab?x’ represents a pending receive on b from a of a message of type x, it is boxed in Figure 3
to indicate that it is only used internally to formalise behaviour but the box is not part of the syntax;
‘c1 ; c2’, ‘c1 +c2’ and ‘c1 ‖ c2’ are respectively the weak sequential composition, nondeterministic choice
and parallel composition of choreographies c1 and c2; finally, ‘c∗’ is the finite repetition (or, more infor-
mally, loop) of choreography c. The semantics for choice, parallel composition and loop are standard.
We note that our sequential composition is weak. More traditionally, when sequencing c1 and c2, the
choreography c1 must fully terminate before proceeding to c2. With weak sequential composition, how-
ever, actions in c2 can already be executed as long as they do not interfere with c1. For example, in
a�b:x ; c�d:x we can execute the action cd!x as it does not affect the participants of a�b:x: there is no
dependency and thus no need to wait for a�b:x to go first. However, in a�b:x ; a�c:x the action ac!x
cannot be executed first as its subject (a) must first execute ab!x. This is the common interpretation of
sequential composition in the context of message sequence charts [10], multiparty session types [7] and
choreographic programming [2].

The reduction rules of our choreographic language are formally defined in Figure 4a and its termina-
tion rules in Figure 4b. To formalise the reduction of weak sequential composition, we follow Rensink
and Wehrheim [13], who define a notion of partial termination.

Partial termination In a weak sequential composition c1 ; c2, an action ` in c2 can be executed if c1
can partially terminate for the subject of `. Conceptually, a choreography c1 can partially terminate for
the subject of ` by discarding all branches of its behaviour which would conflict with it, i.e., in which the
subject of ` occurs. This is written c1

X̀−→ c′1, where c′1 is the remainder of c1 after discarding all branches
involving the subject of `. For example, if c1 = a�b:x+ a�c:x then c1

Xcd!x−−−→ a�b:x, as this branch does
not contain c. An exception is when the subject of ` occurs in every branch of c1, in which case c1 cannot
partially terminate for the subject of `, i.e., c1 6 X̀−→. In the above example, c1 6 Xad!x−−−→.

The rules for partial termination are deterministic and only discard the absolutely necessary. In the
example above, c1

Xda!x−−−→ c1 since the subject d does not occur in either branch: dropping one of the
branches would be unnecessary and is thus not allowed. The rules for partial termination are defined in
Figure 4c. We highlight the rules for operators:

• Sequential composition c1 ; c2 and parallel composition c1 ‖ c2 can partially terminate if both c1
and c2 can.

• A choice c1 + c2 can partially terminate if at least one of its branches can. If both branches can
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a�b:x ab!x−−→ ab?x ab?x ab?x−−→ 0

c1
`−→ c′1

c1 ; c2
`−→ c′1 ; c2

c1
X̀−→ c′1 c2

`−→ c′2
c1 ; c2

`−→ c′1 ; c′2

c1
`−→ c′1

c1 ‖ c2
`−→ c′1 ‖ c2

c2
`−→ c′2

c1 ‖ c2
`−→ c1 ‖ c′2

c1
`−→ c′1

c1 + c2
`−→ c′1

c2
`−→ c′2

c1 + c2
`−→ c′2

c `−→ c′

c∗ `−→ c′ ; c∗

(a) Reduction rules.

0↓ c∗↓
c1↓ c2↓ † ∈ {;,‖}

c1 † c2↓
ci↓ i ∈ {1,2}

c1 + c2↓

(b) Termination rules.

0 X̀−→ 0

c
X̀−→ c

c∗
X̀−→ c∗

c 6 X̀−→ c

c∗
X̀−→ 0

c1
X̀−→ c′1 c2

X̀−→ c′2 † ∈ {;,‖,+}
c1 † c2

X̀−→ c′1 † c′2

c1
X̀−→ c′1 c2 6 X̀−→

c1 + c2
X̀−→ c′1

c1 6 X̀−→ c2
X̀−→ c′2

c1 + c2
X̀−→ c′2

subj(`) /∈ {a,b}
a�b:x

X̀−→ a�b:x

subj(`) 6= b

ab?x
X̀−→ ab?x

(c) Partial termination rules.

Figure 4: Operational semantics of choreographies.

partially terminate then both are kept, otherwise only the partially terminated one is kept.

• Following Rensink and Wehrheim, a loop c∗ can partially terminate if its body (c) can partially
terminate without discarding any branches, i.e., if c

X̀−→ c. In that case also c∗
X̀−→ c∗. Otherwise

we allow c∗ to be skipped entirely, represented as partial termination to 0, i.e., c∗
X̀−→ 0. This can

happen either if c can partially terminate to c′ but c′ 6= c, or if c cannot partially terminate at all.
We use c 6 X̀−→ c as a shorthand to cover both these cases. Skipping a loop is necessary, for example,
in a modified master-workers protocol where the master can send an arbitrary number of tasks to
the workers, followed by an end message to indicate termination. With one worker, this protocol
is expressed as (m�w1:t ;w1�m:d)∗ ;m�w1:end. In this choreography, the loop has to eventually
partially terminate to 0 to allow for the action mw1!end.

Example 1. Let c1 = (a�b:x+a�c:x) ; (d�b:x+d�e:x). Let c2 = (a�b:x+c�b:x)∗ ‖ (c�a:x+c�b:x).

• c1
Xbe!x−−−→ a�c:x ;d�e:x. The subject b of be!x occurs in one branch of each of both choices. While

the recipient e also occurs in the second branch of the second choice, since it is not the actual
subject it does not create a conflict.

• c1 6 Xab!x−−−→. While the second choice can partially terminate without reducing, the first choice con-
tains the subject a of ab!x in both of its branches. Since one of the choices cannot reduce, neither
can their sequential composition.

• c2
Xad!x−−−→ 0 ‖ c�b:x. The subject a of ad!x only occurs in one branch of the loop body, but the loop
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can only reduce to 0. On the right hand side of the parallel composition, a occurs only in the first
branch.

• c2 6 Xcd!x−−−→. While the loop can again reduce to 0, the subject c of cd!x occurs in both branches of
the right hand side of the parallel composition. Since its right hand side cannot partially terminate,
neither can it as a whole.

As already discovered by Rensink and Wehrheim [13], an unwanted consequence of these rules for
partial termination is that unfolding iterations of loops no longer preserves behaviour. We would like
c∗ and (c ; c∗)+ 0 to behave the same, but this is not the case. For example, if c = a�b:x+ c�d:x, then
c∗

Xab!x−−−→ 0 but (c ; c∗) + 0 Xab!x−−−→ (c�d:x ; 0) + 0. Then c∗ ; c ab!x−−→ ab?x by skipping the loop; however,
((c ;c∗)+0) ;c has no way to match this as it can skip the loop but it can only reduce the already unfolded
iteration c to c�d:x — it cannot discard it entirely. We borrow the solution that Rensink and Wehrheim
offer, which is the concept dependent guardedness.

Dependent guardedness A loop c∗ is dependently guarded if, for all actions `, the loop body c can
only partially terminate for the subject of ` if it does not occur in c at all. In other words: any participant
that occurs in some branch of c must also occur in every other branch of c. It then follows that c can
either partially terminate for the subject of ` without having to reduce, or it cannot partially terminate at
all. Formally: if c

X̀−→ c′ then c′ = c. A choreography ĉ is then dependently guarded if all of its loops are.
As a consequence, we avoid the problem above: if c∗

X̀−→ 0 then c 6 X̀−→ and (c ; c∗)+0 is also forced to
reduce to the second branch of the choice, which is 0. More precisely, let c∗ be some dependently guarded
expression. If c

X̀−→ c′ for some `,c′, then c′ = c. It follows that c∗
X̀−→ c∗ and (c ; c∗)+ 0 X̀−→ (c ; c∗)+ 0.

Similarly, if c 6 X̀−→ then c∗
X̀−→ 0 and (c ; c∗)+0 X̀−→ 0.

Example 2. Let c1 = a�b:x+a�c:x. Let c2 = a�b:x+b�a:x.

• c∗1 is not dependently guarded as c1
Xcd!x−−−→ a�b:x 6= c1. However, c1 itself is dependently guarded

as it does not contain any loop.

• c∗2 is dependently guarded since both a and b occur in both branches of c2. However, (c∗2)
∗ is not

dependently guarded, since c∗2
Xab!x−−−→ 0.

3 Branching pomsets

In this section, we formally define the syntax and semantics of branching pomsets. Additionally, we de-
fine a pomset interpretation of expressions in our choreographic language and we show this interpretation
to be faithful by showing that it is bisimilar to the original choreography.

A partially ordered multiset [12], or pomset for short, consist of a set of nodes E (events), a labelling
function λ to map events to some set of labels (e.g., send and receive actions), and a partial order ≤
to define dependencies between pairs of events (e.g., an event, or rather its corresponding action, can
only fire if all events preceding it in the partial order have already fired). Its behaviour is the set of all
sequences of the labels of its events that abide by ≤.

For example, for the pomset in Figure 1, E = {e1, . . . ,e8}, λ = {e1 7→ mw1!t,e2 7→ mw1?t,e3 7→
w1m!d,e4 7→ w1m?d,e5 7→mw2!t,e6 7→mw2?t,e7 7→ w2m!d,e8 7→ w2m?d}, and ≤= {(ei,e j) | (i, j ∈
[1,4]∨ i, j ∈ [5,8])∧ i≤ j}. Its behaviour consists of all interleavings of mw1!tmw1?tw1m!dw1m?d and
mw2!tmw2?tw2m!dw2m?d.
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CHOICE

ab!x ab?x
bc!x bc?x

bd!x bd?x
cd!x cd?x

Figure 5: A branching pomset representing the choreography a�b:x ; (b�c:x+b�d:x) ; c�d:x.

CHOICE

CHOICE

CHOICE

ab!x ab?x

ac!x ac?x

ba!x ba?x

bd!x bd?x

ca!x ca?x

cd!x cd?x

da!x da?x

Figure 6: A branching pomset representing the choreography ((a�b:x ; (b�a:x + b�d:x)) + (a�c:x ;
(c�a:x+ c�d:x))) ;d�a:x.

As illustrated in Figure 2, however, traditional pomsets suffer from the same problem when represent-
ing choices that automata suffer from when representing concurrency: there is no explicit representation
of choices in pomsets, and they are represented only implicitly by using a set of possible pomsets. We
tackle this by extending pomsets with an explicit representation of choices: a branching structure on
events.

Branching structure The general idea is of a branching pomset is that all possible events are initially
part of the pomset, but that some are defined as being part of some choice. To fire these, all relevant
choices must first be resolved by replacing the choice with one of its branches, thereby discarding the
other branch. This same idea governs the operational semantics of choreographies (Figure 4): both
branches of a choice are initially part of the choreography but, to proceed in one of them, the other must
be dropped.

The branching structure does not interrupt the partial order and all events still participate in it, as
shown in Figure 5, where arrows flow both into and out of the branches of the choice. As such, a choice
can also be resolved to fire an event which is only preceded by one of the branches, reminiscent of
the partial termination of choices (Figure 4c). For example, in Figure 5 the upper branch (b�c:x) can
be discarded to fire the event labelled cd!x, as it is not dependent on the lower branch. As shown in
Figure 6, nested choices are supported as well.

Formally, the branching structure is defined as below as a tree with root node B, whose children are
either a single event e or a choice node C with children (branches) B1,B2. All leaves are events.

B ::= {C1, . . . ,Cn}
C ::= e | {B1,B2}
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For example, for the pomset in Figure 5, if E = {e1, . . . ,e8} and λ = {e1 7→ ab!x,e2 7→ ab?x,e3 7→
cd!x,e4 7→ cd?x,e5 7→ bc!x,e6 7→ bc?x,e7 7→ bd!x,e8 7→ bd?x}, then its branching structure is {e1,e2,e3,
e4,{{e5,e6},{e7,e8}}}. For the pomset in Figure 6, if E = {e1, . . . ,e14} and λ = {e1 7→ ab!x,e2 7→
ab?x,e3 7→ ba!x,e4 7→ ba?x,e5 7→ bd!x,e6 7→ bd?x,e7 7→ ac!x,e8 7→ ac?x,e9 7→ ca!x,e10 7→ ca?x,e11 7→
cd!x,e12 7→ cd?x,e13 7→ da!x,e14 7→ da?x}, then its branching structure is {e13,e14,{{e1,e2,{{e3,e4},
{e5,e6}}},{e7,e8,{{e9,e10},{e11,e12}}}}}. By resolving the outer choice and picking its upper branch
(a�b:x), we drop events e7, . . . ,e12 and obtain the middle branching pomset in Figure 8, with events
e1, . . . ,e6,e13,e14 and branching structure {e1,e2,e13,e14,{{e3,e4},{e5,e6}}}.

We now formally define branching pomsets.

Definition 1 (Branching pomset). A branching pomset is a four-tuple R = 〈E,≤,λ ,B〉, where E is a set
of events, ≤⊆ E×E is such that ≤? (the transitive closure of ≤) is a partial order on events, λ : E 7→ L
is a labelling function assigning an action to every event, and B is a branching structure such that the set
of leaves of B is E and no event in E occurs in B more than once. We use R.E, R.≤, R.λ and R.B to refer
to the components of R.

Semantics To fire an event in a branching pomset, on top of being minimal it must also be active, i.e.,
it must not be inside any choice. In other words: it must be a child of the branching structure’s root
node. We thus define a set of refinement rules in Figure 7a, written Rw R′, which can be used to resolve
choices and move events upwards in the branching structure.

The first two rules, REFL and TRANS, are straightforward. The third rule, CHOICE, resolves choices.
It states that we can replace a choice with one of its branches. This rule serves a dual purpose: by
applying it to the outer choice of the pomset in Figure 6 we can fire the event ab!x in its first branch;
alternatively, by applying it to the pomset in Figure 5 we can discard one branch of the choice and then
fire the event cd!x, which is now minimal. The latter use corresponds with the partial termination rules for
choreographies. The fourth rule, CONGR is used for more fine-grained partial termination. To make the
event da!x minimal in Figure 6 we could resolve two choices with CHOICE (and TRANS). However, as
the rules for partial termination tell us, it is unnecessary to resolve the outer choice. Instead, we can apply
CHOICE to both inner choices and apply CONGR to the outer choice to update it without unnecessarily
resolving it. Finally, the fifth rule overloads the refinement notation to also apply to branching pomsets
themselves: if R.B can refine to some B′, then R itself can refine to a derived branching pomset with
branching structure B′, whose events are restricted to those occurring in B′ and likewise for ≤ and λ .

The reduction and termination rules are defined in Figure 7b. The first rule simply states that a
pomset can terminate if its branching structure can reduce to the empty set. The second rule defines the
conditions for enabling an event e, written R Xe−→ R′. A branching pomset R can enable e by refining to
R′ if e is both minimal and active in R′ (e ∈ a-min(R′)), and if there is no other refinement in between
in which e is already minimal and active. In other words, R may only refine as far as strictly necessary
to enable e. This rule implements the same idea as partial termination, with the subtle difference that,
whereas partial termination tries to remove any occurrence of a participant, in this case e is actually
an event in R itself. As the two notions are very similar, we use the same notation for enabling events
in branching pomsets as for partial termination. Finally, the last two rules state that, if R can enable e
by refining to R′, then it can fire e by reducing to R′− e, which is the branching pomset obtained by
removing e from R′ (Figure 7c). This reduction is defined both on e’s label and on the event itself, the
latter for internal use in proofs since λ (e) is typically not unique but e is.

Example 3.
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B w B [REFL]
B w B′ w B′′
B w B′′ [TRANS]

i ∈ {1,2}
{{B1,B2}}∪B w Bi∪B

[CHOICE]

B1 w B′1 B2 w B′2
{{B1,B2}}∪B w {{B′1,B′2}}∪B

[CONGR]
R.B w B′
Rw R[B′]

(a) Refinement rules, where we assume for CHOICE and CONGR that {B1,B2} /∈ B.

R.B w /0
R↓

Rw R′ e ∈ a-min(R′)

∀R′′ : Rw R′′ A R′⇒ e /∈ a-min(R′′)

R Xe−→ R′
R Xe−→ R′

R e−→ R′− e

R e−→ R′

R
λ (e)−−→ R′

(b) Reduction and termination rules.

〈E,≤,λ ,B〉[B′] = 〈E|B′ ,≤|B′ ,λ |B′ ,B′〉
X |B = restricts X only to the events in B

a-min(R) = {e ∈ R.E | @e′ ∈ R.E : e′ < e}∧ e ∈ R.B
ê− e = ê

{C1, . . . ,Cn}− e =

{
{C1, . . . ,Ci−1,Ci+1, . . . ,Cn} if Ci = e
{C1− e, . . . ,Cn− e} otherwise

{B1,B2}− e = {B1− e,B2− e}
R− e = R[R.B− e]

(c) Operations on branching pomsets.

Figure 7: Semantics of branching pomsets.

• R Xe−→ R′, where R is the branching pomset in Figure 5, R′ is the topmost branching pomset in
Figure 8 and e is the event with label cd!x.

• R Xe−→ R′, where R is the branching pomset in Figure 6, R′ is the middle branching pomset in
Figure 8 and e is the event with label ab!x.

• R Xe−→ R′, where R is the branching pomset in Figure 6, R′ is the middle branching pomset in
Figure 8 and e is the event with label da!x.

4 Branching pomsets for choreographies

In this section we formalise the construction of a branching pomset for a choreography c and we show
that the pomset semantics for the branching pomset are bisimilar to the operational semantics for c.

We have given examples of choreographies and corresponding branching pomsets in Figures 5 and 6.
Formally, the rules for the construction of a branching pomset for a choreography c, written JcK, are
defined in Figure 9. Most rules are as expected. We highlight the rules for operators.
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ab!x ab?x
bd!x bd?x

cd!x cd?x

Obtained by applying CHOICE to the pomset in Figure 5.

CHOICE

ab!x ab?x
ba!x ba?x

bd!x bd?x

da!x da?x

Obtained by applying CHOICE to the outer choice of the pomset in Figure 6.

CHOICE

ab!x ab?x

ac!x ac?x

ba!x ba?x

ca!x ca?x

da!x da?x

Obtained by applying CONGR to the outer choice and CHOICE to both inner choices of the pomset in
Figure 6.

Figure 8: Three refined pomsets.

• The rule for parallel composition (Jc1 ‖ c2K) takes the pairwise union of all components.

• The rule for sequential composition (Jc1 ; c2K) also adds dependencies to ensure that, for every
a, all events with subject a in Jc1K (denoted E1a) must precede all events with subject a in Jc2K.
This matches the reduction rule for weak sequential composition of choreographies (Figure 4a), as
events in Jc2K are only required to wait for events in Jc1K whose subject is the same.

• The rule for choice (Jc1 + c2K) adds a single top-level choice in the branching structure to choose
between the pomsets for c1 and c2.

• The rule for loops (Jc∗K) encodes a loop as a choice between terminating (0) and unfolding one
iteration of the loop (c ; c∗). This results in a pomset of infinite size. We note that our theoretical
results still hold even on infinite pomsets, but that any analysis of an infinite pomset will have to
be symbolic. However, since the focus of this paper is on supporting choices, we do not discuss
this further and leave symbolic analyses for loops for future work.

As an example, we construct part of the branching pomset in Figure 5: (b�c:x + b�d:x) ; c�d:x
(thus omitting a�b:x). Let Jb�c:xK = 〈{e1,e2},≤1,λ1,{e1,e2}〉, Jb�d:xK = 〈{e3,e4},≤2,λ2,{e3,e4}〉
and Jc�d:xK = 〈{e5,e6},≤3,λ3,{e5,e6}〉 as in Figure 9. First, Jb�c:x + b�d:xK = 〈{e1, . . . ,e4},≤1 ∪
≤2,λ1 ∪ λ2,{{{e1,e2},{e3,e4}}}〉; this is the pairwise union of the first three components, with the
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J0K= 〈 /0, /0, /0, /0〉
Ja�b:xK= 〈{e1,e2},{e1 ≤ e1,e1 ≤ e2,e2 ≤ e2},{e1 7→ ab!x,e2 7→ ab?x},{e1,e2}〉
Jab?xK= 〈{e},{e≤ e},{e 7→ ab?x},{e}〉
Jc1 † c2K= Jc1K† Jc2K for † ∈ {;,+,‖}

Jc∗K= J(c ; c∗)+0K

R1 ; R2 = 〈E1∪E2,≤1∪≤2∪
⋃

a∈A E1a×E2a ,λ1∪λ2,B1∪B2〉
R1 +R2 = 〈E1∪E2,≤1∪≤2,λ1∪λ2,{{B1,B2}}〉
R1 ‖ R2 = 〈E1∪E2,≤1∪≤2,λ1∪λ2,B1∪B2〉

Figure 9: Pomset interpretation of choreographies, where Ri = 〈Ei,≤i,λi,Bi〉 for i ∈ {1,2}, A is the set
of all participants (a,b, . . .) and Eia is the subset of events in Ei with subject a.

branching structure adding a choice between the two branches. Then J(b�c:x + b�d:x) ; c�d:xK =
〈{e1, . . . ,e6},≤1 ∪≤2 ∪≤3 ∪{e2 ≤ e5,e4 ≤ e6},λ1 ∪ λ2 ∪ λ2,{e5,e6,{{e1,e2},{e3,e4}}}〉; again, this
is the pairwise union of all components, with the addition of two dependencies: e2 ≤ e5 represents the
arrow in Figure 5 from bc?x to cd!x as they both have subject c, e4 ≤ e6 represents the arrow from bd?x
to cd?x as they both have subject d. There are no direct dependencies between e1 (bc!x) or e3 (bd!x) and
either e5 or e6, as the latter two do not have subject b.

Bisimulation For any given a choreography c we can derive two labelled transition systems: one from
the operational semantics in Figure 4 over c, and one from the pomset semantics in Figure 7 over the
branching pomset JcK produced by the rules in Figure 9. In the remainder of this section we show that
the two transition systems are bisimilar.

