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Contract automata allow to formally define the behaviour of service contracts in terms of service
offers and requests, some of which are moreover optional and some of which are necessary. A
composition of contracts is said to be in agreement if all service requests are matched by correspond-
ing offers. Whenever a composition of contracts is not in agreement, it can be refined to reach an
agreement using the orchestration synthesis algorithm. This algorithm is a variant of the synthesis
algorithm used in supervisory control theory and it is based on the fact that optional transitions are
controllable, whereas necessary transitions are at most semi-controllable and cannot always be con-
trolled. In fact, the resulting orchestration is such that as much of the behaviour in agreement is
maintained. In this paper, we discuss recent developments of the orchestration synthesis algorithm
for contract automata. Notably, we present a refined notion of semi-controllability and compare it
with the original notion by means of examples. We then discuss the current limits of the orchestration
synthesis algorithm and identify a number of research challenges together with a research roadmap.

1 Introduction

Orchestrations of services describe how control and data exchanges are coordinated in distributed service-
based applications and systems. Their principled design is identified in [16] as one of the primary re-
search challenges for the next 10 years, and the Service Computing Manifesto [16] points out that “Ser-
vice systems have so far been built without an adequate rigorous foundation that would enable reasoning
about them” and, moreover, that “The design of service systems should build upon a formal model of
services”.

The problem of synthesising well-behaving orchestrations of services can be viewed as a specific
instance of the more general problem of synthesising strategies in games [9, 7]. This can be solved
using refined algorithms from supervisory control for discrete event systems [24, 1], which have well-
established relationships with reactive systems synthesis [20], parity games [23], automated behaviour
composition [21] and automated planning [17].

Contract automata are a specific type of finite state automata that are used to formally define the be-
haviour of service contracts. These automata express contracts in terms of both offers and requests [10].
When multiple contracts are composed, they are said to be in agreement if all service requests from one
contract are matched by another contract’s corresponding offers. A composition of contracts that is not
in agreement, can automatically be refined to reach an agreement by means of the orchestration synthe-
sis algorithm, which is a variation of the synthesis algorithm used in supervisory control theory. This
orchestration synthesis algorithm for contract automata is described in [8, 9].

The classic algorithm for synthesising a most permissive controller distinguishes transitions whose
controllability is invariant [24, 1]. In service contracts, instead, the controllability of certain transitions
may vary depending on specific conditions on the orchestration of contracts [9]. The contract automata
library CATLib [5] implements contract automata and their operations (e.g., composition and synthesis).
Orchestrations of contract automata abstract from their underlying realisation; an orchestrator is assumed
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to interact with the services to realise the overall behaviour as prescribed by the orchestration contract.
The contract automata runtime environment CARE [6] implements an orchestrator that interprets the syn-
thesised orchestration to coordinate the services, where each service is implementing a contract. Thus,
CARE is explicating the low-level interactions that are abstracted in contract automata orchestrations. No-
tably, one aspect that is abstracted in contract automata and concretised at the implementation level is
that of selecting the next transition to execute in the presence of choice. In [6], different implementations
are proposed based on whether services may participate externally or internally in a choice.

This paper delves into challenges and research issues for orchestration synthesis of contract automata,
given the latest developments in this field. In particular, we start by refining the current definition of semi-
controllability to consider the aforementioned possible realisations of choices defined in [6]. We provide
several examples to illustrate the differences between the refined definition and the original definition.
The various definitions of semi-controllability lead to different sets of contract automata orchestrations,
which we present in Figure 3 together with an example for each level of the orchestration hierarchy
depicted. This allows us to highlight the unique characteristics of each level and to identify current
issues in synthesising orchestrations of contract automata using these examples. Based on the issues
presented, we then outline future research challenges in the orchestration synthesis of contract automata
and a research roadmap to address them.

Related Work At last year’s ICE 2022 workshop, the compositionality of communicating finite state
machines (CFSM) with asynchronous semantics was discussed in [3]. Also contract automata are com-
posable, enabling the modelling of systems of systems. Moreover, under certain specific conditions
that were presented at the 2014 edition of ICE [11, 12], an orchestration of contract automata can be
translated into a choreography of synchronous or asynchronous CFSM. The relation between multiparty
session types and CFSM is discussed in [27]. Therefore, contract automata can be related to multiparty
session types by exploiting their common relation with CFSM [11, 12, 27].

The contract automata approach is closer to [22], in which behavioural types are expressed as finite
state automata of Mungo, called typestates [25]. Similarly to CARE, the runtime environment for contract
automata [6], in Mungo finite state automata are used as behaviour assigned to Java classes (one automa-
ton per class), with transition labels corresponding to methods of the classes. A tool to translate typestates
into automata was presented at ICE 2020 [26]. CATApp, a graphical front-end tool for designing contract
automata, is available in [19]. A tool similar to Mungo is JaTyC (Java Typestate Checker) [2].

The refined definition of semi-controllability presented in this paper closely aligns with the notion
of weak receptiveness in team automata [14, 15]. However, the challenges addressed in this paper are
primarily related to the problem of synthesising an orchestration of services and as such are not directly
relevant to team automata.

Differently from the semi-controllability for orchestrations, a distinct notion of semi-controllability
has been studied in [9, 4] for choreographies of services. Finally, while a runtime environment for the or-
chestration of services has been proposed in [6], this has yet to be realised for the case of choreographies,
which could result in improvements in the notion of semi-controllability for choreographies.

Outline We start by providing some background on contract automata and orchestration synthesis in
Section 2. We introduce a refined notion of semi-controllability in Section 3. In Section 4, we present
several research challenges for orchestration synthesis of contract automata. We conclude in Section 5.
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2 Background

We will begin by formally introducing contract automata and their synthesis operation. Contract au-
tomata are a type of finite state automata that use a partitioned alphabet of actions. A Contract Automa-
ton (CA) can model either a single service or a composition of multiple services that perform actions.
The number of services in a CA is known as its rank. If the rank of a CA is 1, then the contract is referred
to as a principal (i.e., a single service).

The labels of a CA are vectors of atomic elements known as actions. Actions are categorised as either
requests (prefixed by ?), offers (prefixed by !), or idle actions (represented by a distinguished symbol −).
Requests and offers belong to the sets R and O, respectively, and they are pairwise disjoint. The states
of a CA are vectors of atomic elements known as basic states. Labels are restricted to requests, offers
or matches. In a request (resp. offer) label there is a single request (resp. offer) action and all other
actions are idle. In a match label there is a single pair of request and offer actions that match, and all
other actions are idle. The length of the vectors of states and labels is equal to the rank of the CA. For
example, the label [!a,?a,−,−] is a match where the request action ?a is matched by the offer action !a,
and all other actions are idle. Note the difference between a request label (e.g., [?a,−]) and a request
action (e.g., ?a). A transition may also be called a request, offer or match according to its label. Figure 4
depicts three principal contracts, whilst Figure 5 depicts a contract of rank 3.

The goal of each service is to reach an accepting (final) state such that all its request (and possibly
offer) actions are matched. Transitions are equipped with modalities, i.e., necessary (◻) and optional (○)
transitions, respectively 1. Optional transitions are controllable, whereas necessary transitions can be un-
controllable (called urgent necessary transitions) or semi-controllable (called lazy necessary transitions).
The resulting formalism is called Modal Service Contract Automata (MSCA). In the following definition,
given a vector a⃗, its ith element is denoted by a⃗(i).
Definition 1 (MSCA). Given a finite set of states Q = {q1,q2, . . .}, an MSCA A of rank n is a tuple⟨Q, q⃗0,Ar,Ao,T,F⟩, with set of states Q = Q1 × . . .×Qn ⊆Qn, initial state q⃗0 ∈ Q, set of requests Ar ⊆ R,
set of offers Ao ⊆O, set of final states F ⊆Q, set of transitions T ⊆Q×A×Q, where A ⊆ (Ar ∪Ao∪{●})n,
partitioned into optional transitions T○ and necessary transitions T◻, with T◻ further partitioned into
urgent necessary transitions T◻u and lazy necessary transitions T◻l , and such that given t = (q⃗, a⃗, q⃗ ′) ∈T :
i) a⃗ is either a request, an offer or a match; ii) if a⃗ is an offer, then t ∈ T○; and iii) ∀i ∈ 1 . . .n, a⃗(i) = ●
implies q⃗(i) = q⃗′(i).

Composition of services is rendered through the composition of their MSCA models by means of the
composition operator ⊗, which is a variant of a synchronous product. This operator basically interleaves
or matches the transitions of the component MSCA, but, whenever two component MSCA are enabled
to execute their respective request/offer action, then the match is forced to happen. Moreover, a match
involving a necessary transition of an operand is itself necessary. The rank of the composed MSCA is
the sum of the ranks of its operands. The vectors of states and actions of the composed MSCA are built
from the vectors of states and actions of the component MSCA, respectively. In this paper, we will only
consider principal contracts and compositions of principals, which will be automatically refined into
orchestrations (as shown in Figure 2). However, it is important to note that contracts can be created by
composing contracts with a rank of one or higher.

In a composition of MSCA, typically various properties are analysed. We are especially interested in
agreement. The property of agreement requires to match all requests, whereas offers can go unmatched.

1Originally, in [8], the optional modality was called permitted and denoted with ◇. Since in contract automata the two
modalities are a partition, the terminology has been updated to avoid confusion with modal transition systems, where ◻ ⊆◇.
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CA support the synthesis of the most permissive controller (mpc) known from the theory of super-
visory control of discrete event systems [24, 18], where a finite state automaton model of a supervisory
controller is synthesised from given (component) finite state automata that are composed. The synthe-
sised automaton, if successfully generated (i.e., non-empty), is such that it is non-blocking, controllable,
and maximally permissive. An automaton is said to be non-blocking if, from each state, at least one of
the final states (distinguished stable states that represent completed ‘tasks’ [24]) can be reached with-
out passing through so-called forbidden states, meaning that there is always a possibility to return to an
accepted stable state (e.g., a final state).

The synthesised automaton is said to be controllable when only controllable transitions are disabled.
Indeed, the supervisory controller is not permitted to directly block uncontrollable transitions from oc-
curring; the controller is only allowed to disable them by preventing controllable actions from occurring.
Finally, the fact that the resulting supervisory controller is said to be maximally permissive (or least re-
strictive) means that as much behaviour of the uncontrolled system as possible is present in the controlled
system without violating neither the requirements, nor controllability nor the non-blocking condition.

Orchestration Synthesis As stated previously, optional transitions are controllable, whereas neces-
sary transitions can be either uncontrollable (called urgent) or semi-controllable (called lazy). In the
mpc synthesis (implemented in CATLib [9, 5]), all necessary transitions are urgent, i.e., they are al-
ways uncontrollable. This stems from the fact that traditionally uncontrollable transitions relate to an
unpredictable environment.

When synthesising an orchestration of services, all necessary transitions are instead lazy, i.e., they
are semi-controllable [8, 9]. A semi-controllable transition t is a transition that is either uncontrollable
or controllable according to given conditions. In [9], different conditions are given according to whether
the synthesis of an orchestration or a choreography is computed. In this paper, we only consider orches-
trations. Below, we denote with Dangling(A) the set of states that are not reachable from the initial
state or cannot reach any final state. More in detail, a semi-controllable transition t is controllable if in
a given portion A′ of A there exists a semi-controllable match transition t′, with source and target states
not dangling, such that in both t and t′ the same service, in the same local state, does the same request.
Otherwise, t is uncontrollable.

Definition 2 (Controllability). Let A be an MSCA and let t = (q⃗1, a⃗1, q⃗1
′) ∈ TA. Then:

• if t ∈ T○A , then t is controllable (in A);

• if t ∈ T◻uA , then t is uncontrollable (in A);

• if t ∈ T◻lA , then t is semi-controllable (in A).

Moreover, givenA′ ⊆A, if t is semi-controllable and ∃t′ = (q⃗2, a⃗2, q⃗2
′) ∈ T◻A′ inA′ such that a⃗2 is a match,

q⃗2, q⃗2
′ /∈Dangling(A′), q⃗1(i) = q⃗2(i), and a⃗1(i) = a⃗2(i) =?a for some i ∈ 0 . . .rank(A), then t is controllable

in A′ (via t′). Otherwise, t is uncontrollable in A′.
The interpretation of optional/controllable and urgent/uncontrollable transitions is standard [24, 18].

In the upcoming section, we will delve into different understandings and interpretations of the concept of
semi-controllability. We remark that the orchestration synthesis defined below does not support urgent
transitions. The orchestration synthesis, as defined below, involves an iterative refinement of the initial
automatonA (i.e., the composition of contracts). In each iteration, transitions are selectively pruned, and
a set R of forbidden states is updated accordingly. A transition t is pruned under one of two conditions:
if it is a request (thus violating the agreement property enforced by the orchestration), or if the target
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[0] [1]
Client1

[!b]

[?a] [0] [1]
Client2

[!b]

[?a]◻ [0] [1]

[2][3]

Server

[!a]
[!τ]

[!a]

[0,0]
O(Client1⊗Client1)

[−, !b]

[!b,−]

Figure 1: Contracts of Client1, Client2 and Server, and orchestration O(Client1⊗Client1)

[0,0,0]
[1,0,1] [2,0,1]

[3,1,1]
[1,1,0] [2,1,0]

O(Server⊗Client2⊗Client2)

[!a,−,?a]◻
[−, !b,−]

[−,−, !b]

[!τ,−,−]

[−, !b,−]

[!a,?a,−]◻

[−, !b,−]

[!a,?a,−]◻ [!τ,−,−]

[−,−, !b]

[!a,−,?a]◻

[−,−, !b]
Figure 2: Orchestration O(Server⊗Client2⊗Client2)

state of t belongs to the set R computed up to that point. During the first iteration, all request transitions,
including both lazy and optional ones, are pruned.

In Definition 2, the automaton A′ represents an intermediate refinement of A (the starting com-
position) which occurs during an iteration of the synthesis process. Intuitively, the semi-controllable
transition t of A is controllable in A′ because there is another transition t′ in A′ matching the same
request from the same service in the same state. Otherwise, if there is no such transition t′ in A′, then
t is uncontrollable. Put differently, the controllability of t in A′ relies on the presence of a correspond-
ing transition t′ within A′ itself. If such a matching transition t′ does not exist in A′, then t is deemed
uncontrollable.

Note that in Definition 2, it is not required for t and t′ to be distinct. This implies that during the
synthesis process, a semi-controllable match transition t can switch from being controllable to uncontrol-
lable only after it has been pruned in a previous iteration. To clarify further, a semi-controllable match
transition t can switch its controllability status from controllable to uncontrollable only when t is absent
in the sub-automatonA′ during the current iteration. If t is present inA′ (i.e., it has not been pruned thus
far), then, according to Definition 2, t is considered semi-controllable and controllable within A′ via t
itself. It is important to note that these considerations are applicable only if t is a match. Additionally, it
is never the case that a semi-controllable transition t switches from uncontrollable to controllable since
transitions are only removed during the synthesis process and are never added back.

The set R of forbidden states is updated at each iteration by adding source states of uncontrollable
transitions and dangling states of the refined automaton in the current iteration. Specifically, when
the synthesis process eliminates all transitions t′ that satisfy the conditions for rendering the semi-
controllable transition t controllable via t′, then t becomes uncontrollable within the sub-automaton in the
current iteration. It is worth noting that even if t was previously pruned in an earlier iteration, its source
state q⃗1 might still be reachable in the sub-automaton of the current iteration. Consequently, q⃗1 is added
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to the set R. In the subsequent iteration, all transitions with target state q⃗1 will be pruned. This prun-
ing of transitions whose target is q⃗1 can potentially render another previously pruned semi-controllable
transition as uncontrollable, thereby adding its source state to the updated set R. This refinement process
continues until no further transitions are pruned, and no additional states are added to R. The resulting
refined automaton obtained at the end of the synthesis process represents the orchestration automaton.