Two systems are language equivalent (or trace equivalent) if their languages are the same, i.e., if they
accept the same set of words (or traces). Two systems are bisimilar if each of them can simulate the
other, i.e., if they cannot be distinguished from each other just by looking at their behaviour. This is a
stronger notion of equivalence than language equivalence: if two systems are bisimilar then they are also
language equivalent, but the inverse is not necessarily true.

Example 4.

• a�b:x ; (b�a:x + b�a:y) is language equivalent but not bisimilar to (a�b:x ; b�a:x) + (a�b:x ;
b�a:y). In the former the choice between b�a:x and b�a:y is made only after a�b:x, while in the
latter the choice is made up front. As a result, it is possible in the latter system to fire ab!x ; ab?x
and then end up in a state where ba!x cannot be fired because the branch with b�a:y was chosen
— or the other way around; in the former system it is always possible to fire both ba!x and ba!y.

• a�b:x is bisimilar to a�b:x+ a�b:x. While the latter contains a choice, the two systems cannot
be distinguished by their behaviour. In both cases, the only allowed action is ab!x and then ab?x.

Formally, two transition systems A1,A2 are bisimilar, written A1 ∼ A2, if there exists a bisimulation
relation R relating the states of A1 and A2 which relates their initial states [14]. The relation R is a
bisimulation relation if, for every pair of states 〈p,q〉 ∈ R:

• If p `−→ p′ then q `−→ q′ and 〈p′,q′〉 ∈ R for some q′, and vice-versa.



12 Branching pomsets for choreographies

• If p↓ then q↓, and vice-versa.

In other words: if one of the two can perform a step, then the other can perform a matching step such
that the resulting states are again in the bisimulation relation.

This is also the approach we follow when proving that c ∼ JcK for all (dependently guarded) chore-
ographies c: we define a relation R = {〈c,JcK〉 | c is a dependently guarded choreography} relating all
dependently guarded choreographies with their interpretation as branching pomset by the rules in Fig-
ure 9. We then show that:

• If c `−→ c′ then JcK `−→ Jc′K (Lemma 2).

• If JcK `−→ R′ then c `−→ c′ such that R′ = Jc′K (Lemma 3).

• If c↓ then JcK↓ (Lemma 4).

• If JcK↓ then c↓ (Lemma 5).

Together these lemmas prove that c ∼ JcK for all dependently guarded c (Theorem 6). Most of the
proofs are straightforward by structural induction on c. Of particular interest, however, are the two
reduction lemmas in the case of weak sequential composition, i.e., if c1 ; c2

`−→ c′1 ; c′2 in Lemma 2 and if
Jc1 ; c2K e−→ R′ where e is an event in Jc2K in Lemma 3. To prove these specific cases we need to show
a correspondence between partial termination and enabling events. We do this with Lemma 1, in which
we show two directions simultaneously. If the choreography c1 can partially terminate for the subject of
an action ` in c2 then the branching pomset Jc1 ; c2K can enable the corresponding event. Conversely, if
Jc1 ; c2K can enable some event in Jc2K then the choreography c1 can partially terminate for the subject of
its label. When proving these cases in Lemmas 2 and 3, we then only have to show that the preconditions
of Lemma 1 hold.

In the following, a number of technical lemmas and most of the proofs are omitted in favour of
informal proof sketches or highlights. The omitted proofs can be found in Appendix A, the omitted
technical lemmas in Appendix B.

Lemma 1. Let c1 and c2 be dependently guarded choreographies. Let c2
`−→ c′2 and Jc2K Xe−→ R′2 such that

λ (e) = ` and Jc′2K= R′2− e.

(a) If c1
X̀−→ c′1 then Jc1 ; c2K Xe−→ Jc′1K ; R′2.

(b) If Jc1 ; c2K Xe−→ R′1 ; R′2 then c1
Xλ (e)−−−→ c′1 and Jc′1K= R′1.

Proof sketch. This proof is by structural induction on c1. Although the details require careful considera-
tion, it is conceptually straightforward: every case in (a) consists of showing that e is minimal and active
in Jc′1K ; R′2 and that Jc′1K ; R′2 is the first refinement for which this is true, and then applying the second
rule in Figure 7b; every case in (b) consists of showing that Jc3 ; c2K Xe−→ Jc′3K ; R′2 for some subexpression
c3 of c1 and similarly for c4 (e.g., when c1 = c3 +c4), then applying the induction hypothesis (b) to obtain
c3

X̀−→ c′3 and c4
X̀−→ c′4, and finally applying the partial termination rules in Figure 4c.

Lemma 2. Let c be a dependently guarded choreography. If c `−→ c′ then JcK `−→ Jc′K.

Proof sketch. This proof is by structural induction on c. We note that, if c = c1 ; c2 and c′ = c′1 ; c′2, i.e.,
when partial termination is applied, then the premises of Lemma 1 hold by the induction hypothesis and
the result swiftly follows. All other cases are straightforward.

Lemma 3. Let c be a dependently guarded choreography. If JcK `−→ R′ for some R′ then c `−→ c′ such that
R′ = Jc′K.
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Proof sketch. This proof is by structural induction on c. We highlight two cases:

• If c = c∗1 then we use a technical lemma to show that R′ = R′1 ; Jc∗1K such that Jc1K `−→ R′1. It
then follows from the induction hypothesis that c1

`−→ c′1 such that Jc′1K = R′1. The remainder is
straightforward.

• If c = c1 ; c2 then JcK= Jc1K ; Jc2K. If e is an event in Jc2K then we proceed to show that Jc2K `−→ R′2,
at which point we can apply the induction hypothesis. We have then satisfied the premises of
Lemma 1. The remainder is straightforward.

All other cases are straightforward.

Lemma 4. Let c be a dependently guarded choreography. If c↓ then JcK↓.

Proof sketch. This proof is by structural induction on c. All cases are straightforward.

Lemma 5. Let c be a dependently guarded choreography. If JcK↓ then c↓.

Proof sketch. This proof is by structural induction on c. All cases are straightforward.

Theorem 6. Let c be a dependently guarded choreography. Then c∼ JcK.

Proof. Recall the relationR= {〈c,JcK〉 | c is a dependently guarded choreography}. Let 〈c,R〉 ∈ R.

• If c `−→ c′ then R `−→ R′ and 〈c′,R′〉 ∈ R (Lemma 2).

• If R `−→ R′ then c `−→ c′ and 〈c′,R′〉 ∈ R (Lemma 3).

• If c↓ then R↓ (Lemma 4).

• If R↓ then c↓ (Lemma 5).

ThenR is a bisimulation relation and c∼ JcK ([14]).

5 Conclusion

We have defined a choreography language and its operational semantics (Figures 3 and 4) using the
weak sequential composition and partial termination of Rensink and Wehrheim [13], which is novel in
the context of choreographies. We have defined a model, branching pomsets (Definition 1), which can
compactly represent both concurrency and choices, and have defined its semantics (Figure 7). We have
shown that we can use branching pomsets to model choreographies (Figure 9) and that this model is
behaviourally equivalent to the operational semantics (Theorem 6).

We believe that branching pomsets can be further improved. We mention three points in particular
and then discuss related work.
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Binary choices Our branching structure B only supports binary choices. This matches the structure of
choreographies, but it would be more natural to represent c1 + (c2 + c3) as a single choice between the
pomsets Jc1K, Jc2K and Jc3K instead of as two nested binary choices. However, supporting arbitrary n-ary
choices also requires some thought about how to change the rules for refinement (Figure 7a), in particular
CHOICE. A naive change would be to simply have this rule use i ∈ {1, . . . ,n} and {{B1, . . . ,Bn}} instead
of its current binary rules, but this is not sufficient as this naive n-ary choice would not be equivalent to
the same branches composed as nested binary choices. For example, c1 + (c2 +c3) can partially terminate
to c1 + c2 and its interpretation as a branching pomset can refine to Jc1 + c2K, but a branching pomset
whose branching structure consists of a single ternary choice {{B1,B2,B3}} would not be able to refine
to {{B1,B2}} as the rules would only allow it to refine all of its branches or discard all but one of them.
Properly supporting n-ary choices would thus also require a new rule that allows {{B1, . . . ,Bm}} to refine
to choice between an arbitrary (non-empty) subset of its branches.

Partial order In Definition 1, ≤ is defined as a relation on events such that its transitive closure is
a partial order, rather than ≤ being a partial order itself as it is in traditional pomsets. The need for
this change arises from the update rule R[B] (Figure 7c) in our use case as choreographies. Consider
the branching pomset in Figure 5. To match the operational semantics, we should be able to refine this
pomset by discarding the b�c:x branch of the choice, after which cd!x should be minimal. In our current
rules the events bc!x and bc?x are removed along with their entries in ≤ and then cd!x is minimal.
However, if ≤ is a partial order, then since a partial order is transitive ≤ would also contain the entries
ab!x ≤ cd!x and ab?x ≤ cd!x and, since these entries do not contain bc!x or bc?x but are obtained by
transitivity, they are not removed. Consequently, there would be no refinement that enables cd!x.

In general, if R1wR′1 and R2wR′2 then it would not necessarily be true that R1 ;R2wR′1 ;R′2, as R1 ;R2
may contain dependencies obtained by transitivity which would still be present in its updated version but
which cannot be derived in R′1 ; R′2. We have no ready alternative. In the case of choreographies it may
suffice to provide a more sophisticated update rule which properly trims these unwanted dependencies,
but since this relies on knowledge of how these dependencies were derived from choreographies it is
difficult to see how this could be applied to branching pomsets in general.

Loops In Figure 9 a loop c∗ is encoded by infinitely unfolding it. As such, branching pomsets do not
currently provide a finite representation of infinite choreographies. This remains a topic for future work,
for which we envision two possible directions. One possibility would be to add an explicit repetition
construct to the branching structure (e.g., change the second grammatical rule to C = e | {B1,B2} | B∗)
and expand the semantics and proofs accordingly. Another possibility would be to explore the approach
used in message sequence chart graphs [1] and add a graph structure on top of the branching structure.

Related work Choreographies are typically used in a top-down workflow: the developer writes a global
view C and decomposes it into its projections, such that the behaviour of C is behaviourally equivalent
to the parallel composition of its projections. Examples of this approach include workflows based on
message sequence charts [9, 1], multiparty session types [7, 8], and choreographic programs [2, 5]. The
choreographic language used in this paper assumes asynchronous communication between agents and
includes a finite loop operator, borrowing from this literature the same notion of actions as interactions
and their (parallel, sequential, and choice) composition.

Pomsets were initially introduced by Pratt [12] for concurrent models and have been widely used,
e.g., in the context of message sequence charts by Katoen and Lambert [10]. Recently Guanciale and
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Tuosto proposed two semantic frameworks for choreographies, one of which uses sets of pomsets [15].
They also note that the pomset framework exhibits exponential growth in the number of choices in a
choreography, and they propose an alternative semantic framework using hypergraphs, which can com-
pactly represent choices. While the hypergraph framework is more compact, their pomset framework is
simpler and, they believe, more elegant. We agree with this analysis, and we aim to preserve the simplic-
ity and elegance of the pomset framework by proposing a semantic framework that avoids exponential
growth in the number of choices while still being based on pomsets. In another recent paper they use
pomsets to reason over choreography realisability [6]. This demonstrates the potential of using pomsets
for semantic analysis, and we are investigating how to use our framework for similar analysis.

Other related work includes the usage of event structures in the context of binary session types by
Castellan and Yoshida [3] and multiparty by Castellani et al. [4]. Event structures and branching pomsets
both feature a set of events with a causality relation and a choice mechanism. The main difference
between the two approaches is in the choice mechanism. Event structures are based on a conflict relation
on events, where two events in conflict cannot occur together in an execution and one of the two must be
chosen. In contrast, we structure events in branching pomsets hierarchically. Given a branching pomset,
one may construct an event structure by defining its conflict relation as all pairs of events that belong to
different branches of some choice in the branching structure.
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A Proofs from the paper

Lemma 1. Let c1 and c2 be dependently guarded choreographies. Let c2
`−→ c′2 and Jc2K Xe−→ R′2 such that

λ (e) = ` and Jc′2K= R′2− e.

(a) If c1
X̀−→ c′1 then Jc1 ; c2K Xe−→ Jc′1K ; R′2.

(b) If Jc1 ; c2K Xe−→ R′1 ; R′2 then c1
Xλ (e)−−−→ c′1 and Jc′1K= R′1.

Proof. This is a proof by induction on the structure of c1. We assume both (a) and (b) to hold for all
subexpressions of c1.

(a) • If c1 = 0 then Jc1K= Jc′1K= 〈 /0, /0, /0, /0〉 and Jc1 ; c2K= Jc2K so the result holds trivially.
• If c1 = a�b:x then by Fig. 4 subj(`) /∈ {a,b} and c′1 = c1. By Fig. 9 the construction of
Jc1 ;c2K adds no dependencies between events in Jc1K and e, so Jc1 ;c2K Xe−→ Jc1K ;R′2 = Jc′1K ;R′2.

• If c1 = ab?x then we proceed analogously to the previous case.
• If c1 = c3 † c4 for † ∈ {;,‖} then by Fig. 4 c3

X̀−→ c′3 and c4
X̀−→ c′4 and c′1 = c′3 † c′4. By the

induction hypothesis (a) Jc3 ; c2K Xe−→ Jc′3K ; R′2 and Jc4 ; c2K Xe−→ Jc′4K ; R′2. By Fig. 7 Jc2Kw R′2,
Jc3K w Jc′3K and Jc4K w Jc′4K. By Lemma 8(i,iii) J(c3 † c4) ; c2K w (Jc′3K † Jc′4K) ; R′2. Since
e ∈ a-min(R′2), e ∈ a-min(Jc′3K ;R′2) and e ∈ a-min(Jc′4K ;R′2), it follows that e ∈ a-min((Jc′3K†
Jc′4K) ;R′2). Suppose there exists some R′′ such that (Jc3K†Jc4K) ;Jc2KwR′′A (Jc3K†Jc4K) ;R′2.
If e ∈ a-min(R′′) then it follows from Lemma 8(iv) that either Jc3K ; Jc2K w R′3 A Jc′3K ; R′2
and e ∈ a-min(R′3) or analogously for c4. This contradicts our observation that Jc3 ; c2K Xe−→
Jc′3K ;R′2, or analogously for c4. We conclude that e /∈ a-min(R′′) and then by Fig. 7 Jc1 ;c2K Xe−→
Jc′1K ; R′2.

• If c1 = c3 + c4, we can distinguish three cases:
– If c3

X̀−→ c′3 and c4
X̀−→ c′4 then c′1 = c′3 +c′4. We then proceed analogously to the previous

case, applying Lemma 8(ii,v) instead of Lemma 8(i,iii,iv).
– If c3

X̀−→ c′3 but c4 6 X̀−→ then c′1 = c′3. By the induction hypothesis (a) Jc3 ;c2K Xe−→ Jc′3K ;R′2,
from which it follows that e ∈ a-min(Jc′3K ; R′2). By the induction hypothesis (b) Jc4 ;
c2K 6 Xe−→ since it would otherwise contradict the premise that c4 6 X̀−→. By Lemma 8(ii,iii)
Jc1 ;c2Kw Jc′3K ;R′2. Suppose that there exists some R′′ such that Jc1 ;c2Kw R′′A Jc′3K ;R′2.
By Lemma 8(iv) R′′ = R′′1 ; R′′2 for some Jc1K w R′′1 w Jc′3K and Jc2K w R′′2 w R′2. If R′′2 6=
R′2 then e /∈ a-min(R′′2) and e /∈ a-min(R′′). By Lemma 8(v) either R′′1 = R′′4 for some
Jc4Kw R′′4 w Jc′3K, which is clearly impossible, or R′′1 = R′′3 for some Jc3Kw R′′3 w Jc′3K, in
which case e /∈ a-min(R′′) since this would otherwise contradict Jc3 ; c2K Xe−→ Jc′3K ; R′2, or
R′′1 =R′′3 +R′′4 , in which case either e /∈ a-min(R′′) or e∈ a-min(R′′4 ;R′′2), which contradicts
Jc4 ; c2K 6 Xe−→. Then by Fig. 7 Jc1 ; c2K Xe−→ Jc′3K ; R′2 = Jc′1K ; R′2.

– If c3 6 X̀−→ and c4
X̀−→ c′4 then we proceed analogously to the previous case.

• If c1 = c∗3 for some c3 then by Fig. 4 we can distinguish two cases:
– If c3

X̀−→ c3 then c′1 = c1. Since c1 is dependently guarded, it follows that the subject of
` does not occur in c3 or in c1. Then by Fig. 9 there are no dependencies between any
event in Jc1K and e in Jc1 ;c2K. It follows that Jc1 ;c2Kw Jc1K ;R′2 and e∈ a-min(Jc1K ;R′2).
Since Jc2K Xe−→ R′2 there exists no R′′2 such that Jc2Kw R′′2 A R′2 and e ∈ a-min(R′′2). It then
follows from Fig. 7 that Jc1 ; c2K Xe−→ Jc′1K ; R′2.

– If c3 6 X̀−→ c3 then c′1 = 0. By Fig. 9 Jc1K = J(c3 ; c∗3)+ 0K. By Lemma 8(ii) Jc1K w J0K
and then by Lemma 8(iii) Jc1K ; Jc2K w J0K ; R′2 = R′2. Since Jc2K Xe−→ R′2, by Fig. 7 e ∈
a-min(R′2).
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Suppose there exists some R′1 6= J0K such that Jc1 ; c2K Xe−→ R′1 ; R′2. Then by the induction
hypothesis (b) c1

Xλ (e)−−−→ c′1 and Jc′1K = R′1 for some c′1. Since R′1 6= J0K, c′1 6= 0, which
contradicts our earlier statement that c1 = 0. We conclude that there exists no such R′1
and that by Fig. 7 Jc1 ; c2K Xe−→ Jc′1K ; R′2.

(b) By Lemma 8(iv) Jc1Kw R′1.

• If c1 = 0 then Jc1K= Jc′1K= R′1 = 〈 /0, /0, /0, /0〉. By Fig. 4 0
Xλ (e)−−−→ 0 so the result holds trivially.

• If c1 = a�b:x then by Fig. 7 R′1 = Jc1K since there is no rule to refine it and subj(λ (e)) /∈
{a,b} since e ∈ a-min(R′1 ; R′2). Then by Fig. 4 c1

Xλ (e)−−−→ c1 = c′1.
• If c1 = ab?x then we proceed analogously to the previous case.
• If c1 = c3 † c4 for † ∈ {;,‖} then by Lemma 8(iv) R′1 = R′3 † R′4 for some Jc3K w R′3 and
Jc4K w R′4. Suppose there exists some R′′3 such that Jc3 ; c2K w R′′3 ; R′2 w R′3 ; R′2 and e ∈
a-min(R′′3 ; R′2). It would follow from Lemma 8(i,iii) that Jc1 ; c2K w (R′′3 † R′4) ; R′2 A R′1 ; R′2
and e ∈ a-min((R′′3 † R′4) ; R′2), which contradicts our premise that Jc1 ; c2K Xe−→ R′1 ; R′2. It thus
follows from Fig. 7 that Jc3 ; c2K Xe−→ R′3 ; R′2 and similarly for c4. By the induction hypothesis
(b) c3

Xλ (e)−−−→ c′3 such that Jc′3K= R′3 and similarly for c4. Then by Fig. 4 c3 † c4
Xλ (e)−−−→ c′3 † c′4.

• If c1 = c3 + c4 then by Lemma 8(v) we can distinguish three cases:
– If R′1 = R′3 +R′4 for some R′3 w Jc3K and R′4 w Jc4K then by Lemma 8(iii) Jc3 ;c2Kw R′3 ;R′2

and similarly for c4. Analogously to the previous case it follows that Jc3 ; c2K Xe−→ R′3 ; R′2
and by the induction hypothesis (b) that c3

Xλ (e)−−−→ c′3 and Jc′3K= R′3, and similarly for c4.
Then by Fig. 4 c3 + c4

Xλ (e)−−−→ c′3 + c′4 and by Fig. 9 Jc′3 + c′4K= R′3 +R′4.
– If R′1 w Jc3K then analogously to the previous case it follows that Jc3 ; c2K Xe−→ R′1 ; R′2. By

the induction hypothesis (b) c3
Xλ (e)−−−→ c′3 and R′1 = Jc′3K.

Suppose that c4
Xλ (e)−−−→ c′4 for some c′4. Then by the induction hypothesis (a) also Jc4 ;

c2K Xe−→ Jc′4K ; R′2. It would follow from Fig. 7 that J(c3 + c4) ; c2K Xe−→ (Jc′3K + Jc′4K) ; R′2.
However, since (Jc′3K+ Jc′4K) ; R′2 w Jc′3K ; R′2 this contradicts our premise that R′1 = Jc′3K.
We conclude that c4 6

Xλ (e)−−−→ and then by Fig. 4 c3 + c4
Xλ (e)−−−→ c′3.

– If R′1 w Jc4K then we proceed analogously to the previous case.
• If c1 = c∗3 then recall that by Fig. 9 Jc∗3K= J(c3 ; c∗3)+0K. We can distinguish two cases:

– If R′1 = Jc1K then analogously to the previous cases it follows that Jc3 ; c2K Xe−→ Jc3K ; R′2
and by the induction hypothesis (b) c3

Xλ (e)−−−→ c3. Then by Fig. 4 c1
Xλ (e)−−−→ c1.

– If R′1 6= Jc1K then suppose that Jc3 ; c2K Xe−→ R′3 ; R′2 for some Jc3K A R′3. It would follow
from the induction hypothesis (b) that c3

Xλ (e)−−−→ c′3 such that Jc′3K = R′3. Then c′3 6= c3,
which is contradictory since c1 = c∗3 is dependently guarded. It thus follows that Jc3 ;
c2K 6 Xe−→ and that R′1 = J0K. By the induction hypothesis (a) c3 6

Xλ (e)−−−→ and then by Fig. 4
c1

Xλ (e)−−−→ 0.