The algorithm for synthesising an orchestration enforcing agreement of MSCA is defined below.
Definition 3 (MSCA orchestration synthesis). LetA be an MSCA and letK0 =A and R0 =Dangling(K0).
We let the orchestration synthesis function fo ∶MSCA×2Q→MSCA×2Q be defined as follows:

fo(Ki−1,Ri−1) = (Ki,Ri), with
TKi = TKi−1 ∖{(q⃗Ð→ q⃗ ′) = t ∈ TKi−1 ∣ (q⃗ ′ ∈ Ri−1 ∨ t is a request)}
Ri = Ri−1∪{ q⃗ ∣ (q⃗Ð→) ∈ T◻lA is uncontrollable in Ki}∪Dangling(Ki)

The orchestration automaton is obtained from the fixpoint of the function fo. In the rest of the paper,
if not stated otherwise, all necessary transitions in the examples are lazy (cf. Definition 1); for brevity
and less cluttering in the figures, we denote them by ◻ rather than ◻l .
Example 1. We provide an illustrative example to underline the differences between optional transi-
tions, urgent necessary transitions and lazy necessary transitions. Figure 1 shows two client contracts
and a server contract. Firstly, we discuss the difference between optional and necessary transitions.
When all actions of the client contract are optional (Client1), there exists an orchestration of the compo-
sition of two Client1 contracts, also depicted in Figure 1 (O(Client1⊗Client1)). Indeed the (transition
labelled with the) request ?a is optional and can be removed to obtain the orchestration. If instead the
request ?a was necessary (Client2), then there would be no orchestration for the composition of two
Client2 contracts, because the necessary request is never matched by a corresponding offer.

To illustrate the distinction between urgent and lazy necessary transitions, we consider also the server
contract shown in Figure 1. If we were to employ the traditional mpc synthesis, the clients’ necessary
requests (?a) would be treated as urgent. In such a scenario, the orchestration of the composition between
two clients and the server (generated using the mpc synthesis algorithm) would be empty, indicating that
no feasible orchestration exists.

However, if the clients’ necessary requests (?a) are considered lazy instead, an orchestration of the
composition between the server and the two clients can be achieved (computed using the orchestration
synthesis). This orchestration is depicted in Figure 2. In this case, the clients take turns fulfilling their
lazy necessary requests. This alternating behaviour is not possible when the necessary requests are
urgent.

The orchestration in Figure 2 is obtained after three iterations of the algorithm specified in Defini-
tion 3. Initially, K0 =A = Server⊗Client2⊗Client2 and R0 =Dangling(A) =∅.

With respect to the orchestration in Figure 2, the automaton A contains four additional transitions
that are t1 = [1,0,1] [−,?a,−]◻ÐÐÐÐÐ→[1,1,1], t2 = [1,1,0] [−,−,?a]◻ÐÐÐÐÐ→[1,1,1], t3 = [1,1,1] [!τ,−,−]ÐÐÐÐ→[2,1,1] and t4 =[2,1,1] [!a,−,−]ÐÐÐÐ→[3,1,1]. In the first iteration, t1 and t2 are removed from K1 because they are request
transitions. We have TK1 = TK0 ∖ {t1,t2}. Since there are no forbidden states, these are the only two
transitions that are removed during the first iteration.

Concerning the set of forbidden states R1, we have that t1 ∈ T◻lA is controllable in K1 via transition[0,0,0] [a!,a?,−]◻ÐÐÐÐÐ→[1,1,0]. Similarly, t2 ∈ T◻lA is controllable in K1 via [0,0,0] [a!,−,a?]◻ÐÐÐÐÐ→[1,0,1]. Hence,
the source states of t1 and t2 will not be added to R1. Concerning the set Dangling(K1), state [1,1,1]
was the target of only t1 and t2. Moreover, state [2,1,1] was the target of only t3. Therefore, states[1,1,1] and [2,1,1] are unreachable in K1. We have that R1 = Dangling(K1) = {[1,1,1],[2,1,1]}. In
the subsequent iteration i = 2, since transition t3 has target in R1, we have TK2 = TK1 ∖{t3}, whilst R2 =R1.
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Finally, we reach the fixpoint at iteration i = 3, where TK3 = TK2 and R3 =R2. The finalising operations
for obtaining the orchestration O in Figure 2 from the fixpoint K3 consist in removing the states in R3,
i.e., QO = QK3 ∖R3, and removing the remaining unreachable transitions in K3. In this case, transition
t4 ∈ TK3 is removed from the orchestration, i.e., TO = TK3 ∖{t4}.

In the subsequent section, we will delve deeper into additional details and interpretations regarding
the semi-controllable transitions of contract automata.

3 Refined Semi-Controllability

We start by introducing a refined notion of semi-controllability to be used in the orchestration synthesis,
formalised below. After that, we discuss how this refined notion may assist to discard some counter-
intuitive orchestrations.

Definition 4 (Refined Semi-Controllability). Let A be an MSCA and let t = (q⃗t , a⃗t , q⃗t
′) ∈ T◻lA . Moreover,

given A′ ⊆A, if ∃t′ = (q⃗t′ , a⃗t′ , q⃗t′′) ∈ T◻lA′ in A′ such that the following hold:

1. a⃗t′ is a match, q⃗t′ , q⃗t′′ /∈Dangling(A′), q⃗t( j) = q⃗t′( j), a⃗t( j) = a⃗t′( j) =?a, for some j ∈ 0 . . .rank(A);
and

2. there exists a sequence of transitions t0, . . . ,tn of A′ such that ∀i ∈ 0 . . .n, ti = (q⃗i, a⃗i, q⃗i
′) and the

following hold:

• q⃗0 = q⃗t;

• tn = t′;
• q⃗i, q⃗i

′ /∈Dangling(A′); and

• if i < n, then a⃗i( j) = − and q⃗i
′ = q⃗i+1;

then t is controllable in A′ (via t′). Otherwise, t is uncontrollable in A′.
By comparing Definition 2 and Definition 4, we note that only the semi-controllable transitions have

been refined, whilst the others are unaltered. Conditions 1 and 2 contain the constraints that are used
to decide when a semi-controllable transition is controllable or uncontrollable. The constraints of Con-
dition 1 are also present in Definition 2. The intuition is that a (refined) semi-controllable transition t
becomes controllable if (similarly to Definition 2) in a given portion ofA, there exists a semi-controllable
match transition t′, with source and target states not dangling, such that in both t and t′ the same service,
in the same local state, does the same request. Condition 2 of Definition 4 imposes new further con-
straints. It requires that t′ is reachable from the source state of t through a sequence of transitions where
the service performing the request is idle.

Consider the Venn diagram in Figure 3. The outermost set Orchestrations contains all orchestra-
tions of contract automata that are computed using the notion of semi-controllability of Definition 2.
The innermost set Refined contains only those orchestrations that are computed using the refined notion
of semi-controllability in Definition 4. Intuitively, the refined notion imposes a further constraint on
when a semi-controllable transition is controllable. As a result, more semi-controllable transitions are
uncontrollable than in the previous definition. This explains why Refined is contained in Orchestrations.

All the examples of semi-controllability available in the literature [13, 8, 9, 6] (e.g., Hotel service)
and Figure 2 are orchestrations belonging to the set Refined in Figure 3. This means that by updating the
notion of semi-controllability, all orchestrations of these examples remain unaltered.
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Hotel [8]
Railway [7]
Composition Service [6]
Example 1 [Fig. 2]
. . . has interpretation

Refined

???

Example 3
[Fig. 9]

no interpretation?

Orchestrations

Example 2
[Fig. 5]

Figure 3: A Venn diagram showing the set of orchestrations of contract automata

Example 2. We now provide an example of an orchestration belonging to Orchestrations∖Refined (cf.
Figure 3). We have three principal contracts, namely Alice, Bob and Carl, depicted in Figure 4. The
contracts of Bob and Carl perform two alternative necessary requests. The contract of Alice has two
branches. In each branch, a request of Bob and a request of Carl are fulfilled by corresponding offers.

Using the notion of semi-controllability from Definition 2, the synthesis algorithm of Definition 3
takes as input the composed automaton and returns the orchestration of the composition, depicted in
Figure 5, which is a contract of rank 3. Indeed, for each necessary request of each service, there exists
a match transition in the composition where the necessary request is fulfilled by a corresponding offer.
In other words, for each necessary request of Bob and Carl, there exists an execution where the request
is matched by a corresponding offer. For example, the composition Alice⊗Bob⊗Carl contains the
transition t = [a1,b0,c0] [−,?d,−]◻ÐÐÐÐÐ→[a1,b2,c0], which is semi-controllable. According to Definition 2, t is
controllable (in Alice⊗Bob⊗Carl) via t′ = [a2,b0,c0] [!d,?d,−]◻ÐÐÐÐÐ→[a4,b2,c0]. Since t is controllable and it
is not in agreement (i.e., the label of t is a request), this transition is pruned during the synthesis of the
orchestration. We note that t is controllable in t′ also in all sub-automaton of the composition computed
in the various iterations of the synthesis algorithm, and in the final orchestration depicted in Figure 5.

Using the refined notion of semi-controllability of Definition 4, the orchestration of Alice⊗Bob⊗
Carl is empty (i.e., there is no orchestration). Consider again transition t. From state [a1,b0,c0], it is not
possible to reach any transition labelled by [!d,?d,−]◻. It follows that t is uncontrollable. Hence, at some
iteration i of the orchestration synthesis algorithm in Definition 3, state [a1,b0,c0] becomes forbidden
and it is added to the set Ri. At iteration i+1, the controllable transition [a0,b0,c0] [!a,−,−]◻ÐÐÐÐÐ→[a1,b0,c0]
is pruned because its target state is forbidden. At the next iteration (i+ 2), the initial state [a0,b0,c0]
becomes forbidden, because there are semi-controllable transitions not in agreement exiting the initial
state (e.g., [a0,b0,c0] [−,?c,−]◻ÐÐÐÐÐ→[a0,b1,c0]) that are uncontrollable in the sub-automaton whose transitions
are Ti+2. Since the initial state is forbidden, it follows that there is no orchestration for Alice⊗Bob⊗Carl.

Indeed, whenever the state [a1,b0,c0] is reached, although Bob and Carl are still in their initial state,
Bob can no longer perform the necessary request ?d and Carl can no longer perform the request ? f . In
fact, neither Bob nor Carl can decide internally which necessary request to execute from their current
state. For example, there is no trace where the request ?c of Bob and the request ? f of Carl are matched.

The orchestrations belonging to Refined (i.e., orchestrations computed using the refined notion of
semi-controllability given in Definition 4) have an intuitive interpretation when compared to the classic
notion of uncontrollability. We recall that uncontrollable transitions are called urgent necessary transi-
tions in MSCA, while semi-controllable transitions are called lazy necessary transitions.
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[a0]
[a1] [a3] [a5]

[a2] [a4] [a6]

A [!a] [!c] [!e]

[!b] [!d] [! f ]
[b0]

[b1]

[b2]

B [?c]◻
[?d]◻

[c0]
[c1]

[c2]

C [?e]◻
[? f ]◻

Figure 4: Contracts of Alice, Bob and Carl

[a0,b0,c0]
[a1,b0,c0] [a3,b1,c0] [a5,b1,c1]

[a2,b0,c0] [a4,b2,c0] [a6,b2,c2]

O(A⊗B⊗C) [!a,−,−] [!c,?c,−]◻ [!e,−,?e]◻

[!b,−,−] [!d,?d,−]◻ [! f ,−,? f ]◻
Figure 5: Orchestration O(A⊗B⊗C) of Alice⊗Bob⊗Carl

Intuitively, an urgent transition cannot be delayed, whereas this is the case for a lazy one. In a concur-
rent composition of agents, the scheduling of concurrent urgent necessary transitions is uncontrollable.
Instead, concerning concurrent lazy necessary transitions, each agent internally decides its next lazy
necessary transition to execute, but the orchestrator schedules when this transition will be executed, i.e.,
the scheduling is controllable. In Example 2, there is no orchestration because, for example, from state[a1,b0,c0] there is no possible scheduling that allows the services to match all their necessary requests.
Continuing Example 1, the orchestration in Figure 2 is non-empty because the scheduling of the actions
in the orchestration is controlled by the orchestrator: one of the two necessary requests is scheduled
to be matched only when the server has reached its internal state [2]. If instead the clients’ necessary
request ?a is urgent, then there exists no orchestration of the composition of two clients and the server.
This is because in this case the scheduling is uncontrollable: it is not possible to schedule one of the
two clients to have its necessary urgent request to be matched only when the server reaches the state [2].
In this case, the server should be ready to match the requests whenever they can be executed, without
delaying them.

4 Research Challenges

In this section, we describe the currently known limits of the synthesis of orchestrations adopting either
Definition 2 or Definition 4, we identify a number of research challenges to overcome these limits, and
we propose a research roadmap aimed to tackle these challenges effectively.

First, the notion of semi-controllability introduced in [8, 5] and recalled in Definition 2 allows to syn-
thesise orchestrations that may sometimes limit the capability of each service to perform internal choices.
The contract automata formalism abstracts from the way that choices are made. Different implementa-
tions are possible in which each service may or may not decide the next step in an orchestration [6].

Consider again Example 2. Both Bob and Carl are able to perform two alternative necessary requests
from their initial state. However, as shown in Figure 5, they are forbidden from internally deciding which
necessary request is to be executed at runtime. If, for example, Bob selects the request ?d and Carl selects
the request ?e, then it is not possible for Alice to match both requests.
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[Dealing]
[P1]

[P2]
[Collecting] [Card2] [Cards21]

[Card3]

[Card4]

[Cards32] [Cards31]

[Cards43] [Cards42] [Cards41]

Dealer

[?pair1]

[?pair2]

[?pair2]
[?pair3]

[?pair3]
[!2][!3]

[!4]
[!1]

[!2] [!1]

[!3] [!2] [!1]

Figure 6: Contract of the Dealer

[Waiting]

[Pair1] [Pair2] [Pair3]

[Pair1Card1] [Pair1Card3] [Pair2Card2] [Pair2Card4] [Pair3Card2] [Pair3Card3]

Player

[!pair1] [!pair2] [!pair3]

[?1]◻ [?3]◻ [?2]◻ [?4]◻ [?2]◻ [?3]◻

Figure 7: Contract of the Player

If we adopt the interpretation given previously (i.e., agents internally choose their necessary transi-
tions and their scheduling is controllable) then we argue that the orchestration computed using Defini-
tion 2 is too abstract and should in fact be empty. This is indeed the case if Definition 4 were used instead
of Definition 2.

The first research challenge is to identify a concrete application of services that perform necessary
requests and whose orchestration belongs to the set Orchestrations∖Refined.

Solving this challenge could help provide an intuitive interpretation of these types of orchestrations.
An application should be identified in which each service statically requires that for each necessary
request there must exist an execution where this is eventually matched (cf. Definition 2). However,
during execution, the choice of which necessary request is to be matched could be external to the service
performing the necessary request. Even if the execution of different branches is determined externally,
a service contract may still require all branches to be available in the composition. This could be due to
the contract’s need to enforce certain hyperproperties, such as non-interference or opacity.

Next, we illustrate the second research challenge. All examples of orchestrations currently available
in the literature [7, 6, 5, 9, 8] reside inside the set Refined (cf. Figure 3). We showed in Example 2 an
orchestration O not belonging to the set Refined and we argued that O is too abstract and should in fact be
empty. We now provide another example of an orchestration not belonging to the set Refined. However,
differently from Example 2, in this case the orchestration should not be empty.
Example 3. This example involves a simple card game with two players and a dealer. At the beginning
of each round, the dealer chooses a pair of cards to deal to each player (i.e., each player receives a pair
of cards). The dealer can select two out of three different pairs of cards:
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⎡⎢⎢⎢⎢⎣
Collecting

Pair1
Pair2

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
Card2
Pair1

Pair2Card2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Card3
Pair1Card3

Pair2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Card4
Pair1

Pair2Card4

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
Collecting
Pair1Card1

Pair2

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
Card2

Pair1Card3
Pair2Card2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Cards21
Pair1Card1
Pair2Card2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Cards32
Pair1Card3
Pair2Card2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Card3
Pair1Card3
Pair2Card4

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Cards41
Pair1Card1
Pair2Card4

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Cards43
Pair1Card3
Pair2Card4

⎤⎥⎥⎥⎥⎦

Dealer⊗Player⊗Player [?pair2,−, !pair2]

[!2,−,?2]◻ [!3,?3,−]◻ [!4,−,?4]◻

[−,?1,−]◻

[−,?3,−]◻ [!1,?1,−]◻ [!2,−,?2]◻ [−,−,?4]◻ [!1,?1,−]◻ [!3,?3,−]◻

Figure 8: A fragment of the composition of Dealer⊗Player⊗Player

• Pair 1: card 1 and card 3;

• Pair 2: card 2 and card 4;

• Pair 3: card 2 and card 3.

After the dealer has dealt the pairs of cards, each player selects one of the two cards that was received.
Once the players have selected their cards, the dealer collects the selected cards from each player. The
goal of the game is for the dealer to avoid picking up two cards in ascending or equal order, which would
result in the dealer losing. In other words, if the dealer picks up a card that is higher than the other card
that was picked up or if two cards of the same value are picked up, the dealer loses. To ensure that the
dealer never loses, the dealer has to choose the correct pairs of cards to deal. There are six possible ways
to choose the pairs of cards, but only two of them guarantee a strategy for the dealer to collect the cards
selected by the players in descending order. The strategy for the dealer consists of dealing to the players
(in no particular order) Pair 1 and Pair 2. Indeed, in the remaining cases there exists the possibility that
the players internally select the same card. In this case, there is no way of rearranging the transitions to
avoid the same cards being picked by the dealer.

We modelled this above-mentioned problem as an orchestration of contracts, using the refined notion
of semi-controllability. We only model one round of the game. The CA in Figure 6 models the dealer.
Note that each request can be matched by either of the two players. Once the dealer has dealt the pairs
of cards, the cards selected by the players are collected. Note that the two cards can only be collected
in descending order. The CA in Figure 7 models a player. Once the player has received a card, the
player decides internally which card to select. This internal decision is modelled as a choice among lazy
necessary transitions.

The synthesis algorithm adopting the refined notion of semi-controllability from Definition 4 takes
as input the composition of the dealer CA and two players CA and returns an empty orchestration. To
explain why the resulting orchestration is empty, consider Figure 8 depicting a portion of the composition
of the dealer with two players.

The state [Collecting,Pair1,Pair2] is reached when the first player receives pair1 and the second
player receives pair2. A symmetric argument holds for state [Collecting,Pair2,Pair1], not depicted here.
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The transition

[Card2,Pair1,Pair2Card2] [−,?3,−]◻ÐÐÐÐÐ→[Card2,Pair1Card3,Pair2Card2]
is uncontrollable according to Definition 4. Indeed, from state [Card2,Pair1,Pair2Card2] it is not possible
to reach state [Collecting,Pair1,Pair2]. This makes the state [Card2,Pair1,Pair2Card2] forbidden. Hence,
to avoid reaching a forbidden state, the algorithm prunes the transition

[Collecting,Pair1,Pair2] [!2,−,?2]◻ÐÐÐÐÐ→[Card2,Pair1,Pair2Card2]
which is in fact controllable according to Definition 4. Indeed, from state [Collecting,Pair1,Pair2] it is
possible to reach the transition

[Card3,Pair1Card3,Pair2] [!2,−,?2]◻ÐÐÐÐÐ→[Cards32,Pair1Card3,Pair2Card2]
via a transition in which the second player is idle. However, during the synthesis algorithm also the
state [Card3,Pair1Card3,Pair2] becomes forbidden due to its outgoing necessary transition, which is
uncontrollable according to Definition 2. This in turn causes the pruning of transition

[Collecting,Pair1,Pair2] [!3,?3,−]◻ÐÐÐÐÐ→[Card3,Pair1Card3,Pair2]
which is controllable. Once the transition has been pruned, the transition

[Collecting,Pair1,Pair2] [!2,−,?2]◻ÐÐÐÐÐ→[Card2,Pair1,Pair2Card2]
which was previously controllable becomes uncontrollable. This makes the state [Collecting,Pair1,Pair2]
forbidden. Note, however, that [Collecting,Pair1,Pair2] should not be forbidden. Indeed, from that state,
for each pair of cards selected by the players, the dealer has a strategy to pick them in the correct order:

• if player 1 selects card 1 and player 2 selects card 2, then execute [!2,−,?2],[!1,?1,−];
• if player 1 selects card 1 and player 2 selects card 4, then execute [!4,−,?4],[!1,?1,−];
• if player 1 selects card 3 and player 2 selects card 2, then execute [!3,?3,−],[!2,−,?2];
• if player 1 selects card 3 and player 2 selects card 4, then execute [!4,−,?4],[!3,?3,−].
This example shows that there are cases for which Definition 4 is too restrictive. In this case, the

orchestration can be computed using Definition 2, and it is displayed in Figure 9.

To better understand the underlying assumption of Definition 4, we need to decouple the moment in
which a service selects which transition it will execute from the moment in which a service executes that
transition. The underlying assumption of Definition 4 is that these two moments are not decoupled.

For example, the first player whose internal state is Pair1 could select and execute ?3 also from
state [Card2,Pair1,Pair2Card2], while the strategy described above assumes that the player selects a card
in state [Collecting,Pair1,Pair2]. In fact, the current implementation of the contract automata runtime
environment CARE [6] allows the decoupling of these two moments. Once state [Collecting,Pair1,Pair2]
is reached, the orchestrator interacts with both players and, based on their choices, correctly schedules
the transitions of the dealer and the players. This means that the players select their next action in state[Collecting,Pair1,Pair2] and afterwards their execution is bounded to the transition they have selected.
Summarising, Example 2 has showed that in some cases Definition 2 is too abstract, whereas Example 3
has showed that in some cases Definition 4 is too restrictive.
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⎡⎢⎢⎢⎢⎣
P1

Waiting
Pair1

⎤⎥⎥⎥⎥⎦
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Pair1

Waiting

⎤⎥⎥⎥⎥⎦
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⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
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Pair1Card3
Pair2

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
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⎡⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎦
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Waiting
Waiting
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Card4

Pair2Card4
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⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
Card3
Pair2
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⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
Card2
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Pair1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Cards21
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⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
Cards32
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⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
Cards41

Pair2Card4
Pair1Card1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
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Pair2Card4
Pair1Card3

⎤⎥⎥⎥⎥⎦

O(Dealer⊗Player⊗Player)

[?pair1, !pair1,−] [?pair1,−, !pair1]

[?pair2,−, !pair2][?pair2, !pair2,−][!4,−,?4]◻

[!3,?3,−]◻

[!2,−,?2]◻

[!1,?1,−]◻

[!2,−,?2]◻

[!1,?1,−]◻

[!3,?3,−]◻

[!4,?4,−]◻

[!3,−,?3]◻

[!2,?2,−]◻

[!1,−,?1]◻

[!2,?2,−]◻

[!1,−,?1]◻

[!3,−,?3]◻

Figure 9: Orchestration O(Dealer⊗Player⊗Player)
The second research challenge is to identify a notion of semi-controllability capable of discarding
orchestrations such as the one in Example 2 and providing non-empty orchestrations in scenarios such
as the one described in Example 3.

The resulting, currently unknown set of orchestrations that would be identified by the notion of semi-
controllability that solves this challenge is depicted in Figure 3 with dashed lines.

We continue by discussing further research challenges for the orchestration synthesis of contract
automata. An important aspect is the ability to scale to large orchestrations when many service contracts
are composed. We note that computing Definition 4 is harder than computing Definition 2, due to the
additional constraint of reachability which requires a visit of the automaton. Decoupling the moment in
which a service selects a choice from the moment in which the selected choice is executed, could further
increase the hardness of deciding when a lazy necessary transition is controllable.

Consider again the CA in Figure 1. From their initial state, both Bob and Carl have two choices. If,
instead of two principals, we had ten principals whose behaviour is similar to that of Bob and Carl, then
there would be 210 possible combinations of (internal) choices the services could make.

The third research challenge is to provide scalable solutions for synthesising orchestrations.

Generally speaking, the behaviour of an orchestration that belongs to the unknown dotted set of
Figure 3 must be a sub-automaton of an orchestration computed using Definition 2 and a super-automaton
of an orchestration computed using Definition 4. Indeed, Definition 2 can be used as an upper bound and
Definition 4 as a lower bound to approximate the behaviour of such an orchestration.
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Finally, we discuss the last research challenge identified in this paper. We previously formalised the
notion of lazy necessary request that is semi-controllable according to either Definition 2 or Definition 4.
We noted that Definition 2 may exclude the case in which, in the presence of a choice, a service may
internally select its necessary transition. Instead, Definition 4 may exclude the case in which, in the pres-
ence of a choice, the moment in which the service internally selects its necessary transition is decoupled
from the moment in which the selected necessary transition is executed. In other words, we identified two
requirements that an orchestration of services should satisfy: independence and decoupling of choices.

The fourth research challenge is to consolidate a set of requirements that a desirable orchestration of
service contracts must satisfy.

The requirements that would solve this challenge should be established incrementally, as discussed
in this paper. Formal definitions of necessary service transitions and practical examples are useful to
identify the ideal set of requirements that an orchestration of services should satisfy. Of course, these
requirements are entangled with the underlying execution support of an orchestration of services, which
was recently proposed in [6].

4.1 Research Roadmap

We have presented a series of research challenges associated with the orchestration of contract automata.
We now propose a potential research roadmap aimed at tackling these challenges effectively. However,
it is necessary to further examine the concepts described below to determine their validity.

Specifying Choices We propose to concretise the selection of the next transition to execute at contract
automata level, distinguishing between internal and external selections. Presently, this distinction is ab-
stracted away within contracts and handled by the underlying execution support. Our rationale is that
abstracting from the selection process may lead to scalability challenges. Specifically, if a transition is
selected internally, it must always be available, whereas an externally selected transition can be removed
from the orchestration. In essence, internal selection imposes stricter requirements than external selec-
tion. Consequently, treating all selections as internal to ensure independence of choice leads to larger
state spaces. For instance, the issue highlighted in Example 2 arises due to the presence of externally se-
lected transitions. By allowing contracts to specify which transitions are internally or externally selected,
we can potentially reduce the state space, as compared to considering all choices as internal.

Pursuing the above has important implications. Firstly, it necessitates updating accordingly the un-
derlying execution support, CARE, to align it with the contract automata specifications. This entails
reducing the implementation freedom for each choice to adhere to the contract’s explicit selection of
the next transition. By explicating choices within contracts, we establish the interpretation of necessary
requests discussed in this paper. In this interpretation, a service internally decides to perform a necessary
request, but the scheduling of the execution of the request is controlled by the orchestrator. In other
words, optional actions are externally selected, whereas necessary actions are internally selected. Con-
sequently, by explicitly stating choices in contracts, we can address the first research challenge. Indeed,
all necessary requests would be internally selected. Scenarios like the one outlined in the contect of the
first research challenge (i.e., external necessary requests) would be practically ruled out.

Another implication involves associating optional actions with offers and necessary actions with
requests, which helps eliminate undefined choices. For instance, a branch where all actions (both offers
and requests) are optional would require runtime support to determine which service is responsible for
choosing the next step.
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[0] [1]
Adrian

[!b]

[?a]◻ [0] [1] [2]
Bruce

[?b]◻ [!a]

Figure 10: Two contracts whose orchestration requires further investigation

A third and final implication relates to the fourth research challenge, which entails consolidating a
set of requirements for effective orchestrations. Notably, if choices are explicitly specified in contracts,
the requirement of independence of choice can be removed.

Implementing the Decoupling of Choices The second research challenge, as mentioned previously,
revolves around the absence of the decoupling of choice requirement in both Definitions 2 and 4. This
requirement suggests a potential implementation of semi-controllable transitions and may help identify
the currently unknown set of orchestrations in Figure 3. Currently, a semi-controllable transition is
defined as a transition that can be either controllable or uncontrollable based on a global condition of
the automaton. However, decoupling the moment when a service internally selects a transition from the
moment when the transition is executed might require splitting a semi-controllable transition into two
distinct transitions.

Reasoning in this way suggests that a semi-controllable transition could potentially be represented as
two consecutive transitions. The first transition would be uncontrollable, capturing the internal selection,
while the subsequent transition would be controllable and responsible for executing the action. For ex-
ample, consider a semi-controllable transition [q] [?a]◻lÐÐÐ→[q′], which would be split into two transitions:
t1 = [q] [τ]◻uÐÐÐ→[i] and t2 = [i] [?a]ÐÐ→[q′]. Here, t1 represents an uncontrollable silent transition to an inter-
mediate, non-final state, while t2 is controllable and executes the action. This approach suggests that the
orchestrator cannot control the internal selection made with t1, but it can control and schedule the execu-
tion of the action indicated by t2. Moreover, an important consequence of the fact that the intermediate
state is non-final, is that t2 must eventually be executed.

Further exploration is required to determine whether this interpretation of semi-controllability solves
the third research challenge. In particular, there are still corner cases that require further investigation.
For instance, consider the contracts in Figure 10. Although an orchestration could be obtained by match-
ing the necessary request ?b of Bruce first and only afterwards the necessary request ?a of Adrian, this
orchestration is not supported by the notion of semi-controllability outlined above. In this orchestra-
tion, Adrian internally selects the request ?a and the orchestrator schedules the request of Adrian to be
matched later after Adrian matches the request of Bruce.

Furthermore, we envision the establishment of a clear separation between optional and necessary
transitions on the one hand and controllable and uncontrollable transitions on the other. Modellers
should only define contracts with requests and offers, in which all requests are considered necessary,
and all offers are considered optional. Additionally, all necessary requests should be categorised as
lazy/semi-controllable, thus effectively excluding urgent necessary requests from contracts. This implies
that contract automata with optional and necessary transitions should be transformed into automata with
solely controllable and uncontrollable transitions, which are known as plant automata in supervisory
control theory. It is worth noting that all uncontrollable transitions will serve as silent moves to represent
the internal selection of a necessary transition.
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Experimental Validation of Performance The third research challenge highlights the issue of scala-
bility and proposes the adoption of Definition 2 as an upper bound for the set of orchestrations. However,
it remains unclear whether the synthesis process using Definition 2 is faster compared to synthesising us-
ing the mapped plant automaton as suggested earlier. Definition 2 necessitates a visit of the automaton at
each iteration of the synthesis process to determine whether a semi-controllable transition is controllable
or uncontrollable. This requirement is not present in a plant automaton consisting solely of controllable
and uncontrollable transitions. On the other hand, the suggested mapping approach increases the state
space of the automata by introducing an additional state for each necessary transition. As a result, it is
essential to conduct further experimental research to assess the effectiveness of utilising Definition 2 as
an upper bound for the set of orchestrations. This research should involve measuring the performance
and efficiency of the synthesis process when employing Definition 2 and comparing it with the approach
based on the mapped plant automaton.

5 Conclusion

We have presented a number of research challenges related to the orchestration synthesis of contract
automata. Initially, we proposed a novel refined definition of semi-controllability and compared it to the
current definition through illustrative examples. We identified various sets of orchestrations, as showed
in Figure 3. Additionally, we informally discussed two prerequisites that the orchestration of contracts
should satisfy: independence and decoupling of choices. Furthermore, we evaluated the current formal
definitions of semi-controllability based on these requirements, which generated a series of research
questions regarding the orchestration synthesis of contract automata, to be addressed in future work,
possibly by following the proposed research roadmap.
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A multiparty session formalises a set of concurrent communicating participants. We propose a type
system for multiparty sessions where some communications between participants can be ignored.
This allows us to type some sessions with global types representing interesting protocols, which have
no type in the standard type systems. Our type system enjoys Subject Reduction, Session Fidelity
and “partial” Lock-freedom. The last property ensures the absence of locks for participants with non
ignored communications. A sound and complete type inference algorithm is also discussed.

1 Introduction

The key issue in multiparty distributed systems is the composition of independent entities such that
a sensible behaviour of the whole emerges from those of the components, while avoiding type errors
of exchanged messages and ensuring good communication properties like Lock-freedom. MultiParty
Session Types (MPST), introduced in [16, 17], are a class of choreographic formalisms for the description
and analysis of such systems. Choreographic formalism are characterised by the coexistence of two
distinct but related views of distributed systems: the global and the local views. The former describes the
behaviour of a system as a whole, whereas the local views specify the behaviour of the single components
in “isolation”. Systems described by means of MPST formalisms are usually ensured (i) their overall
behaviour to adhere to a given communication protocol (represented as a global type) and (ii) to enjoy
particular communication properties like Lock-freedom (the specific property we focus on in the present
paper).

In [3] a MPST formalism was developed for systems using synchronous communications, where
global types can be assigned to multiparty sessions (parallel composition of named processes) via a type
system. Typability of a multiparty session M by a global type G ensures that M behaves as described by
G and is lock-free.

The property of Lock-freedom ensures that no lock is ever reached in the evolution of a system. A
lock is a system’s reachable configuration where a participant, which is able to perform an action, is
forever prevented to do so in any possible continuation. In particular, such a configuration is called a
p-lock in case the stuck participant be p. Lock-freedom – which entails Deadlock-freedom – could be
however too strong to be proved in some settings, and actually useless sometimes. As a matter of fact, for
particular systems, the presence of p-locks for some participants would not be problematic and would not
break their specifications. Let us assume, for instance, to have a social medium where participants can

*Partially supported by Project ”National Center for ”HPC, Big Data e Quantum Computing”, Programma M4C2 – dalla
ricerca all’impresa – Investimento 1.3: Creazione di “Partenariati estesi alle università, ai centri di ricerca, alle aziende per il
finanziamento di progetti di ricerca di base” – Next Generation EU; and by the Piano Triennale Ricerca Pia.Ce.Ri UniCT.
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ask for upgrades of their communication level (i.e. the capability describing which participants they can
communicate with and which sort of messages can be sent). The upgrades are granted by some particular
participant u according to the particular policy of the social medium. In case u be implemented so to
reply to an unbounded number of requests, it is immediate to realise that, in case all the participants get
to the highest communication level, we would be in presence of a u-lock since no more level upgrade will
be requested. This would not be a problem, since what we are interested in is the possibility for all the
participants to progress until no communication with u is possible. From that moment on the participants
other than u must be ensured to progress, but not u. This sort of circumstance is typical in clients/servers
scenarios. Given a set of participants P , we dub a system to be P-excluded lock-free whenever it is
p-lock free for each participant p not belonging to P .