Lemma 2. Let c be a dependently guarded choreography. If c `−→ c′ then JcK `−→ Jc′K.

Proof. This is a proof by structural induction on c.

• Suppose c ∈ {0,a�b:x,ab?x}. Then the result holds trivially.

• Suppose c = c1 ‖ c2. If c `−→ c′, then without loss of generality c1
`−→ c′1 and c′ = c′1 ‖ c2 (the other

case is analogous). By the induction hypothesis Jc1K `−→ Jc′1K, so by Fig. 7 Jc1K Xe−→ R′ such that
Jc′1K= R′− e and λ (e) = `. It follows from Lemma 9(i) that Jc′1K ‖ Jc2K Xe−→ R′ ‖ Jc2K and then by
Fig. 7 JcK= Jc1K ‖ Jc2K `−→ (R′− e) ‖ Jc2K= Jc′1K ‖ Jc2K= Jc′K.
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• Suppose c = c1 +c2. If c `−→ c′, then without loss of generality c1
`−→ c′ (the other case if analogous).

By the induction hypothesis Jc1K `−→ Jc′K, so by Fig. 7 Jc1K Xe−→ R′ such that Jc′K = R′ − e and
λ (e) = `. It follows from Lemma 9(ii) that Jc1K+Jc2K Xe−→ R′ and then by Fig. 7 JcK= Jc1K+Jc2K `−→
R′− e = Jc′K.

• Suppose c = c∗1. If c `−→ c′, then c1
`−→ c′1 and c′ = c′1 ; c∗1. By the induction hypothesis Jc1K `−→ Jc′1K,

so by Fig. 7 Jc1K Xe−→ R′ such that Jc′1K= R′−e and λ (e) = `. Since Jc∗1K= J(c1 ; c∗1)+0K, it follows
from Lemma 9(ii–iii) that J(c1 ; c∗1) + 0K Xe−→ R′ ; Jc∗1K and then by Fig. 7 JcK = J(c1 ; c∗1) + 0K `−→
(R′− e) ; Jc∗1K= Jc′1K ; Jc∗1K= Jc′K.

• Finally, suppose c = c1 ; c2. If c `−→ c′, we can distinguish two cases:

– Suppose c1
`−→ c′1 and c′ = c′1;c2. By the induction hypothesis Jc1K `−→ Jc′1K, so by Fig. 7

Jc1K Xe−→ R′ such that Jc′1K = R′− e and λ (e) = `. It follows from Lemma 9(iii) that Jc1K ;
Jc2K Xe−→ R′;Jc2K and then by Fig. 7 JcK= Jc1K ; Jc2K `−→ (R′− e) ; Jc2K= Jc′1K ; Jc2K= Jc′K.

– Suppose c1
X̀−→ c′1, c2

`−→ c′2 and c′ = c′1 ;c′2. By the induction hypothesis Jc2K `−→ Jc′2K and then
it follows from Lemma 1(a) that JcK= Jc1K ; Jc2K Xe−→ Jc′1K ; R′2

`−→ Jc′1K ; Jc′2K= Jc′K.

Lemma 3. Let c be a dependently guarded choreography. If JcK `−→ R′ for some R′ then c `−→ c′ such that
R′ = Jc′K.

Proof. This is a proof by structural induction on c. Let R = JcK.
• Suppose c ∈ {0,a�b:x,ab?x}. Then the result holds trivially.

• Suppose c = c1 ‖ c2. If R `−→ R′, then without loss of generality Jc1K `−→ R′1 and R′ = R′1 ‖ Jc2K (the
other case is analogous). By the induction hypothesis there exists some c′1 such that c1

`−→ c′1 such
that R′1 = Jc′1K. Then by Fig. 4 c1 ‖ c2

`−→ c′1 ‖ c2 = c′, and Jc′K= R′.

• Suppose c = c1 + c2. If R `−→ R′, then without loss of generality Jc1K `−→ R′ (the other case is anal-
ogous). By the induction hypothesis there then exists some c′ such that c1

`−→ c′ and Jc′K= R′ and
then by Fig. 4 c1 + c2

`−→ c′.

• Suppose c = c∗1. If R `−→ R′, then it follows from Lemma 10 that Jc1K `−→ R′1 and R′ = R′1 ; Jc∗1K. By
the induction hypothesis there exists some c′1 such that c1

`−→ c′1 and R′1 = Jc′1K. Then by Fig. 4
c∗1

`−→ c′1 ; c∗1 = c′, and R′ = Jc′K.
• Finally, suppose c = c1 ; c2. If R `−→ R′, then by Fig. 7 R Xe−→ R′′ such that R′ = R′′−e and λ (e) = `.

By Lemma 8(iv) R′′ = R′1 ; R′2 for some Jc1Kw R′1 and Jc2Kw R′2. We can distinguish two cases:

– Suppose e is an event in Jc1K. Suppose Jc1K w R′′1 A R′1 for some R′′1 . Then e /∈ a-min(R′′1).
If it were, then also Jc1K ; Jc2K w R′′1 ; R′2 A R′1 ; R′2 and e ∈ a-min(R′′1 ; R′2), which contradicts
Fig. 7. It follows from Fig. 7 that Jc1K Xe−→ R′1 and Jc1K `−→ R′1−e. By the induction hypothesis
there exists some c′1 such that c1

`−→ c′1 and Jc′1K= R′1− e. By Fig. 4 c1 ; c2
`−→ c′1 ; c2 = c′ and

then R′ = Jc′K.
– Suppose e is an event in Jc2K. Suppose Jc2K w R′′2 A R′2 for some R′′2 . Then e /∈ a-min(R′′2).

If it were, then also Jc1K ; Jc2K w R′1 ; R′′2 A R′1 ; R′2 and e ∈ a-min(R′1 ; R′′2), which contradicts
Fig. 7. It follows from Fig. 7 that Jc2K Xe−→ R′2 and Jc2K `−→ R′2−e. By the induction hypothesis
there exists some c′2 such that c2

`−→ c′2 and Jc′2K = R′2− e. It then follows from Lemma 1(b)
that c1

X̀−→ c′1 and Jc′1K= R′1. Then by Fig. 4, c1 ; c2
`−→ c′1 ; c′2 = c′ and Jc′K= R′.

Lemma 4. Let c be a dependently guarded choreography. If c↓ then JcK↓.
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Proof. This is a proof by structural induction on c.

• If c = 0 then both c and JcK can terminate.

• If c = a�b:x or c = ab?x then neither c or JcK can terminate.

• If c = c1 † c2 for † ∈ {;,‖} then by Fig. 4 c1↓ and c2↓. By the induction hypothesis Jc1K↓ and
Jc2K↓. By Fig. 7 Jc1K.B w /0 and Jc2K.B w /0. By Fig. 9 Jc1 † c2K.B = Jc1K.B∪ Jc2K.B and by Fig. 7
Jc1 † c2K.B w /0 and Jc1 † c2K↓.

• If c = c1 + c2 then by Fig. 4 either c1↓ or c2↓. Without loss of generality we assume c1↓; the
other case is analogous. By the induction hypothesis Jc1K↓ and by Fig. 7 Jc1K.B w /0. By Fig. 7
Jc1 + c2K.B w /0 and then Jc1 + c2K↓.

• If c = c∗1 then c↓ by Fig. 4. By Fig. 9 JcK= J(c1 ; c∗1)+0K. Since J0K.B = /0, it follows from Fig. 7
that JcK.B w /0 and then JcK↓.

Lemma 5. Let c be a dependently guarded choreography. If JcK↓ then c↓.

Proof. This is a proof by structural induction on c.

• If c = 0 then both c and JcK can terminate.

• If c = a�b:x or c = ab?x then neither c or JcK can terminate.

• If c = c1 † c2 for † ∈ {;,‖} and JcK↓ then by Fig. 7 Jc1 † c2K.B w /0. It follows from Lemma 7(ii)
that /0 =B′1∪B′2 such that Jc1K.B wB′1 and Jc2K.B wB′2. It follows that Jc1K.B w /0 and Jc2K.B w /0,
so by Fig. 7 Jc1K↓ and Jc2K↓. By the induction hypothesis c1↓ and c2↓ and then by Fig. 4 c1 † c2↓.

• If c = c1 +c2 and c↓ then by Fig. 7 Jc1 +c2K.B w /0. By Fig. 9 Jc1 +c2K.B = {{Jc1K.B,Jc2K.B}}. By
Lemma 7(iii) either:

– /0 = {{B′1,B′2}} for some Jc1K.B w B′1 and Jc2K.B w B′2, which is a clear contradiction; or
– Jc1K.B w /0, in which case Jc1K↓ and by the induction hypothesis c1↓ and then by Fig. 4

c1 + c2↓; or
– Jc2K.B w /0, which is analogous to the previous case.

• If c = c∗1 then, as in Lemma 4, both JcK↓ and c↓.

B Additional proofs

Lemma 7. Let B1,B2 be branching structures.

(i) If B1 w B‡
1 and B1]B2 is defined, then B1∪B2 w B‡

1 ∪B2.

(ii) If B1∪B2 w B‡, then B1 w B‡
1 and B2 w B‡

2 and B‡
1 ∪B‡

2 = B‡, for some B‡
1,B‡

2 .

(iii) If {{B1,B2}} w B‡, then either B1 w B‡
1 and B2 w B‡

2 and {{B‡
1,B‡

2}} = B‡, for some B‡
1,B‡

2 , or
B1 w B‡, or B2 w B‡.

Proof.

(i) Recall B1 w B‡
1 . Then, by the definition of refinement:

• Base: REFL, such that B1 = B‡
1 .

Recall B1]B2 is defined. Then, by REFL, B1∪B2 w B1∪B2. Then, B1∪B2 w B‡
1 ∪B2 .
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• Base: CHOICE, such that B1 = {{B̂1, . . . , B̂m}}] B̂ and B‡
1 = B̂i∪B̂ and 1≤ i≤ m, for

some B̂, B̂1, . . . , B̂m, i,m.

– Recall B1]B2 is defined. Then, ({{B̂1, . . . , B̂m}}] B̂)]B2 is defined. Then,
{{B̂1, . . . , B̂m}}] (B̂ ]B2) is defined.

– Recall {{B̂1, . . . , B̂m}}] (B̂ ]B2) is defined, and 1≤ i≤ m. Then, by CHOICE,
{{B̂1, . . . , B̂m}}] (B̂ ]B2)w B̂i∪ (B̂ ]B2). Then,
{{B̂1, . . . , B̂m}}∪ (B̂ ∪B2)w B̂i∪ (B̂ ∪B2). Then,
({{B̂1, . . . , B̂m}}∪ B̂)∪B2 w (B̂i∪B̂)∪B2. Then, B1∪B2 w B‡

1 ∪B2 .

• Step: TRANS, such that B1 w B†
1 w B‡

1 , for some B†
1 .

– Recall B1 w B†
1 and B1]B2 is defined. Then, by induction, B1∪B2 w B†

1 ∪B2.
– Recall B1∪B2 w B†

1 ∪B2. Then, B†
1 ∪B2 is defined.

– Recall B†
1 w B‡

1 and B†
1 ∪B2 is defined. Then, by induction, B†

1 ∪B2 w B‡
1 ∪B2.

– Recall B1∪B2 w B†
1 ∪B2 w B‡

1 ∪B2. Then, by TRANS, B1∪B2 w B‡
1 ∪B2 .

• Step: CONGR. Similar to case CHOICE.

(ii) Recall B1∪B2 w B‡. Then, by the definition of refinement:

• Base: REFL, such that B1∪B2 = B‡.

– By REFL, B1 w B1. Then, B‡
1 = B1 and B1 w B‡

1 , for some B‡
1 .

– By REFL, B2 w B2. Then, B‡
2 = B2 and B2 w B‡

2 , for some B‡
2 .

– Recall B1∪B2 = B‡. Then, B‡
1 ∪B‡

2 = B‡ .

• Base: CHOICE, such that B1∪B2 = {{B̂1, . . . , B̂m}}]B̂ and B‡ = B̂i∪B̂ and 1≤ i≤m, for
some B̂, B̂1, . . . , B̂m, i,m.
Recall B1∪B2 = {{B̂1, . . . , B̂m}}] B̂. Then:

– Case 1: B1 = {{B̂1, . . . , B̂m}}] B̂′ and B2 = B̂′′ and B̂ = B̂′∪B̂′′, for some B̂′, B̂′′.
* Recall 1≤ i≤ m. Then, by CHOICE, {{B̂1, . . . , B̂m}}] B̂′ w B̂i∪B̂′. Then,
B1 w B̂i∪B̂′. Then, B‡

1 = B̂i∪B̂′ and B1 w B‡
1 , for some B‡

1 .
* By REFL, B̂′′ w B̂′′. Then, B2 w B̂′′. Then, B‡

2 = B̂′′ and B2 w B‡
2 , for some B‡

2 .
* Recall B‡ = B̂i∪B̂. Then, B‡ = B̂i∪B̂′∪B̂′′. Then, B‡

1 ∪B‡
2 = B‡ .

– Case 2: B1 = B̂′ and B2 = {{B̂1, . . . , B̂m}}] B̂′′ and B̂ = B̂′∪B̂′′, for some B̂′, B̂′′.
Similar to case 1.

• Step: TRANS, such that B1∪B2 w B† w B‡, for some B†.

– Recall B1∪B2 w B†. Then, by induction, B1 w B†
1 and B2 w B†

2 and B† = B†
1 ∪B†

2 , for
some B†

1,B†
2 .

– Recall B† w B‡. Then, B†
1 ∪B†

2 w N‡. Then, by induction, B†
1 w B‡

1 and B†
2 w B‡

2 and
B‡ = B‡

1 ∪B‡
2 , for some B‡

1,B‡
2 .

– Recall B1 w B†
1 w B‡

1 . Then, by TRANS, B1 w B‡
1 .

– Recall B2 w B†
2 w B‡

2 . Then, by TRANS, B2 w B‡
2 .

• Step: CONGR. Similar to case CHOICE.

(iii) Recall {{B1,B2}} w B‡. Then, by the definition of refinement:

• Base: REFL, such that {{B1,B2}}= B‡.

– By REFL, B1 w B1. Then, B‡
1 = B1 and B1 w B‡

1 , for some B‡
1 .

– By REFL, B2 w B2. Then, B‡
2 = B2 and B2 w B‡

2 , for some B‡
2 .
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– Recall {{B1,B2}}= B‡. Then, {{B‡
1,B‡

2}}= B‡ .

• Base: CHOICE, such that B‡ = Bi and 1≤ i≤ 2.
Recall 1≤ i≤ 2. Then:

– Case: i = 1.
By REFL, B1 w B1. Then, B1 w Bi. Then, B1 w B‡ .

– Case: i = 2. Similar to case i = 1.
• Step: TRANS, such that {{B1,B2}} w B† w B‡, for some B†.

– Recall {{B1,B2}} w B†. Then, by induction:
* Case 1: B1 w B†

1 and B2 w B†
2 and {B†

1,B†
2}= B, for some B†

1,B†
2 .

Recall B† w B‡. Then, {B†
1,B†

2} w B‡. Then, by induction:

· Case 1a: B†
1 w B‡

1 and B†
2 w B‡

2 and {B‡
1,B‡

2}= B‡ , for some B‡
1,B‡

2 .
Recall B1 w B†

1 w B‡
1 and B2 w B†

2 w B‡
2 . Then, by TRANS, B1 w B‡

1 and
B2 w B‡

2 .
· Case 1b: B†

1 w B‡.
Recall B1 w B†

1 w B‡. Then, by TRANS, B1 w B‡ .
· Case 1c: B†

2 w B‡. Similar to case 1b.

* Case 2: B1 w B†.
Recall B1 w B† w B‡. Then, by TRANS, B1 w B‡ .

* Case 3: B2 w B†. Similar to case 2.

• Step: CONGR, such that B‡ = {{B‡
1,B‡

2}} and B1 w B‡
1 and B2 w B‡

2 ,
for some B‡

1,B‡
2 .

Lemma 8. Let R1,R2 be branching pomsets.

(i) If R1 w R′1 and R2 w R′2 then R1 ‖ R2 w R′1 ‖ R′2.

(ii) If R1 w R′1 and R2 w R′2 then R1 +R2 w R′1, R1 +R2 w R′2 and R1 +R2 w R′1 +R′2.

(iii) If R1 w R′1 and R2 w R′2 then R1;R2 w R′1 ; R′2.

(iv) If R1 † R2 w R3 for † ∈ {;,‖} then R3 = R′1 † R′2 for some R1 w R′1 and R2 w R′2.

(v) If R1 +R2 w R3 then either R3 = R′1 or R3 = R′2 or R3 = R′1 +R′2 for some R1 w R′1,R2 w R′2.

Proof. Let R1 = 〈E1,≤1,λ1,B1〉with≤1 =≤1
? and similarly for R2. By the rules in Fig. 7 R′1 =R1[B′1] =

〈E ′1,≤′1,λ ′1,B′1〉 for some B1 w B′1 and analogously for R′2.

(i) By the rules in Fig. 9 R1 ‖ R2 = 〈E1 ∪E2,≤1 ∪≤2,λ1 ∪λ2,B1 ∪B2〉. By Lemma 7(i) B1 ∪B2 w
B′1∪B2 wB′1∪B′2. It follows that R1 ‖ R2 w (R1 ‖ R2)[B′1∪B′2] = 〈E ′1∪E ′2,≤′1 ∪≤′2,λ ′1∪λ ′2,B′1∪
B′2〉= R′1 ‖ R′2.

(ii) By the rules in Fig. 9 R1 +R2 = 〈E1 ∪E2,≤1 ∪ ≤2,λ1 ∪ λ2,{{B1,B2}}〉. By the rules in Fig. 7
{{B1,B2}} w B′1. It follows that R1 +R2 w (R1 +R2)[B′1] = 〈E ′1,≤′1,λ ′1,B′1〉 = R′1. The case for
R′2 is analogous. By the rules in Fig. 7 {{B1,B2}} w {{B′1,B′2}}. It follows that R1 +R2 w (R1 +

R2)[{{B′1,B′2}}] = R′1 +R′2.

(iii) By the rules in Fig. 7 R1 ;R2 = 〈E1∪E2,≤1 ∪≤2 ∪
⋃

a∈A E1a×E2a ,λ1∪λ2,B1∪B2〉. By Lemma 7(i)
B1 ∪B2 w B′1 ∪B2 w B′1 ∪B′2. It follows that R1 ; R2 w (R1 ; R2)[B′1 ∪B′2] = 〈E ′1 ∪E ′2,≤′1 ∪ ≤′2
∪ ⋃a∈A E ′1a×E ′2a ,λ

′
1∪λ ′2,B′1∪B′2〉= R′1 ; R′2.
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(iv) By the rules in Fig. 7 (R1 † R2).B w B′ and R3 = (R1 † R2)[B′] for some B′. By the rules in Fig. 9
(R1 † R2).B = R1.B∪R2.B. It follows from Lemma 7(ii) that B′ = B′1 ∪B′2 for some R1.B w B′1
and R2.B w B′2. By the rules in Fig. 7 R1 w R1[B′1] = R′1 and R2 w R2[B′2] = R′2. Finally, by the
rules in Fig. 9 R3 = R′1 † R′2.

(v) By the rules in Fig. 7 (R1 + R2).B w B′ and R3 = (R1 + R2)[B′] for some B′. By the rules in
Fig. 9 (R1 +R2).B = {{B1,B2}}. It follows from Lemma 7(iii) that either B′ = {{B′1,B′2}} or
B′ = B′1 or B′ = B′2 for some R1.B w B′1,R2.B w B′2. By the rules in Fig. 7 R1 w R1[B′1] = R′1 and
R2 w R2[B′2] = R′2. If B′ = {{B′1,B′2}} then by the rules in Fig. 9 R3 = R′1 +R′2. The other two
cases are analogous.

Lemma 9. Let R1,R2 be branching pomsets. Let e be an event.

(i) If R1
Xe−→ R′1 then R1 ‖ R2

Xe−→ R′1 ‖ R2.

(ii) If R1
Xe−→ R′1 then R1 +R2

Xe−→ R′1.

(iii) If R1
Xe−→ R′1 then R1 ; R2

Xe−→ R′1 ; R2.

Proof.

(i) By Lemma 8(i) R1 ‖ R2 w R′1 ‖ R2. Since R1
Xe−→ R′1, e ∈ a-min(R′1) and then e ∈ a-min(R′1 ‖ R2).

Suppose that there exists some R′′ such that R1 ‖ R2 w R′′ A R′1 ‖ R2 and e ∈ a-min(R′′). Then
R′′ = R′′1 ‖ R2 for some R1 w R′′1 A R′1 such that e ∈ a-min(R′′1), but this contradicts our premise that
R1

Xe−→ R′1. We conclude that there exists no such R′′ and then by the rules in Fig. 7 R1 ‖ R2
Xe−→

R′1 ‖ R2.

(ii) By Lemma 8(ii) R1 +R2 w R′1. Since R1
Xe−→ R′1, e ∈ a-min(R′1).

Suppose that there exists some R′′ such that R1 +R2 w R′′ A R′1 and e ∈ a-min(R′′). For the latter
to be true we have to resolve the outer choice R1 +R2, so R1 w R′′ A R′1, but this contradicts our
premise that R1

Xe−→ R′1. We conclude that there exists no such R′′ and then by the rules in Fig. 7
R1 +R2

Xe−→ R′1.

(iii) By Lemma 8(iii) R1 ; R2 w R′1 ; R2. Since R1
Xe−→ R′1, e ∈ a-min(R′1) and then e ∈ a-min(R′1 ; R2).