In this paper we present a MPST type system in the style of [3] where it is possible to derive judg-
ments of the new shape

G ⊢P M

We say that our typing is partial since some communications between participants in P do not
appear in the global type. Our type system ensures that (a) the communications of the participants in
M not belonging to P comply with the interaction scenario represented by G and (b)M is P-excluded
lock-free.

Contributions and structure of the paper. In Section 2 we recall the calculus of multiparty ses-
sions from [3], together with the global types. Also, we introduce the novel notion of P-excluded
Lock-freedom, that we clarify by means of an example. Section 3 is devoted to the presentation of our
“partial” type system, assigning global types to multiparty sessions where some communications can
be ignored. Besides, we prove the relevant properties of partially typable sessions: Subject Reduction,
Session Fidelity and P-excluded Lock-freedom. In Section 4 we discuss a sound and complete type
inference algorithm for our partial type system. A section summing up our results, discussing related
works and possible directions for future work concludes the paper.

2 Multiparty Sessions and Global Types

In this section we recall the calculus of multiparty sessions and the global types defined in [3]. This
calculus is simpler than the original MPST calculus [16] and many of the subsequent ones. Lack of
explicit channels – even if preventing the representation of session interleaving and delegation – enables
us to focus on our main concerns and allows for a clear explanation of the type system we will introduce
in the next section.

We use the following base sets and notation: messages, ranged over by λ ,λ ′, . . . ; session par-
ticipants, ranged over by p,q, r,s,u, . . .; processes, ranged over by P,Q,R,S,U, . . . ; multiparty ses-
sions, ranged over by M,M′, . . . ; integers, ranged over by i, j, l,h,k, . . . ; integer sets, ranged over by
I,J,L,H,K, . . . .

Definition 2.1 (Processes) Processes are defined by:

P ::=coind 0 | p!{λi.Pi}i∈I | p?{λi.Pi}i∈I

where I ̸= /0 and λ j ̸= λh for j,h ∈ I and j ̸= h.

The symbol ::=coind in Definition 2.1 and in later definitions indicates that the productions are interpreted
coinductively. That is, processes are possibly infinite terms. However, we assume such processes to be
regular, i.e., with finitely many distinct sub-processes. This is done also in [7] and it allows us to adopt
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in proofs the coinduction style advocated in [21] which, without any loss of formal rigour, promotes
readability and conciseness.

Processes implement the communication behaviour of participants. The output process p!{λi.Pi}i∈I

non-deterministically chooses one message λi for some i ∈ I, and sends it to the participant p, thereafter
continuing as Pi. Symmetrically, the input process p?{λi.Pi}i∈I waits for one of the messages λi from the
participant p, then continues as Pi after receiving it. When there is only one output we write p!λ .P and
similarly for one input. We use 0 to denote the terminated process. We shall omit writing trailing 0s in
processes. We denote by p†{λi.Pi}i∈I either p!{λi.Pi}i∈I or p?{λi.Pi}i∈I .

In a full-fledged calculus, messages would carry values, that we avoid for the sake of simplicity;
hence no selection operation over values is included in the syntax.

Definition 2.2 (Multiparty sessions) Multiparty sessions are expressions of the shape:

p1[P1] ∥ · · · ∥ pn[Pn]

where p j ̸= ph for 1≤ j,h≤ n and j ̸= h. We use M to range over multiparty sessions.

Multiparty sessions (sessions, for short) are parallel compositions of located processes of the form
p[P], each enclosed within a different participant p. We assume the standard structural congruence ≡
on multiparty sessions, stating that parallel composition is associative and commutative and has neutral
elements p[0] for any p. If P ̸= 0 we write p[P] ∈M as short for M ≡ p[P] ∥M′ for some M′. This
abbreviation is justified by the associativity and commutativity of parallel composition.

The set of active participants (participants for short) of a session M, notation prt(M), is as expected:

prt(M) = {p | p[P] ∈M}
It is easy to verify that the sets of participants of structurally congruent sessions coincide.

To define the synchronous operational semantics of sessions we use an LTS, whose transitions are
decorated by labels denoting message exchanges.

Definition 2.3 (LTS for Multiparty Sessions) The labelled transition system (LTS) for multiparty ses-
sions is the closure under structural congruence of the reduction specified by the unique rule:

[COMM-T]
h ∈ I ⊆ J

p[q!{λi.Pi}i∈I] ∥ q[p?{λ j.Q j} j∈J] ∥M pλhq−−→ p[Ph] ∥ q[Qh] ∥M
Rule [COMM-T] makes communications possible, by describing when a participant p can send a message
λh to participant q, and what is the effect of such message exchange. This rule is non-deterministic in
the choice of messages. The condition I ⊆ J ensures that the sender can freely choose the message,
since the receiver must offer all sender messages and possibly more. This allows us to distinguish in the
operational semantics between internal and external choices. Note that this condition will be ensured by
the typing Rule [COMM] (see Definition 3.1).

Let Λ range over labels, namely triples of the form pλq. We define traces as (possibly infinite)
sequences of labels by:

σ ::=coind ε | Λ ·σ

where ε is the empty sequence. We use |σ | to denote the length of the trace σ , where |σ |= ∞ when σ is
an infinite trace. We define the participants of labels and traces:

prt(pλq) = {p,q} prt(ε) = /0 prt(Λ ·σ) = prt(Λ)∪prt(σ)

When σ = Λ1 · . . . ·Λn (n≥ 0) we write M σ−→M′ as short for M Λ1−→M1 · · · Λn−→Mn =M′. As usual we

write M→ (resp. M ̸→) when there exist (resp. no) Λ and M′ such that M Λ−→M′.
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It is easy to verify that, in a transition, only the two participants of its label are involved, as formalised
below.

Fact 2.4 If {p,q}∩{r,s}= /0 and r[R] ∥ s[S] ∥M pλq−−→ r[R] ∥ s[S] ∥M′, then

r[R′] ∥ s[S′] ∥M pλq−−→ r[R′] ∥ s[S′] ∥M′

for arbitrary R′,S′.

We define now the property of P-excluded Lock-freedom, a “partial” version of the standard Lock-
freedom [19, 26]. The latter consists in the possible eventual completion of pending communications
of any participant (this can be alternatively stated by saying that any participant is lock-free). We are
interested instead in the progress of some specific participants only, namely those we decide not to
“ignore”. In the following, P will range over sets of ignored participants.

Definition 2.5 (P-excluded Lock-freedom) A multiparty session M is a P-excluded lock-free session

if M σ−→M′ and p ∈ prt(M′)\P imply M′ σ ′ ·Λ−−−→M′′ for some σ ′ and Λ such that p ∈ prt(Λ).

It is natural to extend also the usual notion of Deadlock-freedom to our setting.

Definition 2.6 (P-excluded Deadlock-freedom) A multiparty session M is a P-excluded deadlock-
free session if M σ−→M′ ̸→ implies prt(M′)⊆P .

It is immediate to check that, as for standard Lock- and Deadlock-freedom, the following hold.

Fact 2.7 P-excluded Lock-freedom implies P-excluded Deadlock-freedom.

The vice versa does not hold. For example if P = q!λ .P, Q = p?λ .P and R ̸= 0, then p[P] ∥ q[Q] ∥ r[R] is
P-excluded deadlock-free for any P , but P-excluded lock-free only when r ∈P .

The following example illustrates the notion of P-excluded Lock-freedom.

Example 2.8 (Social media) Let us consider a system describing a simplified social media situation.
Participant q is allowed to greet participant p by sending a message HELLO. Participant p would like to
reply to q, but in order to do that she needs to be granted a higher communication level. The task of
granting permissions is performed by participant u which, upon p’s request (REQ), decides – according
to some parameters – whether the permission is granted (GRTD) or denied (DND). Her decision is com-
municated to both p and q. We assume that (for reusability motivation) u is implemented in order to
process an unbounded number of requests. For what concerns p, however, once she is granted the higher
communication level, she can return the greeting to q, so ending their interaction. The above system
corresponds to the following session

M≡ p[P] ∥ q[Q] ∥ u[U ]

where P = q?HELLO.u!REQ.u?{DND.P, GRTD.q!HELLO}, Q = p!HELLO.u?{DND.Q, GRTD.p?HELLO} and U =
p?REQ.p!{DND.q!DND.U, GRTD.q!GRTD.U}. The session is {u}-excluded lock-free, since, once p has been
granted the higher communication level, we get

p[0] ∥ q[0] ∥ u[U ]

where u is willing to interact but she will never be able. This, however, should not be deemed a problem,
since we are actually interested in that the interactions between p and q do proceed smoothly. ⋄

The behaviour of multiparty sessions can be disciplined by means of types. Global types describe
the conversation scenarios of multiparty sessions, possibly in a partial way.
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Definition 2.9 (Global types) Global types are defined by:

G ::=coind End | p→ q : {λi.Gi}i∈I

where I ̸= /0 and λ j ̸= λh for j,h ∈ I and j ̸= h.

As for processes, we allow only regular global types. The type p→ q : {λi.Gi}i∈I formalises a protocol
where participant p must send to q a message λ j for some j∈ I (and q must receive it) and then, depending
on which λ j was chosen by p, the protocol continues as G j. We write p→ q : λ .G when there is only one
message. We use End to denote the terminated protocol. We shall omit writing trailing Ends in global
types.

We define the set of paths of a global type, notation paths(G), as the greatest set of traces such that:

paths(End) = {ε} paths(p→ q : {λi.Gi}i∈I) =
⋃

i∈I{pλiq ·σ | σ ∈ paths(Gi)}
The set of participants of a global type is the set of participants of its paths:

prt(G) =
⋃

σ∈paths(G) prt(σ)

The regularity of global types ensures that such sets of participants are always finite.

Boundedness is a property of global types that will enable us to get P-excluded Lock-freedom from
typability. This consists in requiring any participant of a global type to occur either in all the paths or
in no path of any of its subterms which are global types. Notably this condition is a form of fairness,
even if it strongly differs from the notions of fairness discussed in [15], where fairness assumptions rule
out computational paths. Technically, we shall use the notions of depth and of boundedness as defined
below. We denote by σ [n] with n ∈ N the n-th label in the path σ , where 1≤ n≤ |σ |.
Definition 2.10 (Depth) Let G be a global type. For σ ∈ paths(G) we define

depth(σ ,p) = infimum{n | p ∈ prt(σ [n])}
and define depth(G,p), the depth of p in G, as follows:

depth(G,p) =

{
supremum{depth(σ ,p) | σ ∈ paths(G)} if p ∈ prt(G)

0 otherwise

Note that depth(G,p) = 0 iff p ̸∈ prt(G). Moreover, if p ∈ prt(G), but for some σ ∈ paths(G) it is the
case that p ̸∈ prt(σ [n]) for all n≤ |σ |, then depth(σ ,p) = infimum /0 = ∞. Hence, if p is a participant of
a global type G and there is some path in G where p does not occur, then depth(G,p) = ∞.

Definition 2.11 (Boundedness) A global type G is bounded if depth(G′,p) is finite for all participants
p ∈ prt(G′) and all types G′ which occur in G.

Intuitively, this means that if p ∈ prt(G′) for a type G′ which occurs in G, then the search for an
interaction of the shape pλq or qλp along a path σ ∈ paths(G′) terminates (and recall that G′ can be
infinite, in which case G is such). Hence the name.

Example 2 of [3] shows the necessity of considering all types occurring in a global type when defining
boundedness and that also a finite global type can be unbounded.

Since global types are regular, the boundedness condition is decidable. We shall allow only bounded
global types in typing sessions.

Example 2.12 (A global type for the social media example) The intended overall behaviour of the
multiparty session M in Example 2.8, up to the point where the request of p is possibly accepted by
u, is described by the following global type G.
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G= q→ p:HELLO.p→ u:REQ.u→ p:
{

DND.u→ q:DND.G
GRTD.u→ q:GRTD.p→ q:HELLO

Typability of M with G – by means of the type system defined in the next section – will ensure (see
Theorems 3.6 and 3.7 below) that the behaviours of participants of G, but u, will perfectly adhere to what
G describes. ⋄

We conclude this section by defining the standard LTS for global types. By means of such LTS
we formalise the intended meaning of global types as overall (possibly partial) descriptions of sessions’
behaviours. It will be used in the next section to prove the properties of Subject Reduction and Session
Fidelity which, in our setting, will slightly differ from the standard ones [16, 17].

Definition 2.13 (LTS for Global Types) The labelled transition system (LTS) for global types is speci-
fied by the following axiom and rule:

[ECOMM]
p→ q : {λi.Gi}i∈I

pλ jq−−→ G j

j ∈ I

[ICOMM]
Gi

pλq−−→ G′i ∀i ∈ I {p,q}∩{r,s}= /0

r→ s : {λi.Gi}i∈I
pλq−−→ r→ s : {λi.G

′
i}i∈I

Axiom [ECOMM] formalises the fact that, in a session exposing the behaviour p→ q : {λi.Gi}i∈I , there
are participants p and q ready to exchange a message λ j for any j ∈ I, the former as sender and the
latter as receiver. If such a communication is actually performed, the resulting session will expose the
behaviour G j.

Rule [ICOMM] makes sense since, in a global type r→ s : {λi.Gi}i∈I , communications involving par-
ticipants p and q, ready to interact with each other uniformly in all branches, can be performed if neither
of them is involved in a previous interaction between r and s. In this case, the interaction between p and
q is independent of the choice of r, and may be executed before it.

3 Type System and its Properties

As in [3, 9, 13], our type assignment allows for a simple treatment of many technical issues, by avoiding
projections, local types and subtyping [16, 17]. The novelty of the type system we present in this section
with respect to those in [3, 9, 13] is that the judgments are parametrised by a set P of participants. These
are the participants whose Lock-freedom we do not care about. The simplicity of our calculus allows us
to formulate a type system deriving directly global types for multiparty sessions, i.e. judgments of the
form G ⊢P M (where G is bounded). Here and in the following the double line indicates that the rules
are interpreted coinductively [27, Chapter 21].

Definition 3.1 (Type system) The type system ⊢P is defined by the following axiom and rules, where
sessions are considered modulo structural congruence:

[End] End ⊢ /0 p[0]

[COMM]

Gi ⊢Pi p[Pi] ∥ q[Qi] ∥M
(prt(Gi)∪Pi)\{p,q}= prt(M) ∀i ∈ I

G ⊢P p[q!{λi.Pi}i∈I] ∥ q[p?{λ j.Q j} j∈J] ∥M
=======================================

G= p→ q : {λi.Gi}i∈I G is bounded
P =

⋃
i∈IPi I ⊆ J
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[WEAK]
G ⊢P1 M1

G ⊢P1∪P2 M1 ∥M2

================= P2 = prt(M2) ̸= /0

Axiom [End] simply states that the null session has the behaviour described by End. In the null session
there is obviously no participant whose Lock-freedom we do not care about, hence the /0 subscript. An
alternative and sound version of this axiom could be End ⊢prt(M) M for any M. Such a judgment however
can be easily derived using Rule [WEAK].

Rule [COMM] just adds simultaneous communications to global types and to corresponding processes
inside sessions. Since the set Pi contains the ignored participants in branch i, the possibly non lock-
free participants in the conclusion must be

⋃
i∈IPi. Note that Rule [COMM] allows more inputs than

corresponding outputs, in agreement with the condition in Rule [COMM-T]. It also allows more branches
in the input process than in the global type, just mimicking the subtyping for session types [14]. Instead,
the number of branches in the output process and the global type must be the same. This does not
restrict typability, while it improves Session Fidelity (by arguing, respectively, as in [4] and [3]). The
condition (prt(Gi)∪Pi) \ {p,q} = prt(M) for all i ∈ I ensures that the participants in the session are
exactly those we keep track of either in G and/or in P . This condition prevents, for example, to derive
G ⊢ /0 p[P] ∥ q[Q] ∥ r[R], where G = p→ q : λ .G, P = q!λ .P, Q = p?λ .Q and R ̸= 0 is arbitrary. Note
that, instead, it is possible to derive G ⊢{r} p[P] ∥ q[Q] ∥ r[R] with R ̸= 0 arbitrary. Lock-freedom can be
ensured only for the participants of M not belonging to P .

Rule [WEAK] enables to type check just a sub session as far as we do not care about the Lock-freedom
of the participants of the rest of the session. We keep track of such participants in the subscript of the
entailment symbol. The condition P2 ̸= /0 forbids infinite applications of this rule. This condition allows
us to use coinduction on typing derivations.

Sessions are considered modulo structural congruence in typing rules following [3, 9, 13]. Clearly
this could be avoided by adding an obvious typing rule, but we prefer to have a lighter type system.

The regularity of processes and global types ensures the decidability of type checking.

Example 3.2 (Typing of the social media) Let P,Q and U be defined as in Example 2.8 and

P1 = u!REQ.u?{DND.P, GRTD.P2}, P2 = q!HELLO, Q1 = u?{DND.Q, GRTD.Q2}, Q2 = p?HELLO

U1 = p!{DND.q!DND.U, GRTD.q!GRTD.U}
Moreover, let G be defined as in Example 2.12 and G1 = p→ u:REQ.G2

D =

D
========================
G3 ⊢{u} p[P] ∥ q[Q1] ∥ u[q!DND.U ]

============= [End]
End ⊢ /0 p[0] ∥ q[0]
==============
G5 ⊢ /0 p[P2] ∥ q[Q2]

==================== [WEAK]
G5 ⊢{u} p[P2] ∥ q[Q2] ∥ u[U ]

==========================
G4 ⊢{u} p[P2] ∥ q[Q1] ∥ u[q!GRTD.U ]

=======================================================
G2 ⊢{u} p[u?{DND.P, GRTD.P2}] ∥ q[Q1] ∥ u[U1]
=================================

G1 ⊢{u} p[P1] ∥ q[Q1] ∥ u[U ]
====================
G ⊢{u} p[P] ∥ q[Q] ∥ u[U ]

Figure 1: A type derivation for the social media.
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G2 = u→ p:
{

DND.G3
GRTD.G4

G3 = u→ q:DND.G G4 = u→ q:GRTD.G5 G5 = p→ q:HELLO

Figure 1 shows a derivation of the global type G of Example 2.12 for the multiparty session M of
Example 2.8. The missing rule names are all [COMM]. Note how in the leftmost branch of the derivation
it is possible to get {u} as subscript without recurring to Rule [WEAK] thanks to the infiniteness of the
branch. For the same motivation, in case we had P = q?HELLO.u!REQ.u?{DND.P, GRTD.P′} with P′ =
q!HELLO.P′ and Q = p!HELLO.u?{DND.Q, GRTD.Q′} with Q′ = p?HELLO.Q′ (namely in case p and q kept on
indefinitely exchanging HELLO messages after receiving the GRTD message) the whole resulting session
would be typable without recurring to Rule [WEAK]. ⋄

We note that session participants are of three different kinds in a typing judgment:

1. the lock-free participants which behave as pointed out by the global type; these participants occur
in the global type but do not belong to the set of ignored participants;

2. the participants which “partially” behave as pointed out by the global type and can get stuck; these
participants occur in the global type and belong to the set of ignored participants;

3. the participants which behave in an umpredictable way; these participants do not occur in the
global type but belong to the set of ignored participants.

We observe also that ⊢ /0 coincides with the typing relation of [3].
In the remainder of this section we will show the main properties of our type system, i.e. Subject

Reduction, Session Fidelity and P-excluded Lock-freedom. We start with some lemmas which are
handy for the subsequent proofs. All proofs are by coinduction on G ⊢P M and by cases on the last
applied rule.

The first lemma states that, when G ⊢P M, all participants of M must be participants of G and/or
must belong to the set P .

Lemma 3.3 G ⊢P M implies prt(G)∪P = prt(M).

Proof. Rule [COMM]. Immediate by the condition (prt(Gi)∪Pi)\{p,q}= prt(M) for all i ∈ I.
Rule [WEAK]. In such a case, M ≡M1 ∥M2 and P = P1 ∪P2. By coinduction we get prt(G)∪

P1 = prt(M1). We hence get the thesis by the condition P2 = prt(M2). □
By the above lemma, from G ⊢P M it is immediate to get also that p ∈ prt(G) implies p ∈ prt(M)

and that p ∈ prt(M) and p ̸∈P imply p ∈ prt(G).
The process of a participant which does not occur in the global type can be freely replaced, since

typing ensures nothing about the behaviour of this participant.

Lemma 3.4 If G ⊢P p[P] ∥M and p ∈ prt(M) \ prt(G), then G ⊢P ′ p[P′] ∥M with P ′ ⊆P for an
arbitrary P′.

Proof. Rule [COMM]. Then G = q→ r : {λi.Gi}i∈I and M ≡ q[r!{λi.Qi}i∈I] ∥ r[q?{λ j.R j} j∈J] ∥M0 and
I ⊆ J and Gi ⊢Pi p[P] ∥ q[Qi] ∥ r[Ri] ∥ M0 for all i ∈ I with P =

⋃
i∈I Pi. By coinduction we get

Gi ⊢P ′
i
p[P′] ∥ q[Qi] ∥ r[Ri] ∥M0 with P ′

i ⊆Pi for all i ∈ I for an arbitrary P′. We conclude using Rule
[COMM].

Rule [WEAK]. Then P = P1∪P2 and p[P] ∥M≡M1 ∥M2 and G ⊢P1 M1. If M1 ≡ p[P] ∥M′1 by
coinduction G ⊢P ′

1
p[P′] ∥M′1 with P ′

1 ⊆P1 for arbitrary P′ and we conclude using Rule [WEAK]. If
M2 ≡ p[P] ∥M′2 we can apply Rule [WEAK] to G ⊢P1 M1 and p[P′] ∥M′2 for arbitrary P′. □
Note that in previous lemma P ′ = P unless P′ = 0 and in this case P ′∪{p}= P .
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If p[q†{λi.Pi}i∈I] ∈M we say that q is the top partner of p and we write tp(M,p) = q. Note that we
can have q ̸∈ prt(M) or tp(M,q) ̸= p. For example, if M≡ p[q†{λi.Pi}i∈I] ∥ q[r †{λ ′j.Q j} j∈J], we have
tp(M,p) = q and tp(M,q) = r ̸= p.

Typing ensures that if a participant occurs in a global type then also her top partner occurs in the
global type.

Lemma 3.5 If G ⊢P M and p ∈ prt(G), then tp(M,p) ∈ prt(G).

Proof. By Lemma 3.3 and p ∈ prt(G) we have that p ∈ prt(M) and then tp(M,p) is defined. So, let
tp(M,p) = q.

Rule [COMM]. Then G= r→ s : {λi.Gi}i∈I and M≡ r[s!{λi.Ri}i∈I] ∥ s[r?{λ j.S j} j∈J] ∥M0 with I ⊆ J
and Gi ⊢Pi r[Ri] ∥ s[Si] ∥M0 for all i ∈ I with P =

⋃
i∈I Pi. If p ∈ {r,s}, then {p,q} = {r,s} and we

are done. Otherwise tp(M,p) = q implies tp(r[Ri] ∥ s[Si] ∥M0,p) = q for all i ∈ I. Moreover p ∈ prt(G)
implies p ∈ prt(Gi) for all i ∈ I since G is bounded. By coinduction we get q ∈ prt(Gi) for all i ∈ I. We
conclude q ∈ prt(G).

Rule [WEAK]. Then P = P1∪P2, M≡M1 ∥M2 and G ⊢P1 M1. Since by Lemma 3.3 p ∈ prt(G)
implies p ∈ prt(M1) we have tp(M1,p) = q. We get by coinduction q ∈ prt(G). □

In our particular setting, what Subject Reduction ensures depends on which participants we consider
(unlike its standard version, e.g. in [4] and [3]). In particular, it ensures that, when the involved partic-
ipants occur in the global types, the transitions of well-typed sessions are mimicked by those of global
types (namely they proceed as prescribed by the global type). Otherwise the reduced session can be
typed by the same global type. Key for this proof is Lemma 3.5, which ensures that the communicating
participants either both occur or both do not occur in the global type.

Theorem 3.6 (Subject Reduction) Let G ⊢P M and M pλq−−→M′.

i) If {p,q} ⊆ prt(G), then G
pλq−−→ G′ and G′ ⊢P ′ M′ with P ′ ⊆P .

ii) If p,q ̸∈ prt(G), then G ⊢P ′ M′ with P ′ ⊆P .

Proof. From M pλq−−→ M′ we get M ≡ p[q!{λi.Pi}i∈I] ∥ q[p?{λ j.Q j} j∈J] ∥ M0 with I ⊆ J and
M′ ≡ p[Pl] ∥ q[Ql] ∥M0 and λ = λl for some l ∈ I. Note that Lemma 3.5 implies either {p,q} ⊆ prt(G)
or p,q ̸∈ prt(G).
ii). In this case G ⊢P M implies G ⊢P ′ p[Pl] ∥ q[Ql] ∥M0 with P ′ ⊆P by Lemma 3.4.
i). The proof is by coinduction on G ⊢P p[P] ∥M and by cases on the last applied rule.

Rule [COMM]. We get G= r→ s : {λ ′h.Gh}h∈H and M≡ r[s!{λ ′h.Rh}h∈H ] ∥ s[r?{λ ′k.Sk}k∈K ] ∥M1 and
H ⊆ K and Gh ⊢Ph r[Rh] ∥ s[Sh] ∥M1 for all h ∈H with P =

⋃
h∈H Ph. If with p= r and q= s, then I =

H, J = K and λi = λ ′i for all i ∈ I. We conclude G
pλq−−→ Gl and Gl ⊢Pl M′. Otherwise {p,q}∩{r,s}= /0,

which implies r[Rh] ∥ s[Sh] ∥M1
pλq−−→ r[Rh] ∥ s[Sh] ∥M′1 for all h ∈ H by Fact 2.4. Moreover {p,q} ⊆

prt(Gh) for all h∈H since G is bounded. By coinduction we get Gh
pλq−−→G′h and G′h ⊢P ′

h
r[Rh] ∥ s[Sh] ∥M′1

for some G′h and P ′
h⊆Ph and for all h∈H. We conclude G

pλq−−→ r→ s : {λ ′h.G′h}h∈H using Rule [ICOMM]

and r→ s : {λ ′h.G′h}h∈H ⊢P ′ M′ with P ′ =
⋃

h∈H P ′
h using Rule [COMM].

Rule [WEAK]. In this case M≡M1 ∥M2 and P = P1∪P2 and G ⊢P1 M1. From {p,q} ⊆ prt(G),

by Lemma 3.3 we get {p,q} ⊆ prt(M1) which implies M1
pλq−−→M′1. By coinduction we get G

pλq−−→ G′

and G′ ⊢P ′
1
M′1 with P ′

1⊆P1. We conclude using Rule [WEAK], since by construction M′≡M′1 ∥M2.□
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We note that Subject Reduction, as formulated in previous theorem, fails if we allow unbounded
global types. Let G = p → q:{λ1.r → s:λ ,λ2.G} and M ≡ p[P] ∥ q[Q] ∥ r[s!λ ] ∥ s[r?λ ] and P =

q!{λ1, λ2.P} and Q = p?{λ1, λ2.Q}. Then we have G ⊢ /0 M and M rλ s−−→ p[P] ∥ q[Q], but there is no
transition labelled rλ s starting from G. Note that the session M can be typed, still with the /0 subscript,
by the bounded global type G′ = r→ s:λ .p→ q:{λ1,λ2.G

′}.
Session Fidelity ensures that the communications in a session typed by a global type proceed at least

as prescribed by the global type.

Theorem 3.7 (Session Fidelity) Let G ⊢P M and G
pλq−−→ G′. Then M pλq−−→ M′ and G′ ⊢P ′ M′ with

P ′ ⊆P .

Proof. The proof is by coinduction on the derivation of G ⊢P M and by cases on the last applied rule.

Rule [COMM]. The proof is by induction on the number t of transition rules used to derive G
pλq−−→ G′.

Case t = 1. Then G
pλq−−→ G′ is the Axiom [ECOMM] and G= p→ q : {λi.Gi}i∈I , where λ = λl and G′ = Gl

with l ∈ I. We get M≡ p[q!{λi.Pi}i∈I] ∥ q[p?{λ j.Q j} j∈J] ∥M0 with I ⊆ J and Gi ⊢Pi p[Pi] ∥ q[Qi] ∥M0

for all i ∈ I with P =
⋃

i∈I Pi. Then we conclude M pλq−−→ p[Pl] ∥ q[Ql] ∥M0 by Rule [COMM-T] and
Gl ⊢Pl p[Pl] ∥ q[Ql] ∥M0.

Case t > 1. Then G
pλq−−→ G′ is the conclusion of Rule [ICOMM]. Moreover G = r→ s : {λ ′h.Gh}h∈H and

G′ = r→ s : {λ ′h.G′h}h∈H and Gh
pλq−−→ G′h for all h ∈ H and {p,q}∩{r,s}= /0. We get

M≡ r[s!{λ ′h.Rh}h∈H ] ∥ s[r?{λ ′k.Sk}k∈K ] ∥M1

with H ⊆ K and Gh ⊢Ph r[Rh] ∥ s[Sh] ∥M1 for all h ∈ H with P =
⋃

h∈H Ph.

By induction r[Rh] ∥ s[Sh] ∥M1
pλq−−→M′h and G′h ⊢P ′

h
M′h with P ′

h ⊆Ph for all h ∈ H. The condition

{p,q}∩{r,s} = /0 ensures that the reduction r[Rh] ∥ s[Sh] ∥M1
pλq−−→M′h does not modify the processes

of participants r and s. Moreover the processes of participants p and q are the same in M′h for all h ∈ H.

This implies M′h ≡ r[Rh] ∥ s[Sh] ∥ M′′ for all h ∈ H and some M′′. We conclude M pλq−−→ M′ where
M′ = r[s!{λ ′h.Rh}h∈H ] ∥ s[r?{λ ′k.Sk}k∈K ] ∥M′′ using Rule [COMM-T] and G′ ⊢P ′ M′ with P ′ =

⋃
h∈H P ′

h
using Rule [COMM].

Rule [WEAK]. In this case M ≡ M1 ∥ M2 and P = P1 ∪P2 and G ⊢P1 M1. By coinduction

M1
pλq−−→M′1 and G′ ⊢P ′

1
M′1 with P ′

1 ⊆P1. Then M1 ∥M2
pλq−−→M′1 ∥M2 and G′ ⊢P ′

1∪P2 M
′
1 ∥M2

using Rule [WEAK]. □
We can show that typability ensures P-excluded Lock-freedom. This follows from Subject Reduc-

tion and Session Fidelity thanks to the boundedness condition.

Theorem 3.8 (P-excluded Lock-freedom) If G ⊢P M, then M is P-excluded lock-free.

Proof. By Subject Reduction it is enough to prove that in well-typed sessions no active participant not
belonging to P is prevented to progress. So, let p ∈ prt(M) such that p ̸∈P . By Lemma 3.3 we have
that p ∈ prt(M) and p ̸∈P imply p ∈ prt(G). We proceed now by induction on d = depth(G,p).

If d = 1 then either G = p→ q : {λi.Gi}i∈I or G = q→ p : {λi.Gi}i∈I and G
Λ−→ G′ with p ∈ prt(Λ) by

Axiom [ECOMM]. Then M Λ−→M′ by Theorem 3.7.

If d > 1 then G = q→ r : {λi.Gi}i∈I with p ̸∈ {q, r} and G
qλir−−→ Gi for all i ∈ I by Axiom [ECOMM].

Induction applies since depth(G,p)> depth(Gi,p) for all i ∈ I. Then, for all i ∈ I, we get Gi
σi·Λi−−→ G′i for
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some σi, Λi with p ∈ prt(Λi). This implies G
σ ′i−→ G′i where σ ′i = qλir ·σi ·Λi for all i ∈ I. We conclude

M
σ ′i−→M′i for all i ∈ I by Theorem 3.7. □
The following example shows that partial typing allows to type sessions which require unbounded

global types in standard type systems [17].

Example 3.9 (Buyer-Seller-Carrier) Let us consider the following session (from [11, Sect.1])

M= b[B] ∥ s[S] ∥ c[s?SHIP]

where B = s!{ADD.B, PAY} and S = b?{ADD.S, PAY.c!SHIP}
Such a session implements a system where a buyer can keep on adding goods - sold by a seller - in

his shopping cart an unbounded number of times, until he decides to buy the shopping cart’s content.
In the latter case, the seller informs the carrier for the shipment. Session M is obviously non lock-free,
since participant c would not be able to progress in case s be a seriously disturbed shopaholic who never
stop adding goods in his cart. In fact M cannot be typed in ⊢ /0 (which corresponds to the type system of
[3]).