Suppose that there exists some R′′ such that R1 ; R2 w R′′ A R′1 ; R2 such that e ∈ a-min(R′′). Then
R′′ = R′′1 ; R2 for some R1 w R′′1 A R′1 such that e ∈ a-min(R′′1), but this contradicts our premise that
R1

Xe−→ R′1. We conclude that there exists no such R′′ and then by the rules in Fig. 7 R1 ; R2
Xe−→

R′1 ; R2.

Lemma 10. Let c∗ be a dependently guarded choreograpy and let Jc∗K `−→ R′ for some R′. Then JcK `−→ R′′

and R′ = R′′ ; Jc∗K for some R′′.

Proof. Let R = Jc∗K. By Fig. 9 R = J(R1 ; R2) + 0K where R1 = JcK and R2 = Jc∗K. By Fig. 7 R Xe−→ R3
such that λ (e) = ` and R′ = R3− e. It follows that R1 ; R2

Xe−→ R3. By Fig. 7 R1 ; R2 w R3 and then by
Lemma 8(iv) R3 = R′1 ; R′2 for some R1 w R′1 and R2 w R′2, and either e ∈ a-min(R′1) or e ∈ a-min(R′2). If
e∈ a-min(R′1) then R1

Xe−→ R′1 and by Lemma 9(iii) R1 ;R2
Xe−→ R′1 ;R2. It follows that R3 = R′1 ;R2 and then

R′ = (R′1−e) ; Jc∗K. Otherwise, i.e. if e ∈ a-min(R′2), then R2
Xe−→ R′2 and by Lemma 1(b) c

X̀−→. However,
since c∗ is dependently guarded it follows that the subject of ` does not occur in c and then it also does
not occur in c∗. As this is contradictory, e cannot be an event in R2.



To appear in EPTCS.
© No authors
This work is licensed under the
Creative Commons Attribution License.

On Composing Communicating Systems *

Franco Barbanera
Dept. of Mathematics and Computer Science, University of Catania (Italy)

Ivan Lanese
Focus Team, University of Bologna/INRIA (Italy)

Emilio Tuosto
Gran Sasso Science Institute (Italy)

Communication is an essential element of modern software, yet programming and analysing com-
municating systems are difficult tasks. A reason for this difficulty is the lack of compositional mech-
anisms that preserve relevant communication properties.

This problem has been recently addressed for the well-known model of communicating systems,
that is sets of components consisting of finite-state machines capable of exchanging messages. The
main idea of this approach is to take two systems, select a participant from each of them, and derive
from those participants a pair of coupled gateways connecting the two systems. More precisely, a
message directed to one of the gateways is forwarded to the gateway in the other system, which
sends it to the other system. It has been shown that, under some suitable compatibility conditions
between gateways, this composition mechanism preserves deadlock freedom for asynchronous as
well as symmetric synchronous communications (where sender and receiver play the same part in
determining which message to exchange).

This paper considers the case of asymmetric synchronous communications where senders decide
independently which message should be exchanged. We show here that preservation of lock free-
dom requires sequentiality of gateways, while this is not needed for preservation of either deadlock
freedom or strong lock freedom.

1 Introduction

Communication is an essential constitutive element of modern software due to the fact that applications
are increasingly developed in distributed architectures (e.g., service-oriented architectures, microser-
vices, cloud, etc.). In practice, APIs and libraries featuring different communication mechanisms are
available for practically any programming language. At a theoretical level, several models have been
used to study interactions between systems (e.g., process algebras, transition systems, Petri nets, logical
frameworks, etc.).

Reasoning and developing communicating systems are difficult endeavours. The so-called business
logic, necessary to determine what has to be communicated, needs to be complemented with the so-
called application level protocol specifying how information spreads across a system. Conceptual and
programming errors may occur in the realisation of application level protocols. For instance, it may hap-
pen that some components in a system are prevented to communicate because all the expected partners
terminated their execution (deadlock). Other typical errors occur when a system is not lock-free, that
is when some components cannot progress because all their partners are perpetually involved in other
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778233, by the MIUR project PRIN 2017FTXR7S “IT-MaTTerS” (Methods and Tools for Trustworthy Smart Systems) and by
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Nazionale per il Calcolo Scientifico). The authors thanks the reviewers for their helpful comments and also Mariangiola Dezani
for her support.
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communications. A source of these problems is when a system can evolve in different ways depending
on some conditions and components have inconsistent “views” of the state of the system. If this happens,
some components may reach a state no longer “compatible” with the state of their partners and therefore
communications cannot take place as expected.

We illustrate these problems with some simple examples for deadlock freedom (similar examples
may be given for lock freedom). Suppose we want to model a client-server system where clients’ requests
are acknowledged either with an answer or with “unknown” from servers. Due to its popularity, we
choose CCS [16] to introduce this scenario, so take the following agents:

C= r̄.a+ r̄.u and D= r.ā+ r.ū (1)

where ports r, a, and u are respectively used to commmunicate requests, answers, and unknowns. (Recall
that in CCS a. and + represent respectively prefix and non-deterministic choice.) The common
interpretation of agents in (1) is that x and x̄ respectively represent an input and an output on port x. It is
a simple observation that the system C |D where C and D run in parallel can evolve to e.g., the deadlock
state a | ū where each party is waiting for the other to progress. The problem is that the choice of what
communication should happen after a request is taken independently by C and D instead of letting D to
take the decision and drive C “on the right” branch. This is attempted in the next version:

C= r̄.(a+u) and D= r.(ā+ ū) (2)

A key difference with the agents in (1) is that the server D in (2) decides what to reply to the client
C, which becomes aware of the choice through the interaction with D after the request has been made.
Let us now assume that the server D acts as a proxy to another server, say D′. When D cannot return
an answer to the client it interacts with D′ on port p. Answers are sent directly to the client if D′ can
compute them, otherwise D′ returns an unknown on port u′ to D which forwards it to the client. This is
modelled by the agents

D= r.(ā+ p̄.u′.ū) and D′ = p.(ā+ ū′) (3)

Note that this change is completely transparent to agent C, which in fact stays as in (2). It is now more
difficult to ascertain if these choices may lead to a deadlock since the decision of D may involve also D′.
Indeed, the parallel composition of agents in (3) may deadlock because, when C and D interact on port
a, D′ hangs on port p and, likewise, if C and D′ interact on port a then D hangs on port u′.

A reason for this difficulty is that it is hard to define compositional mechanisms that preserve relevant
communication properties such as deadlock or lock freedom. Recently, an approach to the composition
of concurrent and distributed systems has been proposed in [2, 3] for the well-known model of systems
of communicating finite-state machines (CFSMs) [11], that is sets of finite-state automata capable of
exchanging messages. The compositional mechanism is based on the idea that two given systems, say S
and S′, are composed by transforming two CFSMs, say H in S and K in S′, into “coupled forwarders”.
Basically, each message that H receives from a machine in S is forwarded to K and vice versa. It has
been shown that, under suitable compatibility conditions between H and K, this composition mechanism
preserves deadlock freedom for asynchronous as well as symmetric synchronous communications (where
sender and receiver play the same part in determining which message to exchange). The compatibility
condition identified in [2, 3] consists in exhibiting essentially dual behaviours: gateway H is able to
receive a message whenever gateway K is willing to send one and vice versa. As observed in [4], a
remarkable feature of such an approach is that it enables the composition of systems originally designed



No authors 3

as closed systems. As far as two compatible machines can be found, any two systems can be composed
by transforming as hinted above the compatible machines.

The results in [2, 3] are developed in the asynchronous semantics of CFSMs. These results have been
transferred in [5] to a setting where CFSMs communicate synchronously much like as the communication
mechanisms considered for instance in process algebras like CCS, ACP, etc. This model assumes a
perfect symmetry between sender and receiver in synchronous communications. Let us again discuss
this with an example. Consider the agents

T= ā.P+ b̄.Q and R= a.P′+b.Q′ (4)

According to the standard semantics of CCS [16], system (T | R)\{a,b} has two possible evolutions:

(T | R)\{a,b} τ−→ P | P′ and (T | R)\{a,b} τ−→ Q | Q′

namely, either both T and R opt for the “leftmost” branch (synchronising on a) or they both choose the
“rightmost” one (synchronising on b). (Recall that in CCS \X is the hiding of ports in the set X and
that τ represents an internal action.) This means that, the resolution of the choice is implicit in the com-
munication mechanism: a branch is taken as soon as T and R synchronise on the corresponding port.
Intuitively, no distinction is made between sender and receiver (formally they are indeed interchange-
able); this implies that the communication mechanism is at the very core of choice resolution [5].

Interestingly, for synchronous communications, an alternative interpretation is actually possible where
this perfect symmetry is not assumed so that sender and receiver play different roles in choice resolution
while still relying on synchronous communication. Let us explain this interpretation using again CCS.
Consider a variant of CCS where outputs must be enabled before being fired. One could formally specify
that with the following reduction rules:

ā.P+P′ τ−→ ¯̄a.P and ¯̄a.P | (a.Q+Q′) τ−→ P|Q (5)

whereby the leftmost rule chooses one of the possible outputs of the sender (the chosen output is marked
by the double bar in our notation) and the rightmost rule actually synchronises sender and receiver. This
semantics is an abstract model of asymmetric communications (used e.g., in [7, 17]), where silent steps
taken using the left rule model some internal computation of the sender to decide what to communicate
to the partner. In other words, now the choice is entirely resolved on “one side” while the communication
is a mere interaction of complementary actions, the output and the input. This asymmetry, at the core of
asynchronous communication, can therefore also carry for synchronous communication.

It is worth observing that asymmetric communications abstract a rather common programming pat-
tern where sending components may choose the output to execute depending on some internal computa-
tion. For instance, elaborating on the proxy scenario in (3), D could decide to directly send unknowns to
normal clients while reserving the use of D′ only for “privileged” clients.

Contributions. This paper transfers the composition by gateway mechanism of [2, 3] to the case of
asymmetric synchronous communication of CFSMs. The main technical results are that, in the asym-
metric case, gateway composition

• preserves deadlock freedom (as well as a strong version of lock freedom) provided that systems are
composable (the relation of compatibility – one of the requirements for systems to be composable
– in the present paper is less restrictive than the one used in [5]);
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• preserves lock freedom if systems are composable and gateways are sequential, namely each state
has at most one outgoing transition.

Interestingly, preservation of deadlock freedom can be guaranteed under milder conditions than in the
symmetric case. In fact, sequentiality of gateways is not necessary to preserve deadlock freedom in the
asymmetric case, while it is in the symmetric one.

Structure of the paper. Section 2 introduces systems of (asymmetric synchronous) CFSMs, related
notions and communication properties. Composition by gateways is introduced and discussed in Sec-
tion 3 together with the compatibility relation. Section 4 discusses the issues that prevent gateway compo-
sition to preserve communication properties. Section 5 is devoted to the preservation of communication
properties. Conclusions, related and future work are discussed in Section 6.

2 Background

Communicating Finite State Machines (CFSMs) [11] are Finite State Automata (FSAs) where transitions
are labelled by communications. We recall basic notions on FSAs.

A finite state automaton (FSA) is a tuple A = 〈S ,q0,L ,→〉 where
• S is a finite set of states (ranged over by lowercase italic Latin letters);

• q0 ∈S is the initial state;

• L is a finite set of labels

• →⊆ S × (L ∪{τ})×S is a set of transitions.
Hereafter, we let λ range over L ∪{τ} when it is immaterial to specify the set of labels or it is under-

stood. We use the usual notation q1
λ−→ q2 for the transition (q1,λ ,q2) ∈−→ , and q1 −→ q2 when there

exists a label λ such that q1
λ−→ q2. Let · be the concatenation operation on labels and write p π−→ q

where π = λ 1·λ 2· . . . ·λ n whenever p λ 1−→ p1
λ 2−→ . . .

λ n−→ pn = q. We let π,ψ, . . . range over L ? (i.e.,
sequences of labels) and define the set of reachable states in A from q as

R(A,q) = { p
∣∣ there is π ∈L ? such that q π−→ p}

The set of reachable states in A is R(A) = R(A,q0). For succinctness, q λ−→ q′ ∈ A means that the
transition belongs to (the set of transitions of) A; likewise, q ∈ A means that q belongs to the states of

A. We say that q λ−→ q′ is an outgoing (resp. incoming) transition of q (resp. q′). Since we use FSAs to
formalise communicating systems, accepting states are disregarded (as also done in [11]).

We now define systems of CFSMs, by adapting the definitions in [11] to our context. Let P be a set
of participants (or roles, ranged over by A, B, etc.) and M a set of messages (ranged over by m, n, etc.).
We take P and M disjoint. An output label is written as AB!m and represents the willingness of A to
send message m to B; likewise, an input label is written as AB?m and represents the willingness of B to
receive message m from A. The subjects of an output label AB!m and of an input label AB?m are A and
B, respectively.
Definition 2.1 (CFSMs). A communicating finite-state machine (CFSM) is an FSA M with labels in the
set Lact∪{τ }, where

Lact = {AB!m,AB?m | A 6= B ∈P,m ∈M }

and, for any transition p λ−→ q,
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• if λ is an output label then p 6= q and p has exactly one incoming transition, and such transition
is labelled by τ;

• if λ = τ then p 6= q and q has exactly one outgoing transition, and such transition is labelled by
an output label.

A state of M is

• terminal, if it has no outgoing transition; we define T(M) = { p ∈M
∣∣ p is terminal in M }

• sending, if it is not terminal and all its outgoing transitions have output labels

• receiving, if it is not terminal and all its outgoing transitions have input labels

• mixed, if it has a silent outgoing transition and an outgoing transition with an input label.

A CFSM is A-local if all its non τ transitions have subject A.

Unlike in [5], the transitions of our CFSMs can also be labelled by the silent action τ . Definition 2.1
can be looked at as the CFSM counterpart of the τC contracts described in [6]. Imposing the no-mixed
state condition on our CFSM, turns them into the communicating automata counterpart of the processes
(contracts) called “session behaviours”1 in e.g., [10, 1, 7]. These processes are in turn the process coun-
terpart of (binary) session types [13]. As we shall see below (and also shown in [3] and [5]), the absence
of mixed states is necessary in order to get the preservation of properties by composition. As a matter of
fact, we could drop the conditions related to τ-transitions in case a transition like p XY!z−−−→ q is the only
outgoing transition from p, namely when no actual choice of output actions is possible in p. We however
prefer to avoid this distinction for several reasons:

• firstly, our uniform treatment of transitions allows us to immediately adapt definitions in a more
abstract setting;

• secondly, uniformity allows us to simplify some technicalities.

Said that, all proofs in the present paper could easily be adapted to the above mentioned alternative
definition of CFSM.

Definition 2.2 (Communicating systems). A (communicating) system over P is a map S = (MA)A∈P
assigning an A-local CFSM MA to each participant A ∈P where P ⊆P is finite and any participant
occurring in a transition of MA is in P .

Note that Definition 2.2 requires that any input or output label does refer to participants belonging to
the system itself. In other words, Definition 2.2 restricts to closed systems.

We now define the synchronous semantics of communicating systems, which is itself an FSA (differ-
ently from the asynchronous case, where the set of states can be infinite). Hereafter, we write f [x 7→ y]
for the update of the function f in a point x of its domain with the value y. Also, dom( f ) denotes the
domain of the function f .

Definition 2.3 (Asymmetric synchronisations). Let S be a communicating system. A configuration of S
is a map s = (qA)A∈dom(S) assigning a local state qA ∈ S(A) to each A ∈ dom(S).

The asymmetric synchronisations of S is the FSA

JSK = 〈S ,s0,Lint∪{τ },→〉 where

• S is the set of synchronous configurations of S, as defined above;

1Actually different variations of this name are used in the listed references.
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• s0 = (q0A)A∈dom(S) ∈S is the initial configuration where, for each A ∈ dom(S), q0A is the initial
state of S(A);

• Lint = {A−→B : m | A 6= B ∈P and m ∈M } is a set of interaction labels;

• s A−→B : m−−−−−→ s[A 7→ q,B 7→ q′] ∈ JSK if s(A) AB!m−−−→ q ∈ S(A) and s(B) AB?m−−−−→ q′ ∈ S(B);

• s τ−→ s[A 7→ q] ∈ JSK if s(A) τ−→ q ∈ S(A);

Configuration s enables A in S if s(A) has at least an outgoing transition.

As expected, an interaction A−→B : m occurs when A performs an output AB!m (which has been
previously chosen) and B the corresponding input AB?m.

Example 2.4. Let us consider the communicating system S= (MX)X∈{K,C,D,E}, where

0K

1

2

3

KC!m

KD
!n

τ

τ
0C

1 2

3

τ CE!cKC
?m

EC?s

0D 0

1 2

3

τ
KD

?n

ED?s

DE!d
0E

4

1

5

2

3

CE?c

DE?d

τ

τ

ED
!s

EC!s

A sequence of transitions of JSK out of s0 is, according to Definition 2.3,

s0 = (0K,0C,0D,0E)
τ−→ (1K,0C,0D,0E)

K−→C : m−−−−−→ (3K,1C,0D,0E)
τ−→ (3K,2C,0D,0E)

C−→E : c−−−−→ (3K,3C,0D,4E)
τ−→ (3K,3C,0D,5E)

E−→D : s−−−−→ (3K,3C,3D,3E)

�
The symmetric synchronisation in [5] for systems without τ-transitions can be readily obtained from

the above definition by disregarding the clause for the τ-transitions.
In the following, ptp(τ) = /0 and ptp(A−→B : m) = ptp(AB!m) = ptp(AB?m) = {A,B} and, for a

sequence π = λ 1· · · · ·λ n, we let ptp(π) = ∪1≤i≤nptp(λ i).
As discussed in Section 1, we shall study the preservation of communication properties under com-

position. We shall consider the following relevant properties: deadlock freedom, lock freedom and
strong lock freedom. The definitions below adapt the ones in [12] to a synchronous setting (as done also
in [15, 18, 5]).

Definition 2.5 (Communication properties). Let S be a communicating system on P . We say that a

participant A ∈P is involved in a run s λ 1−→ s1 . . .
λ n−→ sn of S if there is 1 ≤ i ≤ n such that either

A ∈ ptp(λ i) or λ i = τ , si(A)
τ−→ q in S(A), and si+1 = si[A 7→ q].

Deadlock freedom A configuration s ∈R(JSK) is a deadlock if

• s has no outgoing transitions in JSK and
• there exists A ∈P such that s(A) enables A in S.

A system is deadlock-free if none of its configurations is a deadlock.

Lock freedom Let A ∈P . A configuration s ∈R(JSK) is a lock for A if
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• s(A) has outgoing transitions; and
• A is not involved in any run from s.

A system is lock-free if none of its configurations is a lock for any of its participants.

Strong lock freedom System S is strongly lock-free for A ∈P if for each s ∈R(JSK) enabling A in S
then A is involved in all maximal sequences from s.
A system is strongly lock free if it is strongly lock free for each of its participants.

Proposition 2.6. 1. Lock-freedom implies deadlock-freedom;

2. Strong lock freedom implies lock freedom.
Example 2.7. Let us consider the system S of Example 2.4. The only other maximal transition sequence
in JSK out of s0, besides the one described in Example 2.4, is

s0 = (0K,0C,0D,0E)
τ−→ (2K,0C,0D,0E)

K−→D : n−−−−→ (3K,0C,1D,0E)
τ−→ (3K,0C,2D,0E)

D−→E : d−−−−→ (3K,0C,3D,1E)
τ−→ (3K,0C,3D,2E)

E−→C : s−−−−→ (3K,3C,3D,3E)

These two sequences are both maximal and contain all the elements of R(JSK). By the above observa-
tions it is possible to check S to be strongly lock free. �

3 Composition via Gateways

This section discusses composition of systems of CFSMs via gateways, as introduced in [2, 3], and
studies its properties under asymmetric synchronisation. The main idea is that two systems of CFSMs,
say S1 and S2, can be composed by transforming one participant in each of them into gateways connected
to each other.

3.1 Building gateways

Let us call H the selected participant in S1 and K the one in S2. The gateways for H and K are connected
to each other and act as forwarders: each message sent to the gateway for H by a participant from the
original system S1 is now forwarded to the gateway for K, that in turn forwards it to the same participant
to which K sent it in the original system S2. The dual will happen to messages that the gateway for
K receives from S2. A main advantage of this approach is that no extension of the CFSM model is
needed to transform systems of CFSMs, which are normally closed systems, into open systems that can
be composed. Another advantage is that the composition is fully transparent to all participants different
from H and K.

We will now define composition via gateways on systems of CFSMs, following the intuition above.
Definition 3.1 (Gateway). Given a H-local CFSM M and a participant K, the gateway of M towards K
is the CFSM gw(M,K) obtained by replacing in M

• each pair of consecutive transitions p τ−→ q HA!m−−−→ r with

p KH?m−−−−→ p′ τ−→ q HA!m−−−→ r for some fresh state p′ (6)

• each transition p AH?m−−−−→ r with

p AH?m−−−−→ p′ τ−→ p′′ HK!m−−−→ r for some fresh states p′ and p′′ (7)
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We shall call external the states like p and r and internal the states like p′, p′′ and q.

Note that gateways execute “segments” of the form described in (6) and (7) in the above definition.
Also, by very construction, we have the following

Fact 3.2. Given a H-local CFSM M and a participant K, each state of gw(M,K) has at most one incom-
ing or outgoing τ transition.

We compose systems with disjoint participants through two of them, say H and K, by taking all
the participants of the original systems but H and K, whereas H and K are replaced by their respective
gateways.

Given two functions f and g such that dom( f )∩ dom(g) = /0, we let f + g denote the function
behaving as function f on dom( f ) and as function g on dom(g).

Definition 3.3 (System composition). Let S1 and S2 be two systems with disjoint domains. The compo-
sition of S1 and S2 via H ∈ dom(S1) and K ∈ dom(S2) is defined as

S1H↔KS2 = S1[H 7→ gw(S1(H),K)]+S2[K 7→ gw(S2(K),H)]

(Note that dom(S1H↔KS2) = dom(S1)∪dom(S2).)

We remark again that, by the above approach for composition, we do not actually need to formalise
the notion of open system. In fact any closed system can be looked at as open by choosing (according to
the current needs) two suitable participants in the “to-be-connected” systems and transforming them into
two forwarders.

We also note that the notion of composition above is structural: a corresponding notion of behavioural
composition has been studied in [4] in a context of multiparty session types [14], that is with symmetric
synchronous interactions.

Example 3.4. Let us take the following two communicating systems.
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The system S1H↔KS2 is
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2

τ

B
H

!n

0

gw(MK,H)

0

45

1 2

3

K
C!m

K
D

!n
τ τ

H
K

?m

H
K?n

0C

1 2

3

τ CE!cKC
?m

EC?s

0E

4

1

5

2

3

CE?c

DE?d

τ

τ

ED
!s

EC!s

0D 0

1 2

3

τ
KD

?n

ED?s

DE!d

Note that the CFSMs A, B, C, D, and E remain unchanged. �

3.2 Compatibility

A few simple auxiliary notions are useful. Let Li/o = { ?m, !m |m ∈M } and define the functions

io : Lact→Li/o and (·) : Li/o→Li/o

by the following clauses

io(AB?m) = ?m io(AB!m) = !m and ?m= !m !m= ?m

which extend to CFSMs in the obvious way: given a CFSM M = 〈S ,q0,Lact,→〉, we define io(M) =

〈S ,q0,Li/o,→′〉 where →′= {q
io(λ )−−−→ q′

∣∣ q λ−→ q′ ∈ M,λ ∈ Lact } ∪ {q τ−→ q′
∣∣ q τ−→ q′ ∈ M } and

likewise for M.
Informally, two CFSMs M1 and M2 are compatible if each output of M1 has a corresponding input in

M2 and vice versa once the identities of communicating partners are blurred away.

Definition 3.5 (Compatibility). Let M and M′ be two FSAs on Li/o. An io-correspondence is a relation
R between states of M and those of M′ such that whenever (q,q′) ∈ R:

• q ∈ T(M) if, and only if, q′ ∈ T(M′) (cf. Definition 2.1)

• if q !m−−→ r ∈M then there is q′ ?m−−→ r′ ∈M′ such that (r,r′) ∈ R

• if q′ !m−−→ r′ ∈M′ then there is q ?m−−→ r ∈M such that (r,r′) ∈ R

• if q τ−→ r ∈M then (r,q′) ∈ R

• if q′ τ−→ r′ ∈M′ then (q,r′) ∈ R

Two CFSMs M and M′ are compatible (in symbols M�M′) if there is an io-correspondence relating the
initial states of io(M1) and io(M′).
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Example 3.6 (Compatibility). The machines H and K of Example 3.4 are compatible. For a more
complex example, consider the following CFSMs

0H

1 2 3 4 5

6

7 8 9 10 11

τ

τ

HA!m τ HC!y τ H
B!m

HB!m τ HC!x τ H
A!m

0K

1 2

3

4 5

D
K

?m
DK?x D

K?m

E
K?m

EK?y E
K

?m

EK?z

The above H and K are compatible. Apart for τ actions preceding them, H can only perform output
actions, whereas K can only perform input actions. By disregarding the names of the receivers in the
actions of H, and of the senders in those of K, any output action after its corresponding τ can find a
matching input in K. The vice versa does not hold, since none of the possible output actions that can
occur after a τ from 0 (i.e. the outputs from 1 and 7 in H) can actually match the input action EK?z from
0 in K. Such a possibility is in fact allowed by our definition of compatibility. �

Definition 3.5 transfers the notion of compatibility given in [4] for processes in multiparty sessions.
Also, Definition 3.5 differs from the notions of compatibility in [5] and in [2, 3] which are defined as
bisimulations and do not involve τ-transitions.

Definition 3.7. An A-local CFSM M is:

1. ?-deterministic if p XA?m−−−−→ q and p YA?m−−−−→ r ∈M implies q = r;

2. !-deterministic if p τ−→ AX!m−−−→ q and p τ−→ AY!m−−−→ r ∈M implies q = r;

3. ?!-deterministic if it is both ?-deterministic and !-deterministic;

A non-terminal state q∈M is asymmetric sending (resp. receiving) if all its outgoing transitions have
τ (resp. receiving) labels; q is a asymmetric mixed state if it is neither asymmetric sending nor receiving.

Example 3.8. Machine H and K in Example 3.6 are, respectively non !-deterministic and non ?-deterministic.
In particular, conditions (2) and (1) of Definition 3.7 fail for, respectively, state 0 of H and state 0 of K.

We require a stronger condition then compatibity for two systems to be composable.

Definition 3.9 ((H,K)-composability). Two systems S1 and S2 with disjoint domains are (H,K)-composable
if H ∈ dom(S1) and K ∈ dom(S2) are two compatible ?!-deterministic machines with no asymmetric
mixed states.

4 Composition Related Issues

It is known that under symmetric synchronisation composition spoils deadlock-freedom; this is shown
by the example below, borrowed from [5].

Example 4.1 (Deadlock-freedom preservation fails under symmetric synchronisation). Take the follow-
ing systems

S1 =

0A

1

A
H

!m

0H

1

A
H

?m

A
H

?x

and S2 =

0K

1

K
B

!m

K
B

!x

0B

1

K
B

?x
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Clearly, S1 and S2 are (H,K)-composable and deadlock-free, yet their composition S = S1H↔K S2 has
a deadlock. In fact, when the gateway for K receives m, it tries to synchronise with participant B on
message m while B is waiting only for x. For S2 in isolation, this is not a deadlock, since B and K
synchronise on x under the symmetric semantics. �

Notice that the counterexample of Example 4.1 does not apply in an asynchronous setting. Indeed,
the second system could deadlock due to the fact that K could send m without synchronising with B.
Likewise, the counterexample of Example 4.1 does not apply in our asymmetric setting. Even if commu-
nication is still synchronous, the τ-transitions introduced to resolve internal choices (i.e., those prefixing
outputs) allow S2 to reach a deadlock configuration by choosing the τ-transition leading to the output
KB!m.

Now, one may think that analogously to what happens in [2, 3], if two systems are (H,K)-composable
and deadlock-free then their composition is deadlock-free too.

In Section 5 we shall prove that in our setting lock-freedom is preserved by composition, without
any further condition beside (H,K)-composability. Before doing that, we give examples showing the
necessity of our conditions for deadlock freedom preservation.

Let us begin with compatibility. Properties cannot be preserved under composition without compat-
ibility, as shown in the next example.

Example 4.2 (Lack of compatibility spoils deadlock freedom preservation). Let us consider the following
communicating systems.

S1 =
0A 1

HA?x

0H 1 2
τ HA!x

and S2 =
0K 1

CK?y

0C 1 2
τ CK!y

These systems are trivially deadlock free. However, H and K are not compatible, since there is no
corresponding input in K for the output from H. The composition of S1 and S2 via H and K yields

0A 1
HA?x

0gw(S2(K),H) 2 3 1
CK?y τ KH!y

0gw(S1(H),K) 3 1 2
KH?x τ HA!x

0C 1 2
τ CK!y

Starting from the initial configuration of S1H↔KS2, the following transitions are possible in JS1H↔KS2K

(0A,0H,0K,0C)
τ−→ (0A,0H,0K,1C)

C−→K : y−−−−−→ (0A,0H,2K,2C)
τ−→ (0A,0H,3K,2C) 6−→

where (0A,0H,3K,2C) is a deadlock configuration for JS1H↔KS2K since K wishes to send y to H, which
is instead waiting for message x. �

The following example casts in our setting an example given in [3] for the asynchronous seman-
tics; this example illustrates that asymmetric mixed states must be avoided to preserve properties under
composition.
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Example 4.3 (Asymmetric mixed-states spoil deadlock freedom preservation). Let S1 and S2 be

S1 =

0A 1
HA?x

0B 1 2
τ BH!y

0H

1 2

3

4 5

τ
HA!x

B
H?y

B
H?y

τ H
A!x

S2 =

0C 1
KC?y

0D 1 2
τ KD!x

0K

1 2

3

4 5

D
K

?x
τ

τ

K
C!y

KC!y D
K

?x

Notice that the initial states are asymmetric mixed and that H and K are compatible. The gateways we
obtain are

0gw(S1(H),K)

6

9 10

1 2 7 8

3

4 11 5

K
H

?x

HA!x

B
H?y

BH?y

τKH?x H
A!x

τ τ

τ

H
K!y

HK!y

0gw(S2(K),H)

6

9

7 1 8 2

3

4 5 10 11

D
K

?x

H
K?y

τ KH!x HK?y τ

τ

K
C!y

KC!y DK?x

τ

K
H

!x

The composed system S1H↔KS2 deadlocks when gw(S1(H),K) receives from B while gw(S2(K),H) re-
ceives from D since both gateways reach an output state (respectively states 10 and 7). �

The following examples show that, as asymmetric mixed states, !?-nondeterminism is problematic
too. Let us first take two deadlock free systems.
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Example 4.4. The two systems

S1 =

0

A

1

H
A

?m

0

B

1

H
B

?m

0

C

1

H
C

?x H
C

?y

0

H

1

2

3

4

5

6

7

8

9

10

11

ττ

H
A

!m
τ

H
C

!y
τ

H
B!m

H
B

!m
τ

H
C

!x
τ

H
A!m

and S2 =

0

K

1

2

3

4

5

D
K?m

D
K

?x

D
K

?m

E
K

?m

E
K

?y

E
K?m

E
K

?z

0E

0 D

1

2

3

4

5

6

τ
D
K

!m

τ
D
K

!x

τ
D
K

!m

are deadlock free.
The deadlock freedom of S1 follows from the fact that, from its initial configuration (0A,0B,0C,0H),

S1 can only branch over the two τ-transitions of H reaching either of the following configurations

(0A,0B,0C,7H) or (0A,0B,0C,1H)

From the former (resp. latter) configuration S1 can only reach configurations where H synchronises with
C and then with A (resp. B). In either case S1 reaches the terminal configuration (1A,1B,1C,6H).

Let us now have a look at S2. Firstly note that E cannot synchronise since it is already terminated;
hence, the only possible transitions of S2 must involve K and D only. We therefore have that

(0K,0D,0E)
τ−→ (0K,1D,0E)

D−→K : m−−−−−−→ (1K,2D,0E)
τ−→ (1K,3D,0E)

D−→K : x−−−−−→ (2K,4D,0E)
τ−→ (2K,5D,0E)

D−→K : m−−−−−−→ (3K,6D,0E)

is the only possible execution from the initial configuration (0K,0D,0E) of S2, leading to the terminal
configuration (3K,6D,0E).

�
The next example shows that the compositions of the systems S1 and S2 in Example 4.4 can deadlock.

Example 4.5 (?!-determinism is necessary). The CFSMs H and K in Example 4.4 are compatible as seen
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in Example 3.6. Hence, we can build the composed system S1H↔KS2 through the gateways

0gw(MH,K)

12

13 1 2 15 3 4 17 5

6

7 8 14 9 10 16 11

K
H?m

K
H

?m

τ

τ HA!m KH?y τ HC!y KH?m τ H
B!m

HB!m KH?x τ HC!x KH?m τ H
A!m

and

0gw(MK,H)

8 9 1 14 15 2 16 17

6 7 4 10 11 5 12 13

318 19

D
K

?m
KH!m K

H!m

E
K?m

KH!m

EK?m

EK?y

τ

τ

τ

DK?x

τ K
H

!m

KH!y

τ KH!x DK?m τ

EK?z τ KH!z

Now, from the initial configuration s0 = (0A,0B,0C,0gw(MH,K),0gw(MK,H),0D,0E) of S1H↔K S2 we have
the following run

s0
τ−→ (0A,0B,0C,0gw(MH,K),0gw(MK,H),1D,0E)

D−→K : m−−−−−−→ τ−→ (0A,0B,0C,0gw(MH,K),9gw(MK,H),2D,0E)
K−→H : m−−−−−−→ τ−→ (0A,0B,0C,13gw(MH,K),1gw(MK,H),3D,0E) (8)

D−→K : x−−−−−→ (0A,0B,0C,13gw(MH,K),14gw(MK,H),4D,0E)
τ−→ τ−→ τ−→ (0A,0B,0C,1gw(MH,K),15gw(MK,H),5D,0E)
H−→A : m−−−−−−→ (1A,0B,0C,2gw(MH,K),15gw(MK,H),5D,0E) (9)

where the τ-transition of D enables the synchronisation of gw(MK,H) and D with label D−→K : m that
leads the gateway in state 9 after its τ-transition from state 8. Now, the two gateways can communicate
and exchange message m. Due to ?!-nondeterminism of S1, from state 0 gw(MH,K) can move either to
state 12 or to state 13. Fatally, transition (8) leads to a deadlock: after gw(MK,H) and D synchronise
to exchange message x the system goes into a configuration from where gw(MH,K) forwards m to A
and reaches the last configuration (9). This is a deadlock for S1H↔K S2, since none of the CFSMs can
do a τ-transitions, the only enabled output action is from gw(MK,H) which tries to send message x to
gw(MH,K); however, gw(MH,K) can only receive message y from K and hence these actions cannot
synchronise. �

5 Preserving Properties by Composition

Composition via gateways does not ensure the preservation of communication properties. We provide
below sufficient conditions for this to happen. Recall that (H,K)-composability requires absence of
asymmetric mixed states and ?!-determinism.

Theorem 5.1 (Deadlock freedom preservation). Let S1 and S2 be two (H,K)-composable and deadlock-
free systems. Then the composed system S1H↔KS2 is deadlock-free.
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Proof sketch. The proof relies on the fact that the reachable configurations of S1H↔KS2 can be projected
on reachable configurations of S1 and S2. This implies that a deadlock in S1H↔K S2 corresponds to a
deadlock in S1 or in S2. See the appendix for the detailed proof.

Example 5.2. We can infer deadlock-freedom of the system S = S1H↔KS2 of Example 3.4 by the result
above, since S1 and S1 are (H,K)-composable and deadlock-free.

Somehow surprisingly, in the symmetric case preservation of deadlock freedom requires stricter con-
ditions on gateways than in the asymmetric case. In fact, in the asymmetric case, deadlock freedom
preservation requires only absence of asymmetric mixed states and ?!-determinism while the symmetric
case requires the (stronger) condition of sequentiality.

Definition 5.3 (Sequential CFSM). A CFSM is sequential if each of its states has at most one outgoing
transition. A participant A of a system S is sequential if S(A) is so.

As we will see (cf. Theorem 5.5), sequentiality is necessary to preserve lock-freedom also in
the asymmetric case. We note that sequentiality implies absence of asymmetric mixed states and ?!-
determinism, while the converse does not hold.

As mentioned before, the property of lock freedom is not preserved in general by composition, as
shown by the following example.

Example 5.4 (Composability does not preserve lock-freedom). Take the communicating systems

S1 = 0A 1

τ

AH!m

0H 1

AH?m

AH?x

and S2 =

0

K

1 2

3

τ τ

K
C

!x

K
C!m

0B 1
CB?stop

0C

1

2

3
KC?m

K
C?x

τC
B!stop

Note that both S1 and S2 are lock-free and that H and K are compatible. The gateways are

0gw(MH,K)

1

2

3

4

5

A
H?m

A
H

?x
τ

τ

HK!x

HK!m and 0gw(MK,H)

5

4

1

2 3

H
K?m

H
K

?x

τ

τ KB!x

KC!m

Hence, the composed system S1H↔KS2 is non lock-free because e.g. the configuration

s = (0A,0gw(MH,K),0gw(MK,H),0B,0C)

is a lock for B, since the only outgoing transition from 0B could be fired only in case the transition
CB!stop is enabled. However, this is impossible since gw(MH,K) forwards only message m; hence, the
run (which does not involve B)

s τ−→ A−→H : m−−−−−−→ (0A,2gw(MH,K),0gw(MK,H),0B,0C)
τ−→ A−→H : m−−−−−−→ s · · ·

is perpetually executed. �
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We show that the problem of Example 5.4 cannot happen in case we restrict to sequential gateways,
as done for deadlock freedom in the symmetric case (cf. [5]). As usual, f |X denotes the restriction of a
function f on a subset X of its domain.

Theorem 5.5 (Lock-freedom preservation). Let S1 and S2 be two (H,K)-composable and lock-free sys-
tems with H and K sequential. Then the composed system S1H↔KS2 is lock-free.

Proof sketch. The proof goes as the one of Theorem 5.1 noticing that we have to reconstruct “backward”
the sequence of interactions. This exploits sequentiality and lock-freedom of S1 and S2 in order to
guarantee the reconstruction when we “cross” the two composed systems through the gateways.

We turn now our attention to strong lock-freedom. In this case, as for deadlock freedom, (H,K)-
composability suffices for preservation by composition; we shall see that this is not the case for lock
freedom preservation.

Theorem 5.6 (Strong lock freedom preservation). Let S1 and S2 be two (H,K)-composable and strongly
lock free systems. Then the composed system S1H↔KS2 is strongly lock free.

Proof sketch. The proof is similar to the one of Theorem 5.5 but for the use of strong lock freedom of S1
and S2 instead of their deadlock freedom.

6 Conclusions and Future Work

We introduce an asymmetric synchronous semantics of communicating systems which breaks the sym-
metry between senders and receivers. In fact, our semantics decouples communication from choice
resolution as in standard semantics of communicating systems (and other models). We then adapted the
gateway composition mechanism defined in [2, 3] to our asymmetric semantics and gave conditions for
the preservation of some communication properties under this notion of composition.

An approach related to ours is the framework of [8, 9] based on contract automata where transitions
express “requests” and “offers” among participants. The composition mechanism is based on “trimming”
a product of contract automata according to relevant agreement properties. This yields controllers that
preserve deadlocks. Contract automata do not consider asymmetric synchronous semantics. Our com-
position mechanism does not introduce orchestrators which, under some conditions, can be avoided also
for contract automata [8, 9].

Modular approaches to the development of concurrent systems can be exploited even for systems
designed using formalisms intrinsically dealing with closed systems. Indeed, given two systems, any
two components – one per system – exhibiting compatible behaviours can be replaced by two coupled
forwarders (gateways) connecting the systems, as investigated initially in [2, 3] for an asynchronous in-
teraction model. The investigation on the composition-by-gateways technique was shifted in [5] towards
synchronous symmetric interactions. In the present paper we pushed a step forward such an investigation,
by considering asymmetric synchronous interactions. Interestingly, deadlock freedom preservation in the
synchronous asymmetric case we consider does not require sequentiality of gateways, like in the asyn-
chronous case, and differently from the synchronous symmetric case. Notably, sequentiality is needed
here for lock-freedom preservation, but not for strong-lock freedom preservation.

While the path of investigation above is quite homogeneous, the different analyses present some
methodological differences. For instance, [5] considers also another form of composition, where one
single gateway (interacting with both the composed systems) is used. On the other side, [5] focused only
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on deadlocks, disregarding other properties we consider. A first item of future research consist in filling
the bits missing due to the mismatches above.

A more challenging direction for future work is looking for refined composition mechanisms in order
to get preservation of relevant properties under weaker conditions.
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[12] G. Cécé and A. Finkel. Verification of programs with half-duplex communication. I&C, 202(2):166–190,

2005.
[13] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for structured

communication-based programming. In ESOP, volume 1381 of LNCS, pages 22–138. Springer, 1998.
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A Proofs for Section 3 (Composition via Gateways)

Given a configuration of the composition of systems S1 and S2 we can retrieve the configurations of the
two subsystems by taking only the states of participants in S1 and S2 while avoiding, for the gateways, to
take the fresh states introduced by the gateway construction. Indeed, we shall prove in Proposition B.3
that for each s ∈R(JSK), we have Hcs ∈R(JS1K) and sbK∈R(JS2K).
Definition A.1 (Configuration projections). Let s be a configuration of a composed system S1H↔KS2 and
M = gw(S1(H),K). The left-projection of s on S1 is the map Hcs defined on dom(S1) by

Hcs : A 7→





q, if s(A) 6∈ S1(A) and there is q KH?m−−−−→ s(A) ∈M or q KH?m−−−−→ τ−→ s(A) ∈M

r, if s(A) 6∈ S1(A) and there is s(A) HK!m−−−→ r ∈M or s(A) τ−→ HK!m−−−→ r ∈M
s(A), otherwise

The definition of right-projection sbK is analogous.
Proposition A.2. Left- and right-projections are well-defined.

Proof. It is enough to show that Hc· and ·bK uniquely assign a state to fresh states because on non-fresh
stats both functions act as the identify map. This follows since, by construction, each state introduced by
our gateway construction has unique successor and predecessor.

Intuitively, only H is aware of an input from K when H is in the internal state reached after an input
from K; hence to have a coherent configuration we take the state of H before the input. If instead H is
in an internal state corresponding to an output to K, then other participants in S1 know that the message
has been sent; hence to have a coherent configuration we take the state of H after the send. (A similar
intuition applies to sbK.)
Example A.3. Let s= (2A,0B,1H,5K,0C,0D,0E); and S= S1H↔KS2 be the system of Example 3.4. Then,
s ∈R(JSK), namely s is reachable in S. In fact

s0 = (0A,0B,0H,0K,0C,0D,0E)
τ−→ (1A,0B,0H,0K,0C,0D,0E)

A−→H : m−−−−−−→ (2A,0B,2H,0K,0C,0D,0E)
τ−→ (2A,0B,4H,0K,0C,0D,0E)

H−→K : m−−−−−−→ (2A,0B,1H,5K,0C,0D,0E)

The projections of s on, respectively, S1 and S2 are Hcs = (2A,0B,1H) and sbK= (0K,0C,0D,0E). �

B Proofs for Section 4 (Composition Related Issues)

Let M be an H-local CFSM and K ∈P \ {H} be a participant not occurring in M. Function nof maps
the states of gw(M,K) to the states of M as follows:

nofH,K(M,q) =





p, if p λ−→ q ∈ gw(M,K) and λ input label with K 6∈ ptp(λ )

p, if p λ−→ p′ τ−→ q ∈ gw(M,K) and λ input label with K ∈ ptp(λ )

r, if q λ−→ r ∈ gw(M,K) and λ output label with K 6∈ ptp(λ )

r, if q τ−→ q′ λ−→ r ∈ gw(M,K) and λ output label with K ∈ ptp(λ )
q, if q is a state of M
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Note that the first four clause imply that q is a fresh state of gw(M,K).
Lemma B.1. Function nof is well-defined.