In this scenario participant b is a client, whereas s and c are part of the service used by b. It is hence
natural to look at M with a bias towards the client, the one whose good property have to be ensured. As
a matter of fact it is possible to ensure the lock freedom of b, namely the {s,c}-excluded lock freedom
of M, by deriving

b→ s:{ADD.G, BUY} ⊢{s,c}M
as follows

D = D

======== [End]
End ⊢ /0 b[0]

========================== [S-WEAK]
End ⊢{s,c} b[0] ∥ s[c!SHIP] ∥ c[s?SHIP]

===========================================================
b→ s:{ADD.G, BUY} ⊢{s,c} b[s!{ADD.B, PAY}] ∥ s[b?{ADD.S, PAY.c!SHIP}] ∥ c[s?SHIP]

where G= b→ s:{ADD.G, BUY}. Note that b→ s:{ADD.G, BUY} is a bounded global type. ⋄

4 Type Inference

In our type system each session can be trivially typed by the End type just applying Axiom [End] and
Rule [WEAK]:

End ⊢prt(M) M
Clearly, this typing does not provide any information on M. We are interested in more informative
typings, if any. In this section, we will describe an algorithm to infer global types and sets of participants
from sessions, proving also its soundness and completeness with respect to our type system. In particular,
the algorithm applied to a session M returns all and only those global types which can be assigned to
M with derivations indexed by suitable sets of participants. Note that, since derivations indexed by the
same or different sets of participants can assign different global types to a session, the algorithm needs
to be non-deterministic in order to be complete.

The first step towards defining such an algorithm is the introduction of a finite representation for
global types. Since global types are regular terms, they can be represented, by results in [1, 12], as finite
systems of regular syntactic equations formally defined below.

We begin by defining a global type pattern as a finite term generated by the following grammar:
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G ::= End | p→ q : {λi.Gi}i∈I | X
where X is a type variable taken from a countably infinite set. We denote by vars(G) the set of type
variables occurring in G. We also need to compute sets of participants, so we define p-set patterns by:

P ::= P | x | P∪P
where x is a p-set variable taken from a countably infinite set and P can be any finite set of participants.
We denote by vars(P) the set of p-set variables occurring in P.

We use χ to range over type and p-set variables.
A substitution θ is a finite partial map from type variables to global types and from p-set variables

to sets of participants. We denote by θ +σ the union of two substitutions such that θ(χ) = σ(χ), for all
χ ∈ dom(θ)∩dom(σ), and by Gθ (resp. Pθ ) the application of θ to G (resp. P). We define θ ⪯ σ if
dom(θ)⊆ dom(σ) and θ(χ) = σ(χ), for all χ ∈ dom(θ). Note that, if vars(G)⊆ dom(θ), then Gθ is
a global type and if vars(P)⊆ dom(θ), then Pθ is a set of participants.

A type equation has shape X ≖G and a (regular) system of type equations E is a finite set of equations
such that X ≖G1 and X ≖G2 ∈ E imply G1 =G2. We denote by dom(E ) the set {X | X ≖G ∈ E } and
by vars(E ) the set

⋃{vars(G)∪{X} | X ≖ G ∈ E }. A solution of a system E is a substitution θ such
that vars(E )⊆ dom(θ) and, for all X ≖ G ∈ E , θ(X) =Gθ holds and θ(X) is bounded. We denote by
sol(E ) the set of all solutions of E .

A p-set equation has shape x ≖ P. We use E to range over regular systems of p-set equations, which
are defined similarly to regular systems of type equations. Also dom(E), vars(E) and sol(E) have the
same meanings as for systems of type equations.

A p-condition has shape (prt(X)∪x)\{p,q} .
=P and we let C range over sets of p-conditions with

pairwise distinct type and p-set variables. A substitution θ agrees with
- (prt(X)∪ x)\{p,q} .

= P if (prt(θ(X))∪θ(x))\{p,q}= P;
- C , notation θ ∝ C , if θ agrees with all p-conditions in C .

We define sol(E ,E,C ) as the set of solutions of E and E which agree with C , i.e. sol(E ,E,C ) =
{θ ∈ sol(E ) ∩ sol(E) | θ ∝ C } and note that E1 ⊆ E2, E1 ⊆ E2, C1 ⊆ C2 imply sol(E2,E2,C2) ⊆
sol(E1,E1,C1).

The algorithm follows essentially the structure of coSLD resolution of coinductive logic program-
ming [29, 30, 31, 2], namely the extension of standard SLD resolution capable to deal with regular terms
and coinductive predicates. A goal is a triple (X ,M,x) of a type variable X , a session M and a p-set
variable x. The algorithm takes a goal (X ,M,x) as input, and returns a system of type equations E and
a system of p-set equations E and a set of p-condition C . A solution for the variable X in E is a global
type for the session M in a derivation indexed by a solution for the variable x in E which satisfies the
p-conditions in C . The key idea, borrowed from coinductive logic programming, is to keep track of
already encountered goals in order to detect cycles and so avoiding non-termination.

The inference judgements have the following shape: S ⊢ (X ,M,x)⇒ (E ,E,C ), where S is a set
of goals, all with different variables which are all different from X and x. Rules defining the inference
algorithm are reported in Figure 2.

For a terminated session the algorithm returns just the two equations X ≖ End and x ≖ /0 and the
empty set of conditions (Axiom [A-END]).

In Rule [A-COMM] the algorithm nondeterministically selects one of the matching pairs of processes:
P = q!{λi.Pi}i∈I and Q = p?{λ j.Q j} j∈J , with I ⊆ J, i.e. two participants willing to communicate such
that the output process can freely choose the message. The algorithm is then recursively applied, for
each i ∈ I, to the session where the processes of p and q are, respectively, Pi and Qi. In each call the
goal (X ,p[P] ∥ q[Q] ∥M,x) is added to the set of goals. At the end of the recursive calls the algorithm
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[A-END]
S ⊢ (X ,p[0],x)⇒ ({X ≖ End},{x ≖ /0}, /0)

[A-CYCLE]
S ,(Y,M,y) ⊢ (X ,M,x)⇒ ({X ≖ Y},{x ≖ y}, /0)

[A-COMM]
S ′ ⊢ (Yi,p[Pi] ∥ q[Qi] ∥M,yi)⇒ (Ei,Ei,Ci) ∀i ∈ I

S ⊢ (X ,p[P] ∥ q[Q] ∥M,x)⇒ (E ,E,C )

S ′ = S ,(X ,p[P] ∥ q[Q] ∥M,x)
P = q!{λi.Pi}i∈I
Q = p?{λ j.Q j} j∈J I ⊆ J
Yi,yi fresh ∀i ∈ I
E = {X ≖ p→ q : {λi.Yi}i∈I}∪

⋃
i∈I Ei

E = {x ≖⋃
i∈I yi}∪

⋃
i∈I Ei

C = {(prt(Yi)∪ yi)\{p,q} .
= prt(M) | ∀i ∈ I}

∪⋃i∈I Ci

[A-WEAK]
S ,(X ,M1 ∥M2,x) ⊢ (Y,M1,y)⇒ (E1,E1,C )

S ⊢ (X ,M1 ∥M2,x)⇒ (E ,E,C )

Y,y fresh
P = prt(M2) ̸= /0
E = {X ≖ Y}∪E1
E = {x ≖ y∪P}∪E1

Figure 2: Rules of the inference algorithm.

collects all the resulting equations plus another two for the current variables. Note that variables for the
goals in the premises are fresh. This is important to ensure that the sets of equations E and E in the
conclusion are indeed regular systems of equations (there is at most one equation for each variable). The
new p-condition ensures that the resulting global type associated to X and the resulting set of participants
associated to x satisfy the conditions on participants required by Rule [COMM] in Definition 3.1.

In Rule [A-WEAK] the algorithm nondeterministically partitions the input session into two subsessions
M1 and M2 and then it is recursively called on the former. After the recursive call it simply adds the
same participants to the session (together with their processes) and to the set of ignored participants by
means of the equation x ≖ y∪P .

Finally, Axiom [A-CYCLE] detects cycles: if the session in the current goal appears also in the set S ,
the algorithm can stop, returning just two equations unifying the type and p-set variables associated with
the session together with the empty set of conditions.

Example 4.1 (Inference for the social media) Figure 3 gives a type inference where:
- the processes P, Q, U , P1, Q1, U1, P2, Q2 are defined as in Example 3.2 and U2 = q!DND.U , U3 =
q!GRTD.U ;
- the goals are

S1 = {(X ,p[P] ∥ q[Q] ∥ u[U ],x)} S2 = S1∪{(Y1,p[P1] ∥ q[Q1] ∥ u[U ],y1)}

S3 = S4 = S2∪{(Y2,p[u?{DND.P, GRTD.P2}] ∥ q[Q1] ∥ u[U1],y2)}

S5 = S3∪{(Y3,p[P] ∥ q[Q1] ∥ u[U2],y3)} S6 = S4∪{(Y4,p[P2] ∥ q[Q1] ∥ u[U3],y4)}

S7 = S6∪{(Y6,p[P2] ∥ q[Q2] ∥ u[U ],y6)} S8 = S7∪ {(Y7,p[P2] ∥ q[Q2],y7)}
- the systems of type equations are

E = {X ≖ q→ p:HELLO.Y1}∪E1 E1 = {Y1 ≖ p→ u:REQ.Y2}∪E2
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S5 ⊢ (Y5,p[P] ∥ q[Q] ∥ u[U ],y5)⇒ (E5,E5,C5)

S3 ⊢ (Y3,p[P] ∥ q[Q1] ∥ u[U2],y3)⇒ (E3,E3,C3)

S8 ⊢ (Y8,p[0] ∥ q[0],y8)⇒ (E8,E8,C7)

S7 ⊢ (Y7,p[P2] ∥ q[Q2],y7)⇒ (E7,E7,C6)

S6 ⊢ (Y6,p[P2] ∥ q[Q2] ∥ u[U ],y6)⇒ (E6,E6,C6)

S4 ⊢ (Y4,p[P2] ∥ q[Q1] ∥ u[U3],y4)⇒ (E4,E4,C4)

S2 ⊢ (Y2,p[u?{DND.P, GRTD.P2}] ∥ q[Q1] ∥ u[U1],y2)⇒ (E2,E2,C2)

S1 ⊢ (Y1,p[P1] ∥ q[Q1] ∥ u[U ],y1)⇒ (E1,E1,C1)

⊢ (X ,p[P] ∥ q[Q] ∥ u[U ],x)⇒ (E ,E,C )

Figure 3: A type inference for the social media.

E2 = {Y2 ≖ u→ p:{DND.Y3,GRTD.Y4}}∪E3∪E4 E3 = {Y3 ≖ u→ q:DND.Y5}∪E5

E4 ={Y4 ≖ u→ q:GRTD.Y6}∪E6 E5 = {Y5 ≖ X}

E6 = {Y6 ≖ Y7}∪E7 E7 = {Y7 ≖ p→ q:HELLO.Y8}∪E8 E8 = {Y8 = End}
- the systems of p-set equations are

E = {x ≖ y1}∪E1 E1 = {y1 ≖ y2}∪E2 E2 = {y2 ≖ y3∪ y4}∪E3∪E4

E3 = {y3 ≖ y5}∪E5 E4 = {y4 ≖ y6}∪E6 E5 = {y5 ≖ x}

E6 = {y6 ≖ y7∪{u}}∪E7 E7 = {y7 ≖ y8}∪E8 E8 = {y8 ≖ /0}
- the sets of p-conditions are

C = {(prt(Y1)∪ y1)\{p,q}≖ {u}}∪C1 C1 = {(prt(Y2)∪ y2)\{p,u}≖ {q}}∪C2

C2 = {(prt(Y3)∪ y3)\{u,p}≖ {q},(prt(Y4)∪ y4)\{u,p}≖ {q}}∪C3∪C4

C3 ={(prt(Y5)∪ y5)\{u,q}≖ {p}}∪C5 C4 = {(prt(Y6)∪ y6)\{u,q}≖ {p}}∪C6 C5 = /0

C6 = {y6 ≖ y7∪{u}}∪C7 C7 = {(prt(Y8)∪ y8)\{p,q}≖ /0}∪C8 C8 = /0

One can easily verify that a solution of both systems of equations E and E satisfying the p-conditions
(i.e. which agrees with C ) is X = G and x = {u}, where G is the global type defined in Example 2.12
and derived for this session in Figure 1. ⋄

Let E , E be two systems of type and p-set equations, C a set of p-conditions and S a set of goals.
A solution θ ∈ sol(E ,E,C ) agrees with S if (X ,M,x) ∈S implies prt(θ(X))∪θ(x) = prt(M) for all
X ∈ vars(E ) and all x ∈ vars(E). We denote by solS (E ,E,C ) the set of all solutions in sol(E ,E,C )
agreeing with S . We say that a system of type equations E is guarded if X ≖ Y and Y ≖ G in E
imply that G is not a variable. Moreover, E is S -closed if it is guarded and dom(E )∩ vars(S ) = /0
and vars(E ) \dom(E ) ⊆ vars(S ). We define similarly when a set of p-set equations E is guarded and
S -closed.

Toward proving properties of the inference algorithm, we check a couple of auxiliary lemmas. As
usual S ⊢ (X ,M,x)⇒ (E ,E,C ) means that this judgment belongs to a derivation in the system of
Figure 2 having a judgment with an empty sets of goals as conclusion (namely it represents the result of
a recursive call during the execution of our algorithm).
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[ι -END]
N ⊢ι

/0 p[0] : End
[ι -CYCLE]

N ,(G,M,P) ⊢ι
P M : G

[ι -COMM]

N ,(G,M,P) ⊢ι
Pi

p[Pi] ∥ q[Qi] ∥M′ : Gi

(prt(Gi)∪Pi)\{p,q}= prt(M′) ∀i ∈ I

N ⊢ι
P M : G

M≡ p[q!{λi.Pi}i∈I ] ∥ q[p?{λ j.Q j} j∈J ] ∥M′
G= p→ q : {λi.Gi}i∈I G is bounded

P = ∪i∈IPi I ⊆ J

[ι -WEAK]
N ,(G,M1 ∥M2,P1∪P2) ⊢ι

P1
M1 : G

N ⊢ι
P1∪P2

M1 ∥M2 : G
P2 = prt(M2) ̸= /0

Figure 4: Inductive typing rules for sessions.

Lemma 4.2 If S ⊢ (X ,M,x)⇒ (E ,E,C ), then E and E are S -closed.

Proof. By a straightforward induction on the derivation of S ⊢ (X ,M,x)⇒ (E ,E,C ). □

Lemma 4.3 If S ⊢ (X ,M,x)⇒ (E ,E,C ) and θ ∈ solS (E ,E,C ), then prt(θ(X))∪θ(x) = prt(M).

Proof. By induction on the derivation of S ⊢ (X ,M,x)⇒ (E ,E,C ). The only interesting case is when
Rule [A-COMM] is applied. From θ ∝ C we get (prt(θ(Yi))∪θ(yi))\{p,q}= prt(M) for all i ∈ I, which
imply prt(θ(X))∪θ(x) = prt(p[P] ∥ q[Q] ∥M) since X ≖ p→ q : {λi.Yi}i∈I ∈ E and x ≖⋃

i∈I yi ∈ E. □
To show soundness and completeness of our inference algorithm, it is handy to formulate an inductive

version of our typing rules, see Figure 4, where N ranges over sets of triples (G,M,P). We can give
an inductive formulation since all infinite derivations using the typing rules of Definition 3.1 are regular,
i.e. the number of different subtrees of a derivation for a judgement G ⊢P M is finite. In fact, it is
bounded by the product of the number of different subterms of G and the number of different subsessions
of M, which are both finite as G and (processes in) M are regular. Applying the standard transformation
according to [27, Section 21.9] from a coinductive to an inductive formulation we get the typing rules
shown in Figure 4.

In the following two lemmas we relate inference and inductive derivability.

Lemma 4.4 If S ⊢ (X ,M,x)⇒ (E ,E,C ), then S θ ⊢ι
θ(x) M : θ(X) for all θ ∈ solS (E ,E,C ) such that

vars(S )⊆ dom(θ).