Proof. Let M be an H-local CFSM and K ∈P \ {H}. We have to check only internal states as the
restriction of nof to the states of M is the identity by definition. If q is an internal state of gw(M,K),

by definition of gw(M,K), there is a unique q′ such that either q′ AH?m−−−−→ q ∈ gw(M,K) or q HA!m−−−→ q′ ∈
gw(M,K).

Example B.2. For S1H↔KS2 of Example 3.4, nofH,K(S1(H),0) = 0 and nofK,H(S2(K),2) = 0. �
Function nof is similar to configuration projection when considering CFSMs in isolation, with a

main difference: when e.g., gw(M,K) in state q receives from a partner in its own system going to some
fresh state p′ with a τ-transition to p′′, nof maps both p′ and p′′ to p (unlike configuration projection Hc
which maps q to the successor of p′′). This represents the fact that the other system, and K in particular,
are oblivious of the transition. In fact, function nof is designed to establish a correspondence with the
other system as shown by the next proposition.
Proposition B.3. Let S= S1H↔KS2 be the composition of two (H,K)-composable systems S1 and S2. If
s ∈R(JSK) then Hcs ∈R(JS1K), sbK∈R(JS2K), and nofH,K(S1(H),s(H))�nofK,H(S2(K),s(K)).

Proof. Let s0 be the initial configuration of S and

s0
λ 1−→ s1 · · ·sn−1

λ n−→ sn = s (10)

a run reaching s from s0. We proceed by induction on n.
If n = 0 the thesis is immediate by observing that
• Hcs ∈R(JS1K) and sbK∈R(JS2K) because left- and right-projections are the initial configurations

of S1 and S2 respectively, and

• nofH,K(S1(H),s(H)) and nofK,H(S2(K),s(K)) are the initial states of S1(H) and S2(K) respectively
which are compatible by hypothesis.

Let n > 0 and assume that the statement holds for all configurations reachable from s0 in less the n
transitions. We have that either none of H and K are involved in λ n or that at least one of them is. In the
former case, without loss of generality, assume that the interacting participants, say A and B are both
in S1. Then, by construction (cf. Definition A.1), sbK= sn−1bK and by inductive hypothesis sn−1bK∈
R(JS2K). Moreover, Hcs equals Hcsn−1 but for the local states of A and B; hence Hcsn−1 ∈R(JS1K) by
the semantics of communicating systems (cf. Definition 2.3). Also,

nofH,K(S1(H),s(H)) = (Hcs)(H) = (Hcsn−1)(H)�(sn−1bK)(K) = (sbK)(K) = nofK,H(S2(K),s(K))

because the equalities above hold by the definition of asymmetric synchronisation (cf. Definition 2.3)
and the compatibility relation holds by the inductive hypothesis. So, let us assume that at least one
between H and K is involved in the last transition reaching s and proceed by case analysis on λ n.

λ n = τ We consider only the case where H is involved since the case where K is involved is symmetric.
By our gateway construction (cf. Definition 3.1) only one of the following two cases are possible
for the transitions in gw(S1(H),K):

p KH?m−−−−→ sn−1(H)
τ−→ q HA!m−−−→ r (11)

q AH?m−−−−→ sn−1(H)
τ−→ p HK!m−−−→ r (12)
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for some participant A of S1 and states p, q, r of gw(S1(H),K). Cases (11) and (12) respectively
correspond to have the transitions

p τ−→ q HA!m−−−→ r and q AH?m−−−−→ r

in the machine S1(H).
In case (11) the last transition in the run (10) must therefore be preceded by a transition, say
the i-th one, where the machines gw(S1(H),K) and gw(S2(K),H) have exchanged message m.

Hence, we have that gw(S2(K),H) has a transition si(K)
KH!m−−−→ si+1(K) with sn−1(H)�si+1(K)

since (by inductive hypothesis) si(H) = p = nofH,K(S1(H),si(H))�nofK,H(S2(K),si(K)) and both
gateways are ?!-deterministic. We now observe that either s(K) = si+1(K) or it is a fresh state that
gw(S2(K),H) reaches after having received a message from a participant of S2 (possibly followed
by a τ transition) between the i-th and the last interactions in (10). We have that Hcs= Hcsn−1[H 7→
p], hence Hcs ∈R(JS1K) by inductive hypothesis; also, sbK∈R(JS2K) by the inductive hypothesis
since sbK= sn−1bK because K is not involved in λ n. Finally, in both cases the last part of the thesis
immediately follows by observing that nofK,H(S2(K),s(K)) = nofK,H(S2(K),si(K)) by definition
and nofH,K(S1(H),s(H)) = p.
In case (12), firstly note that by construction A 6=H (cf. Definition 2.3). Then gw(S1(H),K) has the

transition sn−1(H)
AH?m−−−−→ s(H) which corresponds to an input transition sn−1(H)

AH?m−−−−→ r where
r =Hcs(H) = nofH,K(S1(H),sn−1(H)) = nofH,K(S1(H),s(H)) in S1(H). Hence, the thesis follows
since sbK= sn−1bK because K is not involved in λ n and nofH,K(S1(H),s(H))�nofK,H(S2(K),s(K))=
nofK,H(S2(K),sn−1(K)) by inductive hypothesis.

λ n = H−→X : m By construction, either X = K or X 6= H is a participant of S1. In the former case,

gw(S1(H),K) has the transition sn−1(H)
HK!m−−−→ s(H) which corresponds to an input transition

while gw(S2(K),H) has the transition sn−1(K)
HK?m−−−−→ s(K) which corresponds to a sequence of

transitions p τ−→ KB!m−−−→ s(K) in S2(K) for some participant B 6=K in S2. Then the thesis follows by
the fact that Hcs= Hcsn−1[H 7→ s(H)] and sbK= sn−1bK[K 7→ p] by construction (cf. Definition A.1)
and that, by inductive hypothesis, nofH,K(S1(H),sn−1(H)) = q�s(K) = nofK,H(S2(K),sn−1(K))
and therefore, by ?!-determinism and the compatibility relation s(H)�s(K).
Suppose now that X is a participant of S1; note that by construction X 6= H (cf. Definition 2.3).
Since sbK= sn−1bK, the inductive hypothesis immediately entails that sbK∈R(JS2K).
We first show the reachability of left- and right-projections. The transition sn−1(H)

HX!m−−−→ s(H) is

in gw(S1(H),K) by construction and it corresponds to a pair of transitions p τ−→ sn−1(H)
HX!m−−−→

s(H) in S1(H). We have that Hcsn−1 ∈R(JS1K) (by inductive hypothesis) and since Hcsn−1(H) = p

(by Definition A.1) we have Hcsn−1
τ−→ H−→X : m−−−−−−→ Hcs (by Definition 2.3).

We now show the compatibility condition. The last transition in the run (10) must be preceded by
a transition, say the i-th one, where the machines gw(S1(H),K) and gw(S2(K),H) have exchanged

message m. Hence, we have that gw(S2(K),H) has a transition si(K)
KH!m−−−→ si+1(K) with

nofH,K(S1(H),sn−1(H)) = s(H) = nofH,K(S1(H),s(H)) (13)

which hold by definition of nof(, ). We now observe that either s(K) = si+1(K) or it is a fresh
state that gw(S2(K),H) reaches after having received a message from a participant of S2 (possibly
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followed by a τ transition) between the i-th and the last interactions in (10). In both cases the
nofK,H(S2(K),s(K)) = nofK,H(S2(K),sn−1(K)) and, by inductive hypothesis,

nofK,H(S2(K),sn−1(K))�nofH,K(S1(H),sn−1(H))

hence, by equalities (13), nofH,K(S1(H),s(H))�nofK,H(S2(K),s(K)).

λ n = X−→H : m The case X = K is symmetric to the previous case with λ n = H−→K : m and therefore
omitted. So, assume that X is a participant of S1; note that by construction X 6= H (cf. Defini-
tion 2.3). Then gw(S1(H),K) has the transition sn−1(H)

XH?m−−−−→ s(H) which corresponds to an

input transition sn−1(H)
XH?m−−−−→ r. We have that Hcsn−1 ∈ RS[JS1K] by inductive hypothesis, and

so is Hcsn−1
X−→H : m−−−−−−→ Hcs since, by definition of left-projection, Hcs(H) = r. The reachability of

the right-projection of s immediately follows by inductive hypothesis, since sbK= sn−1bK.
We now show the compatibility condition. By definition, we have that nofH,K(S1(H),s(H)) =
nofH,K(S1(H),sn−1(H)). Moreover, we necessarily have that s(K) = sn−1(K). Hence by inductive
hypothesis,

nofH,K(S1(H),s(H)) = nofH,K(S1(H),sn−1(H))�nofK,H(S2(K),sn−1(K)) = nofK,H(S2(K),s(K))

The cases λ n = X−→K : m and λ n = K−→X : m are similar to the last two cases above.

C Proofs for Section 5 (Preserving Properties by Composition)

Theorem 5.1 (Deadlock freedom preservation). Let S1 and S2 be two (H,K)-composable and deadlock-
free systems. Then the composed system S1H↔KS2 is deadlock-free.

Given an H-local CFSM M and a participant K ∈P \ {H}, call connecting a fresh asymmetric
sending state of gw(M,K) whose next outgoing transition does not have K as receiver.

Proof. We show that if the composed system S1H↔KS2 reaches a deadlock configuration s then at least
one of Hcs and sbK is a deadlock. Without loss of generality, we assume that the deadlock is the left-
projection; the case where the deadlock is the right-projection is similar.

First, we show that if a participant A from S1 has an enabled transition in s then some participant in
S1 has a transition enabled in Hcs. Note that Hcs is reachable in S1 by Proposition B.3.

If A 6= H then any transition of A enabled in s is also enabled in Hcs since Hcs(A) = s(A) by Defini-
tion A.1. If A= H, then either of the following cases occurs

• H has enabled an input
Assume that the input is from K. Then by construction Hcs(H) has a τ-transition enabled in S1(H).
If the input of H is from a participant A of S1 then by construction Hcs(H) has an input transition
enabled in S1(H).

• H has enabled an output.
Assume that the receiver of such output is K. Then nofH,K(S1(H),s(H))�nofK,H(S2(K),s(K)) by
Proposition B.3. By definition of nof and of gateway, nofH,K(S1(H),s(H)) has an input transition
enabled from a participant in S1, hence nofK,H(S2(K),s(K)) has a corresponding output transition
enable towards a participant in S2 by compatibility. By construction (Definition A.1), sbK(K) =
nofK,H(S2(K),s(K)), hence there is a participant, in particular K, willing to take a transition.



22 On Composing Communicating Systems

If the receiver of the output from H is a participant of S1 then, by definition of gateway and
configuration projection, we get that in H is willing to perform an output from Hcs(H) in S1.

• H can perform a τ-transition.

Then, there is a sequence of transitions of the form s(H) τ−→ HX!m−−−→ in S(H) with X= K or X 6= H
participant of S1. If the former case we can reason as in the previous case when H outputs to K.
Otherwise, Hcs(H) has an enabled τ-transition in S1(H) by Definition A.1.

If s is a deadlock, by definition of deadlock freedom (cf. Definition 2.5), s 6−→ but there are participants
in S with enabled transitions in s. Under the assumption that sbK is deadlock-free, such participants must

belong to S1. By the cases shown above, Hcs enables some participants in S1; therefore, there is Hcs λ−→
because S1 is deadlock free by hypothesis. It must be that H is involved in all transitions from Hcs of S1

otherwise s λ−→ since for all X ∈ ptp(λ ) s(X) =Hcs(X) (by Definition A.1) contrary to our assumption
that s is a deadlock. We proceed by case analysis on λ .
λ = H−→X : m If X 6= K then Hcs(X) = s(X) HA?m−−−−→ ; also, H would be in a connecting state and, by

Definition A.1, Hcs(H) = s(H) HA!m−−−→ . Hence s λ−→ contrary to the hypothesis that s is a deadlock
configuration.

If X= K then we have again a contradiction since s λ−→ by Proposition B.3.

λ = X−→H : m If X 6=K then Hcs(X) = s(X) AH!m−−−→ and Hcs(X) AH?m−−−−→= s(H) Hence s λ−→ contrary to
the hypothesis that s is a deadlock configuration.

If X= K then we have again a contradiction since s λ−→ by Proposition B.3.
λ = τ If s(H) = p′′ is fresh then gw(S1(H),K) must have a sequence of transitions

p AH?m−−−−→ p′ τ−→ p′′ HK!m−−−→ r (14)

with A participant of S1 and p′ fresh. (Note that it cannot be s(H) = p′ otherwise s(H) τ−→ contradicting

s 6−→ .) By Definition A.1, Hcs(H) = r. Hence, by Proposition B.3 we have s H−→K : m−−−−−−→ contradicting
s 6−→ .

If s(H) is not fresh then H has a τ transition enabled at s (because s(H) =Hcs(H) by Definition A.1)
again contradicting s 6−→ .

Lemma C.1. Let S = S1H↔K S2 where S1 and S2 are two (H,K)-composable systems with H and K
sequential. Given s ∈R(JSK), if

(1) either Hcs λ−→ s′ in S1 and λ = τ =⇒ Hcs(H) = s′(H)

(2) or Hcs τ−→ ŝ involving H in S1(H) and ŝ reaching a configuration ŝ′ such that ŝ′ λ−→ s′ in S1 with
λ = H−→A : m

then there is a run s λ 1−→ ·· · λ n−→ ŝ in S such that λ n = λ and Hcŝ = s′.
The same holds for the right-projection of S.

Proof. We give the proof for each case.
Case (1) By case analysis on λ noticing that the case λ = H−→A : m is not possible since Hcs cannot

enable output transitions from H by construction (cf. Definition A.1).

λ = τ . Then the τ-transition is executed by A 6= H in S1; hence there is a transition Hcs(A) τ−→ q in
S1(A). Observing that s(A) =Hcs(A) by Definition A.1 we have the thesis since s τ−→ s[A 7→ q].
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λ = A−→H : m. We have

Hcs(H) AH?m−−−−→ p in S1(H) and Hcs(A) AH!m−−−→ q in S1(A)

moreover, s(H) =Hcs(H) and s(A) =Hcs(A). Hence,

s A−→H : m−−−−−−→ s′′ with s′′(X) =





p, if X= H

q, if X= A

s(X), otherwise

by Definition 2.3. Therefore Hcs′′ = s′.

Case (2) Note that S1(H) necessarily contains the transitions Hcs(H) τ−→ ŝ′(H) HA!m−−−→ r. Then, by
construction, in gw(S1(H),K) we have

Hcs(H) KH?m−−−−→ p τ−→ ŝ′(H) HA!m−−−→ r (15)

note that p and ŝ′(H) are fresh, that these are the only transitions from Hcs(H) to r by sequentiality, and
that s(H) ∈ {Hcs(H), p, ŝ′(H) by construction (cf. Definition A.1). If s(H) =Hcs(H) then, by Propo-

sition B.3, we have s K−→H : m−−−−−−→ τ−→ s′′ with s′′(H) = ŝ′(H). Hence Hcs′′ = Hcs[H 7→ r] and therefore

s′′ H−→A : m−−−−−−→ s′′[H 7→ r,A 7→ s′(A)] = s′′′ which yields the thesis noticing that Hcs′′′ = s′. If s(H) = p then
s τ−→ s′′ with s′′(H) = ŝ′(H); hence the thesis follows as in the previous case. Finally, if s(H) = ŝ′(H) then

s H−→A : m−−−−−−→ s′′ with s′′ = s[H 7→ r,A 7→ s′(A)] and therefore Hcs′′ = s′.

Theorem 5.5 (Lock-freedom preservation). Let S1 and S2 be two (H,K)-composable and lock-free sys-
tems with H and K sequential. Then the composed system S1H↔KS2 is lock-free.

Proof. By contradiction, let us assume S = S1H↔KS2 not to be lock-free. Then there is a configuration
s ∈R(JSK) and a participant X not involved in any run from s. Without any loss of generality, we can
assume X ∈ S1. We have Hcs ∈R(JS1K) by Proposition B.3 and, by lock-freedom of S1, Hcs cannot be

a lock of S1 for X. Hence, there exists a run Hcs λ 0−→ s0 · · ·sn−1
λ n−→ sn of S1 with X involved in λ n. We

show that this induces a run from s in S involving X by induction on n.

• If n = 0, by Lemma C.1 there is a run s
ψ−→ λ−→ s′ such that Hcs′ = s0 with λ 0 = λ .

• If n > 0, we assume that the statement holds for all runs with less than n transitions. If X is
involved in λ i with 0 ≤ i < n then the thesis follows by inductive hypothesis. Let us therefore
assume that X is involved in λ n only. By repeated application of Lemma C.1, there is a run

s
ψ1·λ ′1−−−→ s′1 · · ·

ψn−1·λ ′n−1−−−−−−→ s′n−1
ψn·λ ′n−−−→ s′n in S such that λ ′i = λ i and Hcs′i = si for each 1≤ i≤ n.

In both cases s reaches a configuration with a run involving X, which contradicts our assumption.

Theorem 5.6 (Strong lock freedom preservation). Let S1 and S2 be two (H,K)-composable and strongly
lock free systems. Then the composed system S1H↔KS2 is strongly lock free.

Proof. By contradiction, let us assume S1H↔KS2 not to be strongly lock free. This means that there are
a reachable configuration s, a participant X, and a maximal run ψ of S1H↔KS2 such that s

ψ−→ and X is
not involved in any of those transitions. By the first part of the proof of Theorem 5.1, there exist two run

Hcs
ψ1−→ and sbK

ψ2−→ of S1 and S2 respectively such that X is involve neither in ψ1 nor in ψ2.
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• In case ψ is infinite, we get that either ψ1 or ψ2 is infinite, and hence maximal.

• In case ψ is finite it is possible to use the second part of the proof of Theorem 5.1 to show that
either ψ1 or ψ2 is maximal,

In both cases we get a contradiction of the hypothesis that S1 and S2 are strong lock free.
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In prior work, Cimini has presented LANG-N-SEND, a π-calculus with language definitions.
In this paper, we present an extension of this calculus called LANG-N-SEND+m. First, we revise

LANG-N-SEND to work with transition system specifications rather than its language specifications.
This revision allows the use of negative premises in deduction rules. Next, we extend LANG-N-SEND
with monitors and with the ability of sending and receiving regular expressions, which then can be
used in the context of larger regular expressions to monitor the executions of programs.

We present a reduction semantics for LANG-N-SEND+m, and we offer examples that demonstrate
the scenarios that our calculus captures.

1 Introduction

As the field of software language engineering advances [14], it is increasingly easier for programmers to
quickly define and deploy their own programming languages. Cimini has presented in [13] a π-calculus
called LANG-N-SEND that accommodates “language-oriented” concurrent scenarios. LANG-N-SEND

can define languages with a syntax for structural operational semantics (SOS), and use these languages
to execute programs. Processes can also send and receive fragments of operational semantics through
channels. LANG-N-SEND enables scenarios that are not typical, in which servers provide language
fragments to clients. Clients then can add them to their language, and execute programs with the newly
built language. For example, [13] uses LANG-N-SEND to model the scenario in which a server provides
the fragment of operational semantics that defines the disrupt operator [6]. A process first establishes
whether the program that it is about to execute is safety-critical or not. If it is, the process receives the
disrupt operator semantics from the server and adds it to Basic Process Algebra (BPA) [9]. The process
then uses this augmented BPA to execute the program in the context of the disrupt operator.

The crux of LANG-N-SEND consists of two operators: Program executions (L , trace)>x program
and isInTrace, used as follows:

(L , trace)>x program ‖ x(trace).isInTrace(a, trace)⇒ P ; Q

where L is a language definition and x is a channel. (L , trace)>x program uses the operational
semantics of L to prove a transition from program. The evaluation of program proceeds this way one
step at a time. Each transition is labelled, and LANG-N-SEND accumulates the execution trace in trace.
When program terminates, the final trace is sent over the channel x. The process on the right of the
parallel operator receives the trace, and analyzes it with isInTrace(a, trace)⇒ P ; Q. This process
checks that the label a is one of the labels in trace, and continues as P in such a case. Otherwise, it
continues as Q.
∗We have addressed a part of our reviewers’ suggestions. We will address the rest by the camera-ready deadline in July.



2 Lang-n-Send Extended: Sending Regular Expressions to Monitors

This paper addresses two limitations of LANG-N-SEND.

First Addition: From Higher-order Logic Programs to Transition System Specifications [13] pro-
vides a syntax for language definitions L . This syntax has been specifically devised to represent opera-
tional semantics. The semantics of L is based on higher-order logic programming as realized with hered-
itary Harrop formulae [20]: L is compiled into a higher-order logic program P , and LANG-N-SEND

computes the steps of program using the provabilty relation |= of higher-order logic programming [20],
i.e., P |= (−→ label program program′), for some program′.

However, higher-order logic programs of [20], and therefore |=, do not contemplate the use of nega-
tion. This prevents LANG-N-SEND from defining languages with operators that use negative premises,
such as the priority operator [7], timed operators [17], and some formulations of the sequential operator.

In this paper, we revise LANG-N-SEND to adopt transition system specifications (TSSs) [10], a well-
known and widely used formalism for SOS specifications. TSSs include negative premises with a well-
established semantics [16]. This is a consequential addition: It has been shown that negative premises
are actually necessary to express some operators such as the priority operator [3]. That is, SOS with
negative premises is strictly more expressive than SOS without them.

Second Addition: Online Monitors and Communication of Regular Expressions Monitoring is a
runtime verification technique that is based on executing a program and observing its behavior. Its goal
is to establish whether such execution satisfies or violates a correctness property (see [11] for a survey
on the subject). There are two types of monitoring: offline monitoring and online monitoring. Offline
monitoring executes the program and records its execution trace. The trace is then analyzed after the
execution terminates. Conversely, online monitoring performs its analysis alongside the execution of the
program. That is, an online monitor acts after each step of the execution, and analyzes the trace that has
been generated up to that point.

LANG-N-SEND includes a rudimental form of offline monitoring with isInTrace. This operation
only checks whether an action has occurred, and is insufficient for most scenarios. Therefore, this pa-
per extends LANG-N-SEND with a more powerful way of analyzing execution traces. Specifically, we
augment LANG-N-SEND with regular expressions, and we add the ability of checking whether a trace
satisfies or violates a regular expression.

LANG-N-SEND does not include online monitoring. In this paper, we extend LANG-N-SEND with
this feature. We do so with an extended form for program executions:

(T , trace)>x program with monitors m1 m2 · · · mn

where T is a TSS and m1, m2, . . ., and mn are online monitors. Each mi carries the regular expres-
sion to be checked during the execution of program, and a process to be executed in case such regular
expression is violated.

LANG-N-SEND is tailored to express dynamic scenarios where language fragments are sent and re-
ceived, and where servers are instructed to execute programs received from other processes. In this
dynamic context, it is natural to allow servers to also receive, from external processes, the regular expres-
sions to monitor. We have therefore extended LANG-N-SEND with the ability of sending and receiving
regular expressions through channels.

We call this new calculus LANG-N-SEND+m (as in “plus monitoring”).
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Contributions We present a reduction semantics for LANG-N-SEND+m in Section 4. To demonstrate
the type of scenarios that LANG-N-SEND+m captures, we provide the following examples in Section 5:

• Negative premise (Example 1). A server receives the semantics of the parallel operator from an-
other process, which decides whether parallel processes are allowed to spend idle time or whether
they must run with maximal progress.

• Offline monitoring (Example 2). A server receives programs from clients, executes them to the
end, and checks that the programs have used files correctly (open before read/write operations, and
close at the end). The server does so by checking that the final trace is accepted by an appropriate
regular expression.

• Online monitoring and sending/receiving of regular expressions (Example 3). This example
refines Example 2. Programs can perform a privileged action on files as long as they respect a
correct sequence of actions. This sequence of actions changes every day, and is provided by an
external process. The server receives this sequence as a regular expression, and uses it to install an
online monitor for the execution of programs.

We believe that LANG-N-SEND+m provides a suitable formalism to express these and similar scenarios.
The paper is organized as follows. Section 2 provides the definition of transition system specifications

from the literature. Section 3 presents the syntax of LANG-N-SEND+m. Section 4 presents a reduction
semantics for LANG-N-SEND+m. Section 5 demonstrates our calculus with the examples described above.
Section 6 discusses related work, and Section 7 concludes the paper.

2 Preliminaries: Transition System Specifications

We recall the definitions for transition system specifications from [10, 16].

Definition 1 (Signatures and Terms). A signature Σ is a pair (F,ar) where F is a set of function symbols,
and the function ar : F → N determines the arity of the functions in F. Given a signature Σ = (F,ar),
T (Σ) is the set of terms of the signature Σ, and is defined as the minimal set satisfying the following:
(We use the symbol t for terms).

• V ⊆ T (Σ), where V is a set of variables,

• if t1, . . . , tn ∈ T (Σ), f ∈ F, and ar( f ) = n then f (t1, . . . , tn) ∈ T (Σ).

We define Σ /0 as the empty signature with Σ /0 , ({},{}), that is, both F and ar are empty sets.

Definition 2 (Transition System Specifications (TSS)). A transition system specification T is a triple
(Σ,L,D), where Σ is a signature, L is a set of labels, and D is a set of deduction rules. We use the
symbol λ for labels. Deduction rules are formed with formulae in the way that we describe below. A

positive formula is of the form t λ−→ t ′, and a negative formula is of the form t
λ
6−→. A formula f is either

a positive formula or a negative formula. Deduction rules are of the form (H, f ), where H is a set of
formulae called premises of the rule, and f is a positive formula called conclusion of the rule. We write
a deduction rule (H, f ) as H

f
.

The notion of derivability of formulae for TSSs with negative premises is from [15]. As this definition
is standard and we do not use any of its machinery, we do not redefine it, but we write (Σ,L,D) ` f when
the formula f is derived from the TSS (Σ,L,D) according to the semantics of [15].

The following definitions from [16] define the componentwise union of two TSSs.
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Definition 3 (Union of Signatures). Given two signatures Σ1 = (F1,ar1) and Σ2 = (F2,ar2) such that
f ∈ F1∩F2⇒ ar1( f ) = ar2( f ), we have

Σ1⊕Σ2 = (F1∪F2,ar′), with ar′( f ) =

{
ar1( f ), f ∈ F1

ar2( f ),otherwise

Definition 4 (Union of TSSs). Given two TSSs (Σ1,L1,D1) and (Σ2,L2,D2) such that Σ1⊕Σ2 is defined,
we define (Σ1,L1,D1)⊕ (Σ2,L2,D2) = (Σ1⊕Σ2,L1∪L2,D1∪D2).

As an example, we define a TSS for a subset of CCS with inaction nil, a unary operator for each
action a of a finite set Act, and the parallel operator ‖. (As usual, Act also contains complement actions
which can be denoted as a for any action a.) We call this subset partialCCS. The set of variables V of
partialCCS’s TSS ranges over p, q, and so on. We define partialCCS as follows.

D ,

{a.p a−→ p,
p a−→ p′

p ‖ q a−→ p′ ‖ q
,

q a−→ q′

p ‖ q a−→ p ‖ q′
,

p τ−→ p′

p ‖ q τ−→ p′ ‖ q
,

q τ−→ q′

p ‖ q τ−→ p ‖ q′
,

p a−→ p′ q a−→ q′

p ‖ q τ−→ p′ ‖ q′
,

p a−→ p′ q a−→ q′

p ‖ q τ−→ p′ ‖ q′
}

partialCCS , (({nil,‖}∪Act,ar),Act∪{τ},D), where ar assigns the arity 0 to nil, the arity 2 to ‖,
and the arity 1 to every element of Act.

3 Syntax of LANG-N-SEND+m

The syntax of LANG-N-SEND+m is defined as follows. We assume a set of channels x, y, z, and so on. We
assume that this set and the sets Fs, Ls, and V s of TSSs (see Definition 1 and 2) are pairwise disjoint.
(Recall that T denotes a TSS, and t is a term. We also use the notation ·̃ for finite sequences.)

Language Builder ` ::= T | ` union `
Regular Expression E ::= λ | ε | E ·E | E | E | E ∗
Trace as Reg. Exp. Etr ::= λ | ε | Etr ·Etr

Transmittable e ::= x
(language builders) |T | e union e
(reg. exp.) | λ | ε | e · e | e | e | e∗
(terms) | t
Monitor m ::= E ⇒ P
Process P,Q,R ::= 0 | x(y).P | x〈e〉.P | P ‖ Q | P+Q | νx.P | !P
(online monitoring) | (e,Etr)>x e with monitors m̃
(offline monitoring) | verifyThis(e,e) ? P : Q
(checking labels) | labels(λ̃ ,e) ? P : Q

Language builder expressions ` evaluate to TSSs T . We can combine two TSSs with union, which
performs the union operations that we have seen in Section 2.
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LANG-N-SEND+m executes programs and keeps track of their execution trace. We analyze these
traces with regular expressions over the set of labels L as the alphabet. The grammar of regular expres-
sions E is standard (with λ s as atomic symbols). To recall: ε is the empty string, we use an explicit
concatenation operator · (though literature often uses juxtaposition), | is the alternation operator, and E ∗

is the Kleene closure of E . As usual, the semantics of a regular expression E is a set of strings. We
denote this set with JE K. The definition of JE K is standard and we omit it here [18].

Traces are finite strings of labels λ1λ2 . . .λn. We represent traces with regular expressions of the form
λ1 ·λ2 . . . ·λn, i.e., a concatenation of labels. Therefore, we have traces Etr as a special case of regular
expressions that denote a singleton set with one string.

LANG-N-SEND+m can send and receive transmittable expressions e through channels. Transmit-
table expressions are channels, language builder expressions, regular expressions, and terms. Similarly
to the π-calculus, channel names x, y, and so on, are binding variables for channels. Additionally,
LANG-N-SEND+m uses x, y, and so on, as binding variables for language builder expressions, regular ex-
pressions, and terms, as well. Transmittable expressions can be language builder expressions that contain
variables such as T union x, where x will be substituted after a communication takes place. Similarly,
transmittable expressions can be regular expressions that contain variables such as E · x, where x will be
substituted later. Notice that LANG-N-SEND+m processes are such that expressions like T union x and
E · x will have x already substituted when we reach the moment where these expressions are used.

LANG-N-SEND+m contains the processes of the π-calculus, except that the output prefix sends trans-
mittable expressions. Furthermore, LANG-N-SEND+m contains the following processes.

(e1,Etr)>x e2 with monitors m̃ is a program execution with online monitors m̃. This process evalu-
ates e1 to a TSS T , and we have that e2 is a term t at the moment this process is activated. (We offer some
remarks on type errors at the end of this section.) The term t is the program to be executed. This process
executes the program t according to the semantics of T . To do so, we use the derivability of formulae
of TSSs to derive a transition from t. Program executions evaluate t one step at a time. Each of these
transitions has a label, and we concatenate these labels in Etr. We assume that every program execution
starts with the empty string ε . Therefore, Etr is the trace of the execution up to a certain point. After
each transition, we check that the current trace satisfies all the monitors m̃. Each monitor m contains a
regular expression and a process P. If the regular expression does not validate the trace then the whole
program execution is discarded and P is executed instead. If there are multiple monitors that are not
satisfied, LANG-N-SEND+m non-deterministically executes the process of one of them. (We purposely
under-specify this part. Actual implementations may fix a selection method, for example based on the
order in which monitors appear.)

When the execution of t terminates, the trace Etr is sent over the channel x.
LANG-N-SEND+m accommodates offline monitors, as well, which analyze the trace of the whole ex-

ecution after t terminates. We do so in the following way. As just described, the trace Etr can be received
over the channel x. Afterwards, it can be used with the process verifyThis(Etr,E ) ? P : Q, which
behaves as P if the regular expression E validates the trace Etr, and behaves as Q otherwise. More specif-
ically, the operator verifyThis works in a slightly more general form: verifyThis(e1,e2) ? P : Q,
where e1 and e2 are regular expressions E1 and E2 at the moment this process is activated. Notice that E1
is not necessarily some Etr. verifyThis checks whether E2 subsumes E1, i.e., JE1K ⊆ JE2K 1. We offer
this general form as a convenience for programmers. For example, a server may already be planning to
run an online monitor with E2, and may receive E1 from another process with instructions to monitor it,
as well. With verifyThis(E1,E2) ? P : Q, the server can program P to run a monitor with E2 only, as

1The inclusion problem is decidable for regular expressions [18, 19].
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it subsumes E1, as in
verifyThis(E1,E2) ? (T ,ε)>x t with monitors E2⇒ monitor-fail.0

:

(T ,ε)>x t with monitors E1⇒ monitor-fail.0
E2⇒ monitor-fail.0

Notice that when verifyThis is used with a trace as in verifyThis(Etr,E ) ? P : Q, then JEtrK is
a singleton set with a string and JEtrK⊆ JE K holds whenever that string is in JE K.

A process labels(λ̃ ,e) ? P : Q, where e evaluates to a TSS T , checks whether the set of labels
of T is a subset of the labels λ̃ . In such a case, the process behaves as P. Otherwise, it behaves as Q.
As processes may receive TSSs from other processes, this operation is useful to check, before executing
programs, that a TSS works with the expected actions.

Some Remarks on Type Errors The syntax of LANG-N-SEND+m does not rule out type errors such as
T union E , E ·T , and similar. As future work, we would like to design a type system that rejects these
type errors.

4 A Reduction Semantics for LANG-N-SEND+m

Figure 1 shows the reduction semantics of LANG-N-SEND+m in two parts. The first part of Figure 1,
that is above the horizontal line, contains the standard definition of the structural congruence ≡ of the
π-calculus, and includes the reduction rules of the π-calculus that are also part of the semantics of
LANG-N-SEND+m [21, 22]. The second part of Figure 1, that is below the horizontal line, contains the
rest of the reduction semantics.

The main reduction relation is −→. As in [13], this relation makes use of two auxiliary relations:
−→lan evaluates language builder expressions ` into TSSs, and −→exe handles program executions.

Rule (COMM) realizes the communication of transmittable expressions. Substitution P{e/y} sub-
stitutes the free occurrences of y in P with e. This substitution is capture-avoiding, its definition is
straightforward, and therefore we do not show it. Notice that LANG-N-SEND+m adopts a call-by-name
style for transmitting language fragments. In particular, an output prefix x〈T1 unionT2〉.P transmits the
whole expression T1 union T2 without evaluating it, as it will be evaluated when it is used2.

Rule (EXEC) handles program executions and simply defers to−→exe-transitions. Rule (EXEC-CTX)
evaluates ` when it is not a TSS yet.

Rule (VERIFY-SUCCESS) checks whether E2 subsumes E1 with JE1K⊆ JE2K. In that case, the process
takes a transition to P. Rule (VERIFY-FAIL) fires whenever E2 does not subsumes E1, and executes Q.

Rule (LABELS-SUCCESS) checks whether the labels of the TSS given as second argument are from
the set of labels given as first argument. In that case, the process takes a transition to P. Rule (LABELS-
FAIL) fires whenever that is not the case, and executes Q. Rule (LABELS-CTX) evaluates ` when it is not
a TSS yet.

Rule (UNION) performs the union of two TSSs with the operation ⊕ defined in Section 2. Rules
(UNION-CTX1) and (UNION-CTX2) evaluate the first and second argument of union, respectively.

2We thank our anonymous reviewers for suggesting a call-by-name approach, which simplifies our calculus. Interested
readers can find a call-by-value version of our calculus in Appendix A.
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Reduction Semantics P≡ P, P−→ P, `−→lan `, P−→exe P

P ‖ 0≡ P P ‖ Q≡ Q ‖ P (P ‖ Q) ‖ R≡ P ‖ (Q ‖ R)

P+0≡ P P+Q≡ Q+P (P+Q)+R≡ P+(Q+R) !P≡ P ‖!P

νx.0≡ 0 νx.νy.P≡ νy.νx.P νx.(P ‖ Q)≡ νx.P ‖ Q, if x is not a free name of Q

P1 −→ P′1
P1 +P2 −→ P′1

P1 −→ P′1
P1 ‖ P2 −→ P′1 ‖ P2

P−→ P′

νx.P−→ νx.P′
P≡ P′ P′ −→ Q′ Q′ ≡ Q

P−→ Q

(COMM)
x(y).P ‖ x〈e〉.Q−→ P{e/y} ‖ Q

(EXEC)
(T ,Etr)>x t with monitors m̃−→exe P
(T ,Etr)>x t with monitors m̃−→ P

(EXEC-CTX)
`−→lan `

′

(`,Etr)>x t with monitors m̃−→ (`′,Etr)>x t with monitors m̃

(VERIFY-SUCCESS)
JE1K⊆ JE2K

verifyThis(E1,E2) ? P : Q−→ P

(VERIFY-FAIL)
JE1K 6⊆ JE2K

verifyThis(E1,E2) ? P : Q−→ Q

(LABELS-SUCCESS)
T = (Σ,L,D) λ̃ = λ1, · · · ,λn

L⊆ {λ1, · · · ,λn}
labels(λ̃ ,T ) ? P : Q−→ P

(LABELS-FAIL)
T = (Σ,L,D) λ̃ = λ1, · · · ,λn

L 6⊆ {λ1, · · · ,λn}
labels(λ̃ ,T ) ? P : Q−→ Q

(LABELS-CTX)
`−→lan `

′

labels(λ̃ , `) ? P : Q−→ labels(λ̃ , `′) ? P : Q

(UNION)
T1 union T2 −→lan T1⊕T2

(UNION-CTX1)
`1 −→lan `

′
1

`1 union `2 −→lan `
′
1 union `2

(UNION-CTX2)
`2 −→lan `

′
2

`1 union `2 −→lan `1 union `
′
2

(PROGRAM-STEP)

T ` t λ−→ t ′ m̃≡ E1⇒ P1 · · · En⇒ Pn
JEtr ·λ K = {s} s ∈ JEiK for all 1≤ i≤ n

(T ,Etr)>x t with monitors m̃−→exe (T ,Etr ·λ)>x t ′ with monitors m̃

(MONITOR-FAIL)

T ` t λ−→ t ′ m̃≡ E1⇒ P1 · · · En⇒ Pn
JEtr ·λ K = {s} s 6∈ JEiK for some 1≤ i≤ n

(T ,Etr)>x t with monitors m̃−→exe Pi

(PROGRAM-END)

T 6` t λ−→ t ′

(T ,Etr)>x t with monitors m̃−→exe !x〈Etr〉.0

Figure 1: Reduction semantics of LANG-N-SEND+m.
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timeManagementProvider ,
!whatTask(y).(getTimeManagement〈parallel〉 + getTimeManagement〈parallel-max-progess〉)

server ,
!(task1(x).whatTask〈task1〉.getTimeManagement(l).(almostTPA union l,ε)>x tpa program1
+

task2(x).whatTask〈task2〉.getTimeManagement(l).(almostTPA union l,ε)>x tpa program2)

system , (server ‖ timeManagementProvider ‖ client1 ‖ client2 . . . ‖ clientn)

Figure 2: Server decides idle time vs maximal progress (negative premises).

Rule (PROGRAM-STEP) handles program executions (T ,Etr)>x t with monitors m̃. We use the

derivability relation ` of TSSs to check that a formula t λ−→ t ′ is provable for some t ′ and some label λ .
We then check that all the regular expressions of the monitors m̃ validate the trace up to that point, which
is Etr with the label λ appended. To do so, we first compute the string s of Etr ·λ with JEtr ·λ K = {s}.
(Recall that the semantics of Etr ·λ is a set with one string.) Then we check that s belongs to the semantics
of each Ei of the monitors (with s ∈ JEiK).

Rule (MONITOR-FAIL) is similar to (PROGRAM-STEP) except that it fires when there exists a regular
expression Ei that does not validate the current trace. In this case the transition takes a step to the
corresponding process Pi specified by the failing monitor. Notice that this transition is non-deterministic
when there are multiple regular expressions Ei that fail.

Rule (PROGRAM-END) detects that a step is not provable for t. Then, the execution of t is terminated.
We spawn a replicated output prefix that sends the trace over the channel x. The reason for replicating
this output is that there may be more than one process that is interested in analyzing the trace, as we shall
see in our second example of Section 5.

Deadlocks LANG-N-SEND+m processes can deadlock in as much the same way that π-calculus pro-
cesses can. Additionally, our processes can deadlock due to the erroneous use of its operators. For
example, no reduction rule applies to a process of the form (T union E ,Etr)>x t with monitors m̃
because T union E is not a valid language builder expression `. Similarly, no reduction rule applies to
a process of the form verifyThis(Etr,E ·T ) ? P : Q because E ·T is not a valid regular expression
E . A type system that rules out these type errors would also rule out this type of deadlocks. (Appendix
A shows a version of the calculus with a more refined grammar where these deadlock situations do not
occur.)

5 Examples

Example 1 (Negative Premises) Our first example makes use of the newly-added feature to use nega-
tive premises in the context of processes that communicate languages. In this example, we have a server
that decides whether parallel processes are allowed to spend idle time or whether they must run with
maximal progress. We define the TSS of a subset of Hennessy and Regan’s Process Algebra for Timed
Systems (TPA) [17]. We consider a subset of TPA with inaction nil, unary operators a.P for each of the
actions a of a finite set Act, and the parallel operator ‖. The transitions of TPA are labeled with actions
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of Act, the silent action τ , and the label σ for the passing of idle time. The transition P σ−→ P means that
the process P spends idle time.

We define almostTPA to be the subset of TPA just described. However, we also omit the rule for the
passing of idle time in case of the parallel operator. We first define the set of rules Dtpa− .

Dtpa− = {a.P σ−→ a.P, nil σ−→ nil}.

We then define almostTPA as an extension of partialCSS of Section 2. (Recall that Σ /0 is the empty
signature defined in Section 2.)

almostTPA , partialCSS⊕ (Σ /0,{σ},Dtpa−).

We can complete almostTPA by including a way to allow time to pass for a parallel operation. For
example, we can add either of the following rules.

(PAR-IDLE)

p σ−→ p′ q σ−→ q′

p ‖ q σ−→ p′ ‖ q′

(PAR-MAX)

p σ−→ p′ q σ−→ q′ p ‖ q
τ
6−→

p ‖ q σ−→ p′ ‖ q′

(PAR-IDLE) lets the two processes spend idle time, if both processes can. Conversely, (PAR-MAX)
implements maximal progress and allows idle time to pass only so long that the two processes cannot
communicate. (TPA uses (PAR-MAX) in [17].)

We define the two rules in the context of empty TSSs, so that we can conveniently add them to al-
mostTPA with our union operator.

parallel , (Σ /0,{},{(PAR-IDLE)})
parallel-max-progess , (Σ /0,{},{(PAR-MAX)})

Figure 2 shows our example. server is a server that offers two services, task1 and task2. Upon a
request from a client, server executes the program tpa program1 for task1, and tpa program2 for task2.
These are programs of our subset of TPA. server has limited computational resources, and executing pro-
grams in maximal progress mode is computationally expensive. Therefore, server communicates with
another process called timeManagementProvider through the channel whatTask, and sends the name of
the service that has been requested. timeManagementProvider non-deterministically decides whether
server should use maximal progress or not (perhaps based on the urgency of the task, as well as other
factors). timeManagementProvider sends parallel or parallel-max-progess through the channel getTime-
Management. In other words, timeManagementProvider decides the semantics of the parallel operator,
insofar idle time is concerned, that server must use. Then, server completes almostTPA with this frag-
ment of TSS before executing the program.