Proof. By induction on the derivation of S ⊢ (X ,M,x)⇒ (E ,E,C ).
Axiom [A-END] We have E = {X ≖ End}, E = {x ≖ /0} and C = /0, hence θ(X) = End, θ(x) = /0 and

the thesis follows by Axiom [ι -END].
Axiom [A-CYCLE] We have E = {X ≖ Y}, E = {x ≖ y}, C = /0, and S = S ′,(Y,M,y). Then,

θ(X) = θ(Y ), θ(x) = θ(y) and the thesis follows by Axiom [ι -CYCLE].
Rule [A-COMM] We have M ≡ p[q!{λi.Pi}i∈I] ∥ q[p?{λ j.Q j} j∈J] ∥M′ with I ⊆ J and S ,(X ,M,x) ⊢

(Yi,Mi,yi)⇒ (Ei,Ei,Ci) with Yi,yi fresh and Mi ≡ p[Pi] ∥ q[Qi] ∥M′ and E = {X ≖ p→ q : {λi.Yi}i∈I}∪⋃
i∈I Ei, E = {x ≖ ⋃

i∈I yi} ∪
⋃

i∈I Ei, C = {(prt(Yi)∪ yi) \ {p,q} .
= prt(M′) | ∀i ∈ I} ∪⋃

i∈I Ci. Since
Ei⊆ E , Ei⊆E, and Ci⊆C , we have θ ∈ sol(Ei,Ei,Ci) for all i∈ I. Being θ ∈ solS (E ,E,C ), Lemma 4.3
implies prt(θ(X))∪θ(x) = prt(M). So we get that θ agrees with S ,(X ,M,x). Then, by the induction
hypothesis, we have S θ ,(θ(X),M,θ(x)) ⊢ι

θ(yi)
Mi : θ(Yi) for all i ∈ I. The thesis follows by Rule

[ι -COMM], since θ(X) = p→ q : {λi.θ(Yi)}i∈I and θ(x) =
⋃

i∈I θ(yi).
Rule [A-WEAK] We have M≡M1 ∥M2 and P = prt(M2) ̸= /0 and S ,(X ,M1 ∥M2,x)⊢ (Y,M1,y)⇒

(E1,E1,C ) and E = {X ≖ Y}∪E1 and E = {x ≖ y∪P}∪E1. Being θ ∈ solS (E ,E,C ), Lemma 4.3
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implies prt(θ(X))∪θ(x) = prt(M). So we get that θ agrees with S ,(X ,M,x). Then, by the induction
hypothesis, we have S θ ,(θ(X),M,θ(x)) ⊢ι

θ(y) M1 : θ(Y ). The thesis follows by Rule [ι -WEAK]. □

Lemma 4.5 If N ⊢ι
P M : G and prt(G′)∪P ′ = prt(M′) for all (G′,M′,P ′) ∈N , then, for all S , X,

x and σ such that X ,x /∈ vars(S ), dom(σ) = vars(S ) and S σ = N , there are E , E, C and θ such
that S ⊢ (X ,M,x)⇒ (E ,E,C ) and θ ∈ solS (E ,E,C ) and dom(θ) = vars(E )∪vars(E)∪vars(S ) and
σ ⪯ θ and θ(X) = G and θ(x) = P .

Proof. By induction on the derivation of N ⊢ι
P M : G. It is easy to verify that N ⊢ι

P M : G implies
prt(G)∪P = prt(M).

Axiom [ι -END] The thesis is immediate by Axiom [A-END] taking θ = σ +{X 7→ End,x 7→ /0}.
Axiom [ι -CYCLE] In this case we have N = N ′,(G,M,P), then S = S ′,(Y,M,y) and σ(Y ) = G

and σ(y) = P . By Axiom [A-CYCLE], we get S ⊢ (X ,M,x) ⇒ ({X ≖ Y},{x ≖ y}, /0), hence θ =
σ +{X 7→G,x 7→P} is a solution of {X ≖Y} and of {x≖ y}, which agrees with S , being prt(G)∪P =
prt(M) as needed.

Rule [ι -COMM] In this case we have M ≡ p[q!{λi.Pi}i∈I] ∥ q[p?{λ j.Q j} j∈J] ∥ M′ with I ⊆ J
and G = p → q : {λi.Gi}i∈I and N ,(G,M,P) ⊢ι

Pi
Mi : Gi with Mi ≡ p[Pi] ∥ q[Qi] ∥ M′ and

(prt(Gi) ∪Pi) \ {p,q} = prt(M′), for all i ∈ I. This last condition implies prt(G) ∪P = prt(M).
Set σ ′ = σ + {X 7→ G,x 7→ P} and S ′ = S ,(X ,M,x), then, by the induction hypothesis, we
get that there are Ei,Ei,Ci and θi such that S ′ ⊢ (Yi,Mi,yi) ⇒ (Ei,Ei,Ci) and θi ∈ solS ′(Ei,Ei,Ci)
and dom(θi) = vars(Ei)∪ vars(Ei)∪ vars(S ′) and σ ′ ⪯ θi and θi(Yi) = Gi and θi(yi) = Pi, for all
i ∈ I. We can assume that j ̸= l implies Yj ̸= Yl and dom(E j) ∩ dom(El) = /0 and y j ̸= yl and
dom(E j)∩ dom(El) = /0 for all j, l ∈ I, because the algorithm always introduces fresh variables. This
implies dom(θ j)∩ dom(θl) = {X ,x} for all j ̸= l, and so θ = ∑i∈I θi is well defined. Moreover, we
have θ ∈ solS ′(Ei,Ei,Ci) and σ ⪯ θ and θ(X) = G and θ(x) = P , as σ ⪯ σ ′ and σ ′ ⪯ θi ⪯ θ for all
i ∈ I. From (prt(Gi)∪Pi)\{p,q}= prt(M′) we get (prt(θ(Yi))∪θ(yi))\{p,q}= prt(M′) for all i ∈ I.
By Rule [A-COMM] we get S ⊢ (X ,M,x) ⇒ (E ,E,C ) with E = {X ≖ p → q : {λi.Yi}i∈I} ∪

⋃
i∈I Ei

and E = {x ≖ ∪i∈Iyi} ∪
⋃

i∈I Ei and C = {(prt(Yi) ∪ yi) \ {p,q} .
= prt(M) | ∀i ∈ I} ∪ ⋃

i∈I Ci and
θ ∈ solS (E ,E,C ), since θ(X) =G= p→ q : {λi.Gi}i∈I = p→ q : {λi.θi(Yi)}i∈I = (p→ q : {λi.Yi}i∈I)θ
and θ(x) = P = ∪i∈IPi = ∪i∈Iθ(yi) = (∪i∈Iyi)θ and σ ⪯ θ .

Rule [ι -WEAK] We have N ,(G,M1 ∥M2,P1∪P2) ⊢ι
P1

M1 : G and P2 = prt(M2) ̸= /0 and
prt(G)∪P = prt(M), where M≡M1 ∥M2 and P = P1∪P2. Set σ ′ = σ +{X 7→ G,x 7→P1∪P2}
and S ′=S ,(X ,M,x), then, by the induction hypothesis, we get that there are E1, E1, C1 and θ such that
S ′ ⊢ (Y,M1,y)⇒ (E1,E1,C1) and θ ∈ solS ′(E1,E1,C1) and dom(θ) = vars(E1)∪vars(E1)∪vars(S ′)
and σ ′ ⪯ θ and θ(Y ) = G and θ(y) = P1. By Rule [A-WEAK] we get S ⊢ (X ,M,x)⇒ (E ,E,C1) with
E = {X ≖ Y}∪E1 and E = {x ≖ y∪P2}∪E1 and θ ∈ solS (E ,E,C1), since θ(X) = G = θ(Y ) and
θ(x) = P = P1∪P2 = θ(y)∪P2 = (y∪P2)θ and σ ⪯ θ . □

Theorem 4.6 (Soundness and completeness of inference)
1. If ⊢ (X ,M,x)⇒ (E ,E,C ), then θ(X) ⊢θ(x) M for all θ ∈ sol(E ,E,C ).

2. If G ⊢P M, then there are E , E, C and θ such that ⊢ (X ,M,x)⇒ (E ,E,C ) and θ ∈ sol(E ,E,C )
and θ(X) = G and θ(x) = P .

Proof. (1). By Lemma 4.4 ⊢ (X ,M,x)⇒ (E ,E,C ) implies ⊢ι
θ(x) M : θ(X) for all θ ∈ sol(E ,E,C ). This

is enough, since ⊢ι
θ(x) M : θ(X) gives θ(X) ⊢θ(x) M.

(2). From G ⊢P M we get ⊢ι
P M : G. By Lemma 4.5 this implies that there are E , E, C and θ such

that ⊢ (X ,M,x)⇒ (E ,E,C ) and θ ∈ sol(E ,E,C ) and θ(X) = G and θ(x) = P . □
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Remark 4.7 (Termination) As happens for (co)SLD-resolution in logic programming, the termination
of the inference algorithm depends on the choice of a resolution strategy. Indeed, we have many sources
of non-determinism: we have to select two participants of the session with matching processes and
expand them using Rule [A-COMM], or ignore part of the session using Rule [A-WEAK] or try to close a
cycle using the Axiom [A-CYCLE]. A standard way to obtain a sound and complete resolution strategy is
to build a tree where all such choices are performed in parallel and then visit the tree using a breadth-first
strategy. The tree is potentially infinite in depth, but it is finitely branching, since at each point we have
only finitely many different choices, hence this strategy necessarily enumerates all solutions.

Remark 4.8 (Use of Rule [A-WEAK]) Note that in a ⊢ι
P derivation the triple in the premise of Rule [ι -

WEAK] can never be used in an application of Axiom [ι -CYCLE]. This – as already hinted at in Example 3.2
– immediately implies that Rule [WEAK] is not strictly necessary inside infinite branches of ⊢P deriva-
tions. Moreover, a slight simplification of the algorithm can be got since, in the step corresponding to
Rule [A-WEAK], we could avoid adding the goal (X ,M1 ∥M2,x) to the current set of goals. This would
reduce the number of goals to be checked during the step corresponding to Axiom [ι -CYCLE]. Rule [A-

WEAK] turns out to be necessary, instead, when applying the algorithm to sessions where non-ignored
participants expose a finite behaviour, like p[P2] ∥ q[Q2] ∥ u[U ] in Example 3.2. Also the typing of stuck
sessions with recursive processes like p[P] ∥ q[Q] where P = q!λ .P and Q = p!λ .Q requires the use of
Rule [A-WEAK]. ⋄

5 Concluding Remarks, Related and Future Works

Lock-freedom is definitely a relevant and widely investigated communication property of concurrent
and distributed systems. It ensures absence of locks, a lock being a reachable configuration where a
communication action of a participant remains pending in any possible continuation of the system. In
case the participant prevented to progress be p, such configuration is called a p-lock (see [5] for an
abstract definition of Lock-freedom). Lock-freedom corresponds to the notion of liveness in [20, 22]
where the synchronous communication is channel-based. Sometimes properties different from what we
intend are referred to by “Lock-freedom”: for instance the notion of Lock-freedom in [19], under fair
scheduling, corresponds to what [28] and [5] refer to as strong Lock-freedom.

Various formalisms and methodologies have been developed in order to prove Lock-freedom while
others do ensure Lock-freedom by construction. Among the former there are type assignment systems
where typability entails Lock-freedom, both for asynchronous [26] and synchronous [3] communica-
tions.

Lock-freedom is quite a strong property: it entails Deadlock-freedom, whereas the vice versa does
not hold. In several actual scenarios, lighter forms of Lock-freedom would however suffice. For instance
in clients/servers scenarios where one can accept some servers to get locked after their interactions with
the clients have been completed.

In the present paper we developed a type assignment system where typability ensures P-excluded
Lock-freedom: the absence of p-locks for each participant p not belonging to P . This is achieved by
means of “partial” typability, i.e. by disregarding typability of (sub)processes of participants that we can
safely assume to get possibly locked. Multiparty sessions (parallel compositions of named processes)
are (partially) typed by global types, which in turn describe the overall interactions inside the multiparty
sessions. Our partial typability ensures also that the behaviours of the non-ignored participants adhere to
what the global type describes. As far as we know, there are not other formalisms dealing with properties
like P-excluded Lock-freedom.
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Our partial typing is reminiscent of connecting communications, a notion introduced in [18] and
further investigated in [8, 10] in order to describe protocols with optional participants. The intuition
behind connecting communications is that in some parts of the protocol, delimited by a choice construct,
some participants may be optional, namely they are “invited” to join the interaction only in some branches
of the choice, by means of connecting communications. As argued in [18, 8, 10], this feature allows for a
more natural description of typical communication protocols. In [10], connecting communications also
enable to express conditional delegation: this will be obtained by writing a choice where the delegation
appears only in some branches of the choice, following a connecting communication. The participants
offering connecting communications should be ignored in the present type system. An advantage of
connecting communications over partial typing is that only participants offering connecting inputs can
be stuck. The disadvantage is that the typing rules are more requiring, so many interesting sessions can
be partially typed but cannot be typed by means of connecting communications.

In designing type inference we took inspiration from [13], where inputs and outputs are split in
global types in order to better describe asynchronous communication. Our inference algorithm is related
as goal, but very different as methodology, to the algorithm in [23], which builds global graphs from sets
of communicating finite state machines satisfying suitable conditions. We are planning to implement our
type inference algorithm.

Unlike many MPST formalisms in the literature, like [17], we type sessions with global types without
recurring to local types and projections. It would be interesting to investigate the possibility of extending
the standard projection operator to a relation between global types and possibly non lock-free local
behaviours. Other simplifications of our calculus are the absence of values in messages and the unicity
of channels. While we can easily enrich messages with values, allowing more than one channel requires
sophisticated type systems in order to get Lock-freedom [26].

The following example shows a further direction for investigation of partial typing, namely to de-
scribe and analyse privacy matters.

Example [Partial typing for privacy] The communications written in global types can be viewed as
public, while the others can be viewed as private. For example Alice and Bob want to discuss privately
which version of a game would be the most suitable for their son Carl, who asked for it as birthday
present. Taking participants a, b and c to incarnate, respectively, Alice, Bob and Carl this scenario can
be represented by the session

M≡ a[c?PRESENT.P] ∥ b[c?PRESENT.Q] ∥ c[a!PRESENT.b!PRESENT]

where P = b!{BLA.b?BLA’.P,OK} and Q = a?{BLA.a!BLA’.P,OK}.
A suitable global type is G= c→ a:PRESENT.c→ b:PRESENT. We can in fact derive G ⊢{a,b}M. ⋄

We also plan to investigate partial typing for asynchronous communications, possibly modifying the
type system of [13]. An advantage of that type system is the possibility of anticipating outputs over
inputs without requiring the asynchronous subtyping of [25], which is known to be undecidable [6, 24].
A difficulty will come from the larger freedom in choosing the order of interactions due to the splitting
between writing and reading messages on a queue.
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Designing distributed systems to have predictable performance under high load is difficult because
of resource exhaustion, non-linearity, and stochastic behaviour. Timeliness, i.e., delivering results
within the required time bounds, makes a major contribution to the predictability of performance.
In this paper, we focus on timeliness using the ∆Q Systems Development paradigm (∆QSD, devel-
oped by PNSol), which computes timeliness by modelling systems observationally using so-called
outcome expressions. An outcome expression is a compositional definition of a system’s observed
behaviour in terms of its basic operations. Given the stochastic behaviour of the basic operations,
∆QSD efficiently computes the stochastic behaviour of the whole system including its timeliness.

This paper formally proves useful algebraic properties of outcome expressions w.r.t. timeliness:
We prove the different algebraic structures the set of outcome expressions form with the different
∆QSD operators and demonstrate why those operators do not form richer structures. We prove or
disprove the set of all possible distributivity results on outcome expressions. We prove 14 equiva-
lences that have been used in the past in the practice of ∆QSD.

An immediate benefit is rewrite rules that can be used for design exploration under established
timeliness equivalence. This work is part of an ongoing project to disseminate and build tool support
for ∆QSD. The ability to rewrite outcome expressions is essential for efficient tool support.

1 Introduction

Designing distributed systems to have predictable performance under high load is difficult. At high load,
resources such as network, memory, storage, or CPU capacity will be exhausted, causing a dramatic
effect on performance. Prediction is difficult because the behaviour of system components and their
interactions are both nonlinear and stochastic. For over 20 years, a small group of people associated with
the company PNSol has worked on diagnosing and designing systems to predict and correct performance
problems [17]. PNSol has developed the ∆Q Systems Development paradigm (∆QSD) as part of this
work. ∆QSD has been used in areas as diverse as telecommunications [20] [19] [6], WiFi [14], and
distributed ledgers [5]. ∆QSD has been applied to many large industrial systems, including BT, Vodafone,
Boeing Space and Defence, and IOG (formerly IOHK).

This paper defines and proves algebraic properties of the ∆QSD operators w.r.t. timeliness, i.e.,
delivering outcomes within the acceptable time-frames. That is, in this paper, our solo resource of
concern is time, although ∆QSD includes other types of resources and their interaction.
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This theoretical work is part of an ongoing project to disseminate and build tool support for ∆QSD,
to make it available to the wide community of system engineers. We base our work on the ∆QSD
formalisation given by Haeri et al. [11], which defines outcome expressions and their semantics, and
gives a real-world example of ∆QSD taken from the blockchain domain.