Example 2 (Offline Monitoring) Figure 3 shows an example with offline monitoring. Here, server
is a server that manages files. Clients send programs to server. Clients also send the TSSs with which
server must execute these programs. server is capable of receiving TSSs and executing programs with
them. However, the only actions that server supports are the following actions on files: open, read,
write, and close. In other words, clients can define any TSS they wish, and any SOS operator they
wish. Whichever operators they use, however, must compute transitions to open, read, write, and close
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allowedLabels , open,read,write,close
fileProtocol , open · (read | write)∗ ·close

server , !(getProgram(l,w, id,x).
labels(allowedLabels, l) ?

( (l,ε)>x w ‖ x(tr).verifyThis(tr,fileProtocol∗) ? 0 : flagClient〈id〉 )
:

invalid-language)
onlyOneWrite , (open | read | close)∗ ·write · (open | read | close)∗
client1 , νx.(getProgram〈tss, tss program, id,x〉 ‖ x(tr).verifyThis(tr,onlyOneWrite) ? P : 0)
system , (server ‖ client1 ‖ client2 . . . ‖ clientn)

Figure 3: Server checks for the correct use of files (offline monitoring).

files only, as these are the only actions that server recognizes. When the program is finished, the trace is
sent on a replicated channel and is available to both server and clients.

Our example models the scenario in which both client and server are running an offline monitor to
analyze the trace of an execution. We describe both sides below.

server receives the language l and the program w through the channel getProgram3. server also
receives the id of the client (as a channel name), and a channel x where to send the trace of the execution
of w once it has finished. After receiving these arguments, server checks that the set of labels of l
is formed with the allowed labels. If this check fails, the server signals an error through the channel
invalid-language. Otherwise, the server executes w. As there are no online monitors, we simply write
(l,ε)>x w. The server is interested in analyzing the trace of this execution, and so it receives the trace at
x and runs an offline monitor with verifyThis. The server checks that w has used files correctly, i.e., it
has opened a file before reading/writing operations, and it has closed the file afterwards. The correct use
of a file is expressed with the regular expression fileProtocol. As w may have used files multiple times,
the server uses verifyThis to check that the trace is accepted by fileProtocol∗ (with Kleene star). If this
check succeeds then the server ends. Otherwise, the server flags the client as an unreliable programmer
using the channel flagClient.

One of the clients, client1, is also interested in analyzing the trace of an execution. client1 verifies that
its program has performed exactly one writing operation. This is expressed with the regular expression
onlyOneWrite. client1 sends a TSS tss and a program tss program (whose details are irrelevant) to the
server. It also sends its id and a private channel x. Then, it receives the trace at x, and runs an offline
monitor with verifyThis to check that the trace is accepted by onlyOneWrite. If this check succeeds
then client1 continues as P. Otherwise, it terminates.

Example 3 (Online Monitoring and Sending/Receiving of Regular Expressions) Figure 4 shows
an example of online monitoring in LANG-N-SEND+m, and also illustrates the sending/receiving of reg-
ular expressions over channels. This example refines our previous example. Here, server additionally
admits a privileged action on files, delete, which deletes a file. However, programs can perform a
delete-transition only if they know the “password of the day” provided by the process passwordMan-

3To shorten our notation, getProgram sends and receives multiple arguments in polyadic style, though this is shorthand for
a sequence of unary input and output prefixes.
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allowedLabels , open,read,write,close,sudo,0,1,2, . . . ,9,delete
ordinary , open | read | write | close
new , sudo | 0 | 1 | 2 | . . . | 9 | delete

passwordManager , !(getPasswordOfTheDay〈3 ·4 ·5 ·6〉)
server , !(getProgram(l,w, id).

labels(allowedLabels, l) ?
getPasswordOfTheDay(e).

νx.(((l,ε)>x w with monitors

(new∗ ·fileProtocol ·new∗)∗⇒ flagClient〈id〉)
(ordinary∗ · (sudo · e ·delete) ·ordinary∗)∗⇒ flagClient〈id〉)
‖ x(tr).end)

:

invalid-language)
system , (server ‖ passwordManager ‖ client1 ‖ client2 . . . ‖ clientn)

Figure 4: Server receives a regular expression to check valid access to delete (online monitoring).

ager. Passwords are numeric. The password of the example in Figure 4 is 3456. Programs must first
announce their intention to use the privileged action with a sudo action. Then, they must perform the
actions that correspond to the digits of the password. In other words, server also admits actions 0, 1,
2, . . ., 9, where, for example, the action 3 can be interpreted as “sent 3” or “pressed 3”. Programs can
perform delete after having performed this sequence of actions. In our example, the correct sequence
of actions for using delete is sudo, 3, 4, 5, 6, and delete, in this order.

server receives the language l, the program w, and the client id. (Clients are not interested about the
trace in this example, and so they do not send the channel x of the previous example). The server checks
that the set of labels of l is formed with the allowed labels. Then, the server receives a regular expression
e through the channel getPasswordOfTheDay. This represents the fragment of a trace that corresponds
to the correct sequence of actions that enables delete. The regular expression so received is substituted
in lieu of e, as we shall discuss shortly. At this point, the server creates a private channel x and executes
the program w giving x as the channel where to receive the final trace. The server also specifies two
online monitors for this program execution. The first monitor performs the check on file operations that
we have seen in the previous example, except that the check is performed at each step of the execution.
Furthermore, the regular expression of the previous example is slightly modified to take into account the
new actions of server, which may occur before and after fileProtocol.

The second monitor checks that delete is used properly. The regular expression of this monitor is
(ordinary∗ · (sudo ·3 ·4 ·5 ·6 ·delete) ·ordinary∗)∗ after e has been substituted. This expression checks
that this sequence has been used within the other actions. If this check fails then the client is flagged for
knowing the wrong password, or not using the correct protocol.

Notice that sudo ·sudo · 3 · 4 · 5 · 6 ·delete, as well as other acceptable sequences are invalid. We
believe that the example sufficiently demonstrates our approach even though our regular expressions
could be more refined.

Finally, server can detect that all online monitors succeed throughout the execution of w with the
input prefix x(e).end. This process signals successful termination through the channel end.
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6 Related Work

[13] is a direct related work of LANG-N-SEND+m. We have discussed the differences between this paper
and [13] in Section 1 (Introduction). Also, [13] transmits language fragments in call-by-value style
while LANG-N-SEND+m does so in call-by-name style. [13] employs a union operation on languages but
this operation is not standard, and it has been specifically devised to apply to the syntax for languages
of [13]. Instead, we use the standard ⊕ operator on TSSs. The examples in this paper showcase the
added expressiveness of LANG-N-SEND+m over the prior work done in [13].

There are several works on runtime monitoring (see [11] for a survey). Our paper does not offer a
new monitoring technique. On the contrary, we have taken an existing approach, i.e., monitoring with
regular expressions [8, 12, 25], and have integrated it into a calculus with processes that communicate
programs, traces, and languages.

Temporal logics such as LTL, and linear fragments of HML, HML with recursion, and the modal µ-
calculus (see [1]) can be used in lieu of regular expressions to state properties on traces. Our first draft of
LANG-N-SEND+m had LTL formulae [24] in their finite traces interpretation LTL f [26] in lieu of regular
expressions. However, regular expressions are more expressive than LTL f [26], and their formalism is
more widely known and used, so we simply chose to use that instead. We could use an expressive logic
but the goal of this paper is not to use the most powerful logic. Rather, we wanted to demonstrate the
type of scenarios that LANG-N-SEND+m enables with a sufficiently expressive formalism that is also easy
to read. In this light, we believe that regular expressions may be a suitable choice. As future work, we
do plan to integrate more expressive logics in LANG-N-SEND+m and make more sophisticated examples.

[2] provides a general framework for monitoring that is based on operational semantics and that has
been implemented in the detectEr tool chain [4, 5]. It would be interesting to integrate this framework
in LANG-N-SEND+m in future work.

The realm of process calculi is tremendously vast and diverse: Process calculi have been augmented
with sophisticated operators, and have been applied to a plethora of domains. We are not aware, however,
of process calculi where processes send fragments of TSSs or regular expressions through channels.

7 Conclusion

We have presented an extension of LANG-N-SEND ([13]) called LANG-N-SEND+m. As LANG-N-SEND,
our calculus is tailored to model language-oriented scenarios where processes send and receive lan-
guage fragments. LANG-N-SEND+m also addresses two limitations of [13]. We use TSSs rather than
LANG-N-SEND’s specification syntax that is based on λ -prolog. This allows LANG-N-SEND+m to define
SOS specifications with negative premises. Furthermore, we have added monitoring capabilities based
on regular expressions. Processes of LANG-N-SEND+m can also send and receive regular expressions.

We have presented a reduction semantics for LANG-N-SEND+m, and we have provided examples that
demonstrate the type of programming scenarios that LANG-N-SEND+m captures.

As future work, we would like to design a type system for LANG-N-SEND+m. We also would like
to extend LANG-N-SEND+m. We plan to add more operations on TSSs, such as removing rules, and
renaming operators. We observe that the difference between (PAR-IDLE) and (PAR-MAX) is the single

premise P ‖Q
τ
6−→. It would be interesting to make LANG-N-SEND+m more fine-grained in its capabilities

to communicate fragments of TSSs. We plan to add the ability of sending/receiving premises which then
can be added to rules. With such an addition, our first example could simply work with TPA with (PAR-

IDLE), and add the premise P ‖ Q
τ
6−→ on the fly to make it become (PAR-MAX).
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TSSs do not include syntax for binding (and neither does [13]). We plan to integrate the nominal
transition systems of Parrow et al. [23] in our calculus, which can accommodate binders in SOS specifi-
cations. With such an addition, we would like to make examples with the π-calculus and its variants as
TSSs that can be sent/received.

We also would like to investigate a suitable notion of bisimilarity equivalence for LANG-N-SEND+m.
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erational Guide to Monitorability. In: Software Engineering and Formal Methods - 17th International Con-
ference, SEFM 2019, Oslo, Norway, September 18-20, 2019, Proceedings, pp. 433–453, doi:10.1007/978-3-
030-30446-1 23. Available at https://doi.org/10.1007/978-3-030-30446-1_23.
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A Call-by-value LANG-N-SEND+m

Call-by-value LANG-N-SEND+m differs from the calculus of Section 3 in that

• Language builder expressions are evaluated to TSSs before being communicated.

• It makes use of different binding variables for transmittable values: We assume sets of variables
LANG-VAR, REXP-VAR, and TERM-VAR. We have that variables l ∈ LANG-VAR bind TSSs, vari-
ables e ∈ REXP-VAR bind regular expressions, and variables w ∈ TERM-VAR bind terms. We
assume that all these sets, together with the sets Fs, Ls, and V s of TSSs, are pairwise disjoint.

The syntax of call-by-value LANG-N-SEND+m is the following.

Language Builder ` ::= l |T | ` union `
Regular Expression E ::= e | λ | ε | E ·E | E | E | E ∗
Trace as Reg. Exp. Etr ::= λ | ε | Etr ·Etr

Monitor m ::= E ⇒ P
Process P,Q,R ::= 0 | x(y).P | x〈y〉.P | P ‖ Q | P+Q | νx.P | !P
(online monitoring) | (`,Etr)>x t with monitors m̃
(offline monitoring) | verifyThis(E ,E ) ? P : Q
(communicating languages) | x(l).P | x〈`〉.P
(communicating terms) | x(w).P | x〈t〉.P
(communicating reg. exp.) | x(e).P | x〈E 〉.P
(checking labels) | labels(λ̃ , `) ? P : Q

The reduction semantics of call-by-value LANG-N-SEND+m is that of Figure 1 except that:

• Rule (COMM) is the standard π-calculus rule for communicating channels.

(COMM)
x(y).P ‖ x〈z〉.Q−→ P{z/y} ‖ Q

• It includes the communication rules for TSSs, regular expressions, and terms.

(COMM-LANG)
`−→∗lan T

x(l).P ‖ x〈`〉.Q−→ P{T /l} ‖ Q

(COMM-TERM)

x(w).P ‖ x〈t〉.Q−→ P{t/w} ‖ Q

(COMM-REGEXP)

x(e).P ‖ x〈E 〉.Q−→ P{E /e} ‖ Q

Notice that (COMM-LANG) evaluates the language builder expression `. Substitution P{T /l} sub-
stitutes the free occurrences of l in P with T . Substitution P{E /e} substitutes the free occurrences
of e in P with E . Substitution P{t/w} substitutes the free occurrences of w in P with t. Substitu-
tions P{T /l}, P{t/w}, and P{E /e} are capture-avoiding, their definition is straightforward, and
therefore we do not show it.

As the grammar above is more refined than that of Section 3, the deadlock situations described
at the end of Section 4, such as those for processes (T union E ,Etr)>x t with monitors m̃ and
verifyThis(Etr,E ·T ) ? P : Q, do not occur. Indeed, these processes are not part of the syntax.
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NiRvAna is a three-years research project started in June 2022 and funded by the Italian Min-
istry for University and Research, whose aim is to study noninterference and reversibility in private
blockchains. The project proposal originated from a simple and provoking question: are there sit-
uations in which a blockchain transaction should be reversed? The question along with its answer
undermine the very bases of blockchain technology: immutability.

1 Context of the NiRvAna Project

Distributed computing has by now become a pervasive technology due to the widespread adoption of
electronic devices connected by the Internet infrastructure, which are used by individuals, companies,
and institutions to perform an increasing number of daily activities in a digital mode. One of the most
prominent examples over the last decade is blockchain technology. It results in a distributed ledger that
permanently records transactions taking place among untrusted parties in a decentralized and disinter-
mediated environment, which was devised after the global financial crisis of 2008 to avoid the double
spending problem in virtual currency platforms [7].

A blockchain is an append-only ledger that collects transactions. It is composed of blocks linked
together through cryptography, each one containing the hash value of the previous block, a timestamp,
and transaction data. Once stored, a data block cannot be altered or removed from the blockchain without
compromising the validity of all the subsequent blocks. This immutability property certifies that trans-
action data residing in the blockchain are tamper-proof, thus guaranteeing that everyone can trust the
blockchain. The parties form a peer-to-peer communication network adhering to a consensus protocol
for block validation. Usually a blockchain is public, meaning that the ledger is accessible by anyone
without specific read, write, or validate permissions, with the users being free to enter, leave, and join
again the network at any time. Transaction validation is accomplished algorithmically, with no central
authority, through a computationally expensive mechanism that discourages potential attackers.

A number of shortcomings affect public, permissionless blockchains, such as the excessive energy
consumption required by the consensus protocol and conflicts between data immutability and regula-
tions (right to be forgotten and transaction invalidation due to digital identity theft or contract nullity
or infringement, just to mention a few). In the specific case of innovative payment methods, there are
also risks of losing monetary sovereignty and undermining financial stability, as witnessed by the fact that
many central banks are exploring the issuance of what is called central bank digital currency (CBDC) [4],
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which would also reduce the costs associated with managing physical cash, promote financial inclusion,
and hopefully discourage tax evasion, money laundering, and other illegal activities. As a consequence
private, permissioned blockchains are getting momentum, as they could ultimately give businesses a
greater degree of control. The reason is that they can be accessed only by authorized people and are
governed by a designated person, enterprise, or authority. Methods for reversing illegal transactions are
thus needed in a private blockchain, as well as unauthorized information flows from its governance to
the various parties must be avoided.

A pillar of blockchain technology is data immutability. Once stored, data cannot be altered or re-
moved from the blockchain. This property certifies that data residing in a public blockchain are tamper-
proof, thus creating a digital environment trusted by all parties despite the absence of a central authority
certifying user identity and transaction validity. Unfortunately, data immutability may conflict with reg-
ulations and the only way out is allowing for some degree of mutability [8, 5]. One example is the right
to be forgotten, introduced within the EU in 2016 by the General Data Protection Regulation (GDPR)
after the adoption in 2014 of the Regulation on Electronic Identification and Trust Services for Elec-
tronic Transactions in the Internal Market (eIDAS). In all these cases, the effects of the considered illegal
transactions have to be removed from the blockchain. Again, this seems to be more feasible in a private
blockchain rather than in a public one, as in the former it is likely that the owner is endowed with mech-
anisms for deeming a transaction as reversible due to the permission-based accessibility of the private
blockchain. After all, the idea of reversibility has already been considered for virtual currencies, lead-
ing for instance to Reversecoin [2], where vault accounts are additionally available with a configurable
timeout such that transactions can be reversed before the timeout expires while remaining visible in the
ledger, and reversible Initial Coin Offerings [3], based on smart contracts mimicking fund raising in the
real world. Also, the idea to retract transactions made by mistake, or made because of identity theft, is
becoming utterly evident as witnessed by the proliferation of tools such as Kirobo [1], which provides
an undo feature that eliminates the risk of fund losses due to human error.

Developing complex distributed systems like private blockchains is extremely challenging in terms
of guaranteeing high levels of proper functioning, data protection, and quality of service. It even be-
comes a critical issue in CBDC platforms, where errors, data breaches, and poor performance may have
economical and social consequences hard to estimate. This calls for a model-based approach in the early
design stages so as to enable system property prediction.

2 Approach of the NiRvAna Project

The NiRvAna project (http://www.sti.uniurb.it/nirvana/) is about the use of formal methods
for the compositional modeling of functional and non-functional aspects of the behavior and the structure
of private blockchains. On the analysis side, the focus will be on relevant properties such as noninterfer-
ence and reversibility. The former is concerned with the absence of information leakage, due to qualita-
tive or quantitative covert channels, from the private blockchain governance to permissioned users. The
latter deals with undoing transactions, because of regulation compliance, in a way that timely brings the
system back to a previous consistent state. This will be accomplished by developing or extending mod-
eling languages, analysis techniques, and software tools according to a holistic view of trustworthiness
that encompasses safety, security, integrity, efficiency, availability, resilience, and ease of use.

We plan to develop a reversible Markovian process algebra equipped with stochastic noninterference
techniques that we will apply to the study of private blockchains. We will start by developing models
of various aspects of blockchains in general, such as distributed ledgers, consensus protocols, and peer-
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to-peer asynchronous networks. Then we will focus on private blockchains, in which noninterference
and reversibility analyses play a role due to the presence of users with different permissions, and hence
different security levels, as well as the necessity of reversing transactions in certain situations, for reg-
ulation compliance. Special attention will be paid to CBDC, for which we are already consulting the
relevant literature including working papers and reports of the International Monetary Fund, the World
Economic Forum, and central banks.

We plan to develop a complete compositional model of a private blockchain written in a reversible
variant of PEPA [6], whose correctness, security, and performance properties will be analyzed with our
extension of the PEPA Eclipse plug-in. We will then work together with BAX, a firm located in the
province of Pesaro and Urbino operating in the field of information and communication technology, to
implement a prototype of our verified model of private blockchain. BAX is involved in the regional
project MIRACLE (Marche Innovation and Research fAcilities for Connected and sustainable Living
Environments) funded by Regione Marche and this will allow us to exploit the computing facilities of a
dedicated server farm. We also plan to recruit several PhD and postdoc positions working on the project.
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Collective-adaptive systems (CASs) consist of many interacting components or agents, which are
characterized by attributes, properties, objectives, and functionalities. They compete and cooperate in
pursuing individual or collective goals: each agent exhibits individual behaviours to pursue its aims and
interacts with the others to reach collective goals. These interactions may lead to unexpected behaviours.
Indeed, the aim of an agent my be different from and potentially conflicting with the others. Moreover,
agents may be able to adapt at runtime to the changes that can be exerienced in the operating environ-
ments.

To cope with these intricacies, methods and tools are needed to forecast and to verify behaviour
of CAS. From a specification point of view, one of the main challenges to address is the selection of
the formalism used to describe the behaviour of collective systems. Several languages, mainly based
on process algebras, have been proposed in the literature [4]. Among the others, we can mention here
SCEL [5], ABC [1, 2], and CARMA [3]. SCEL is a language that relies on the autonomic components
concept (i.e., the collective members) and autonomic-component ensembles, representing collectives [5].
Inspired by SCEL, ABC models the dynamic formation of interaction groups by considering the proper-
ties and status of individual members [1, 2]. Finally, CARMA extends attribute based interactions with
quantitative information that permits reasoning about performance aspects of CAS . All these approaches
are based on the attribute-based paradigm. Agents use attributes for dynamically organizing themselves
into ensembles and select partners for interaction. This means that structure of the agent interactions is
determined by considering an agent perspective that is useful when one is interested in modelling op-
portunistic interactions. However, this is not always the case. Indeed, often the behaviour of an agent is
predetermined, while its interaction capabilities depend on the environment where it is located. Under
this point of view, agents are structured in groups that affect the system structure and, consequently,
influence both local behaviours, i.e., the one performed by each agent, and the global ones, related to the
experience of the whole system.

In this talk, we present a framework that permits modelling the behaviour of agents, which are ag-
gregated in (possibly overlapping) groups. This aggregation depends on the features exposed by the
agents and can evolve dynamically. The behaviour of a single agent is defined in terms of the actions it
can perform. At each computational step, agents select the action to execute according to a probability
distribution that depends on both the agent state and on the composition of groups in the system.

A simple example will be used to motivate the approach and to demonstrate the use of the proposed
methodology. We will consider a set of sensors (agents) operating in a given area that must reach a
consensus (determined by the majority) about a possible dangerous situation, such as fire or pollution.
The agents operate in a fully distributed way without any centralised control. We will show how the
proposed methodology permits evaluating the impact of agent distribution over the area on the time
needed to reach a consensus.
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