Contributions

This paper gives a firm mathematical foundation for ∆QSD, and uses this to establish important algebraic
properties of the ∆QSD operators with respect to timeliness, i.e., when the relevant resource is time.
This paper is based on a general model theory of resource analysis for systems specified using outcome
expressions [12]. That model theory is the first of its kind and we specialise it using the timeliness
analysis recipe that is commonly used in ∆QSD (Definition 3).

• We show that the set of outcome expressions forms different algebraic structures with the different
∆QSD operators (Theorems 1–4).

• We establish 3 distributivity results in Section 7 about the ∆QSD operators (Theorem 6).

• We rule out the formation of certain richer algebraic structures by the set of outcome expressions
and the current ∆QSD operators (Remarks 2, 3, and 4).

• We develop two new techniques for analysing the validity of algebraic equivalences: a new tech-
nique that we call Properisation (Section 7.2) and another based on counterexamples (Section 7.3).
We use those techniques to refute the remaining possible distributivity results in their full general-
ity: 8 using properisation (Theorems 8) and 4 using counterexamples (Theorem 9).

• We provide guidelines for studying the necessary/sufficient conditions for the distributivity results
we refute the generality of (Section 7.1).

• We establish 14 equivalences that have been used in the past in the practice of ∆QSD (Section 6).

Full proofs can be found in the accompanying technical report [12], which also shows how Fig. 2 can
be further elaborated using our Jupyter notebook. We will integrate some proofs in our post-proceedings
version of this work.

The primary practical results of this paper are to establish distributive properties of ∆QSD operators
and other equivalences that are useful for rewriting outcome expressions. These enable common sub-
expressions to be moved, for example, to reduce representational complexity, with associated gains in
tool performance. Rewriting can also be used to produce normal forms, and, in particular, to extract
reliability/failure probabilities without fully evaluating the outcome expression. More generally, it can
be used to establish equivalences between different designs with respect to their timeliness, even though
their usage of other resources might differ, by which allowing design exploration under equivalence.

2 Motivating Example: Cache Memory

We give an example of a memory system consisting of a local cache with a networked main memory.
This example serves two purposes: first, it shows how outcome diagrams can be used to model nontrivial
systems; and, second, it shows the usefulness of the algebraic transformations of this paper. We give the
block diagram, the outcome diagram, and the outcome expression for this example. We then compute
the quality attenuation and (delay distribution and failure rate) from this outcome expression. To that
end, we use the algebraic transformations proved in this paper. Fig. 1 gives the block diagram of the
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Figure 1: Block Diagram for a Cache with Networked Main Memory
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Figure 2: Outcome Diagram for the Cache of Figure 1

memory system. A read message enters the cache; a cache hit – when the memory word is in the cache
– results in an immediate return message; a cache miss – when the memory word is not in the cache
– results in a main memory read. The main memory is across the network, so accessing it requires a
network communication in both directions. Main memory access is guarded by a timeout in case of
network problems. The cache miss initialises the timeout timer; the mreturn message is passed through
if it occurs before the timeout; otherwise, a timeout message is passed instead. Furthermore, there is a
small probability that the remote main memory read fails.

Outcome Diagram for the Cache with Networked Memory Fig. 2 shows the outcome diagram for
the memory system. The outcome diagram is a graphical representation of an outcome expression.1

We can define an outcome as what the system obtains by performing one of its tasks. Outcomes are
shown using orange circles in the diagrams. When there is a left-to-right path from one outcome to
another, the right one is causally dependent on the left one. Small square boxes show the starting and
terminating events of the corresponding outcomes. Large square boxes are operators. In Fig. 2 there are
two probabilistic choices, “⇋”, and one first-to-finish synchronisation, “∃”. We assume that the cache
hit rate is 95%. That is modelled using the leftmost probabilistic choice with two leads – one to each
outcome (“cache hit” and “cache miss”), decorated with their corresponding probabilities. Timeout is
modelled by a first-to-finish relationship between the main memory read and the timer. We assume that
the main memory uses Error-Correction Codes (ECC) to catch bit errors. We account for the possibility
that a main memory access fails (e.g., because of hardware failure) by giving it a failure rate of 10−16.
This assumption is modelled in Fig. 2 as a probabilistic choice between the “main” and “ECC fail”

1In this paper, we take the equivalence between the outcome expressions and outcome diagrams for granted. That equiva-
lence is not the focus of this paper.
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outcomes. The outcome expression for the diagram of Fig. 2 is

c-hit [95%]
⇋ (c-miss•→−• ((net •→−• (main [1−10−16]

⇋ ⊥)•→−•net) ∥∃ t-out)) (1)

where “⊥” and “•→−•”, in ∆QSD, represent (unconditional) failure and sequential composition, respec-
tively. Note that the operator “∃" in the outcome diagram is “∥∃" in the outcome expression. That is to
signify that when two outcomes are connected by first-to-finish, they are performed concurrently; hence
the “∥" sign.

We can now ask what the quality attenuation of the memory system is (where quality attenuation
is a measure for delay (and failure), represented using a Cumulative Distribution Function (CDF); see
Section 3 for deatils. We can compute this using the semantics, as defined in [11]. From this we can
also determine the failure rate as the asymptote of the quality attenuation as delay increases to infinity.
However, there is an easier way to determine the failure rate, by using algebraic transformations on the
underlying outcome expressions. The techniques used for this example generalise in a straightforward
fashion to any system modelled using an outcome expression.

Quality Attenuation (Delay Part of the CDF) Using the semantics defined in Section 4, one can
compute the overall quality attenuation from Equation (1), given the quality attenuations of the five out-
comes that are taken primitive here: c-hit, c-miss, t-out, net, and main. These five cumulative distribution
functions, ∆Qc−hit, ∆Qc−miss, ∆Qt−out, ∆Qnet, and ∆Qmain, are known initially: the first two are properties
of the cache, the timeout is chosen by the designer, the network performance is known, and the main
memory read time is known. The computation is done from Equation (1) using the semantics that will be
given by Definition 3. Take mem = net•→−• (main [1−10−16]

⇋ ⊥)•→−•net to be the outcome of the networked
main memory read. We start by computing ∆Qmem:

∆Qmem = ∆Qnet ∗ ((1−10−16) ·∆Qmain +10−16 ·∆Q⊥)∗∆Qnet (2)

Note that the ∗ operation is a convolution. The · and + operations are arithmetic multiplication and
addition of CDFs. Since ⊥ is a failure, we know that ∆Q⊥ = 0, so we simplify:

∆Qmem = ∆Qnet ∗ (1−10−16) ·∆Qmain ∗∆Qnet (3)

The overall ∆Q is then given by:

∆Q = 0.95 ·∆Qc-hit +0.05 · (∆Qc-miss ∗ (∆Qmem +∆Qt-out−∆Qmem ·∆Qt-out)) (4)

This computation gives us the CDF for the execution time of a memory read. The numeric computation
is easily performed by a software tool. For readers interested in seeing fully worked-out numerical
examples, we recommend looking up the tutorial [22].

Failure Rate (Failure Part of the CDF) Let us now compute the failure rate by doing algebraic trans-
formations as defined in this paper. Without loss of generality, we can assume that the network has zero
delay and the timeout is infinite. One can then replace Figure 2 with Figure 3. Likewise, Equation (1)
simplifies to:

c-hit [95%]
⇋ (c-miss•→−• (main [1−10−16]

⇋ ⊥)) (5)

According to Theorem 5, expression (5) is equivalent to c-hit [95%]
⇋ ((c-miss•→−•main) [1−10−16]

⇋ ⊥), which
can be rewritten using Lemma 2 as

(c-hit [p]⇋ (c-miss•→−•main)) [q]
⇋⊥ (6)



5

c-miss main

c-hit⇋

⇋

ECC 
fail

[95%]

[5%]

[1 - 10-16]

[10-16]

Figure 3: Outcome Diagram for the Cache Example, Disregarding Network Delay and Timeout

for some p, and for q = (1− 0.05 · 10−16) = 0.999999999999999995 . Expression (6) is a swiftly ob-
tained, and immediately tells the system engineer that, under the current assumptions about cache hit and
main memory failure rates, every design will be infeasible if the overall failure rate must be less than q.

Final Remarks on the Example Realistic cache memories are often more complex than this example,
which gives rise to more complicated outcome expressions in which “⊥” will appear at multiple depths.
Thanks to Theorem 6 as well as Lemmas 2 and 3, techniques such as that of this section can be used to
accumulate those⊥s for similar infeasibility tests. It is important to notice that we can compute the delay
(part of the CDF) independently of the failure rate. That is because, due to the properisation theorem
(Theorem 7), we can replace c-hit [95%]

⇋ (c-miss •→−•main) by expression (6), provided that the rate of
failure of main is 10−16. In practice, the properisation theorem is a very handy result. Section 7.2 gives
more details about the theoretical benefits of properisation.

While the probabilities in this example may seem small, they can combine with probabilities from
other parts of the system, and it is important to be able to keep track of them. Dismissing them as
‘minimal’ risks missing potentially serious failures when many ‘small’ probabilities aggregate.

3 Background

Figure 4: A Component’s Operation and its Cumulative Delay Function

Outcome and Quality Attenuation Consider a component C which inputs message min and outputs
message mout after a delay d. Doing this many times will usually give different delays. We define a
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cumulative delay function so that p percent of delays are less or equal to d. Figure 4 gives an illustration.
The ∆QSD paradigm generalises this simple measurement. We measure delay not only for messages,

but for all system behaviours that have a starting event and a terminating event. Given a starting event
ein and a terminating event eout, what the system gains within the (ein,eout) time frame is called an
instance of an outcome. We also generalise the property that we measure: we measure not only delay,
but any property that makes the system less than perfect. The cumulative distribution function of the
property is then called a quality attenuation. In what follows, we will consistently use the terms outcome
and quality attenuation.

Failure It is straightforward to generalise the quality attenuation to model both delay and failure. It
suffices to allow the cumulative delay function’s limit to be less than 1. Figure 5 illustrates this possibility.
There is an f percent probability that the delay is infinite, which corresponds precisely to a failure. For
the component, it means simply that there is an input message min with no corresponding output message
mout. Mathematically, the delay is modelled by a random variable that is allowed to be improper: The
probability that it is infinite can be greater than 0. This probability is called the intangible mass of the
Improper Random Variable (IRV) [21].

The ability to model delay and failure as a single quantity is a strength of ∆QSD. It makes it easy to
explore trade-offs between delay and failure in the system design. This ability shows up clearly in the
algebra presented in this paper.

Figure 5: Failure is modelled as a quality attenuation whose limit is less than 1

Timeliness We define timeliness as a relation between an observed ∆Qobs and a required ∆Qreq. We
say that the system satisfies timeliness for a given outcome if ∆Qobs ≤ ∆Qreq. Figure 6 illustrates this
condition.

Outcome Expressions For a system consisting of multiple interconnected components, one can define
a graph that combines all the components’ outcomes. This graph defines the causal relationships between
the outcomes and is called an outcome diagram. For example, Figure 2 shows the outcome diagram
of a cache whose block diagram is given in Figure 1. Each outcome diagram has a corresponding
outcome expression – a mathematical description of the diagram. Given an outcome expression and
given the quality attenuations of all its components, it is possible to compute the quality attenuation of
the complete system as a whole. The reverse process is also possible: Given an outcome expression
and given the required quality attenuation of the complete system, it is possible to compute the required
quality attenuations of its components. This gives the system designer a powerful tool for both design
and diagnosis.
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Figure 6: Timeliness: the observed quality attenuation ∆Q is always to the left and above the required ∆Q

Outcome expressions can be manipulated according to algebraic rules. An important set of algebraic
rules is presented in this paper. These rules give additional abilities for system designers who use ∆QSD.
As part of an ongoing project, we are building software tools to support ∆QSD. The algebraic rules
presented here are essential for making practical the symbolic manipulation of outcome expressions
needed by these tools.

∆QSD

∆QSD is a system development paradigm that is able to compute many system properties early on in the
design process, such as performance (latency and throughput), timeliness, risks, and feasibility. ∆QSD
is used both for diagnosis and design:

• System Diagnosis. ∆QSD can analyse an existing system, to pinpoint anomalous behaviours so
their origin can be found and the system can be corrected.

• System Design. ∆QSD can estimate performance trade-offs during the design process. At every
step of the design process, performance of the complete system can be estimated by a computation
on the partial design. This computation also determines whether or not the system is feasible, i.e.,
whether it can or cannot meet the requirements.

While historically ∆QSD has primarily been used to diagnose and correct problems in large industrial
systems, PNSol has recently used ∆QSD to design the Shelley block diffusion algorithm as used in the
Cardano blockchain [11]. More information on ∆QSD can be found in a tutorial given at HiPEAC 2023
tutorial [22].

4 An Algebraic Perspective on Timeliness

4.1 Syntax of Outcome Expressions

Definition 1 (Haeri et al. [11]). Assume a set B of primitive outcomes. We use variables β ∈ B to repre-
sent individual primitive outcomes. We define the abstract syntax of outcome expressions as follows:

O ∋ o ::= β primitive outcome
| o•→−•o′ sequential composition | (o ∥∀ o′) all-to-finish (a.k.a. last-to-finish)
| o

m⇋
m′

o′ probabilistic choice | (o ∥∃ o′) any-to-finish (a.k.a. first-to-finish).
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This defines outcome expressions as combinations of primitive outcomes β and four composition
operators. In the case of probabilistic choice, m and m′ are numeric weights which give the probabilities
of choosing the left or right alternative, respectively. For convenience, we also introduce another notation
o [p]
⇋ o′ where the probability (1− p) for the right alternative is implied. We distinguish two constant

outcomes: ⊤ for “perfection” and ⊥ for “unconditional failure.”

4.2 Timeliness Semantics for Outcome Expressions

Let ∆Q(x) denote the probability that an outcome occurs in a time t ≤ x. In order to represent both delay
and failure in a single quantity, a ∆Q is represented by an improper random variable (IRV), allowing
the total probability not to reach 100% [21]. The intangible mass of such an IRV is ℑ(∆Q) = 1−
limx→∞ ∆Q(x). For a given ∆Q, the intangible mass ℑ(∆Q) encodes the probability of exceptions or
failure occurring.

Denote the set I of all IRVs that are differentiable and the values of which are always greater than
or equal to zero. Statistically speaking, every ι ∈ I can be represented both using its Probability Density
Function (PDF) or its Cumulative Distribution Function (CDF), where the former is the derivative of the
latter. For convenience, we will freely switch between the two representations as the need rises. Fix a
countable set of ∆Q variables ∆v. We define ∆ = ∆v ∪ I to denote both IRVs and ∆Q variables. When
δ ∈ ∆ is in its CDF representation, we write δ ′ for its derivative, which is the PDF representation.

We first define a mapping between primitive outcomes B and ∆Qs.

Definition 2. We call a function ∆◦[[.]] : B→ ∆ a basic assignment when ∆◦[[⊤]] = 1 and ∆◦[[⊥]] = 0,
where 1 and 0 are the functions always returning the constants 1 and 0, respectively.

We now define the semantics of an outcome expression as a mapping between the outcome expression
and an IRV, for a given basic assignment.

Definition 3 (Haeri et al. [11]). Given a basic assignment ∆◦[[.]] : B→ ∆, define ∆Q[[.]]∆◦ : O→ I such
that

∆Q[[β ]]∆◦ =

{
1 when ∆◦[[β ]] /∈ I
∆◦[[β ]] otherwise

∆Q[[o•→−•o′]]∆◦ = ∆Q[[o]]∆◦ ∗∆Q[[o′]]∆◦
∆Q[[o

m⇋
m′

o′]]∆◦ = m
m+m′∆Q[[o]]∆◦+

m′
m+m′∆Q[[o′]]∆◦

∆Q[[o ∥∀ o′]]∆◦ = ∆Q[[o]]∆◦×∆Q[[o′]]∆◦
∆Q[[o ∥∃ o′]]∆◦ = ∆Q[[o]]∆◦+∆Q[[o′]]∆◦−∆Q[[o]]∆◦×∆Q[[o′]]∆◦

The notation ∗ denotes the convolution of two ∆Qs. In the above formulae, the random variables
are always represented using their CDFs except for sequential composition, where the representation is
PDFs on both sides. Note that the PDF of ⊤ is the Dirac δ function. In what follows, we will drop ∆◦
whenever the basic assignment is fixed throughout a computation.

Recall that, in Section 3, we defined timeliness as ∆Qobs ≤ ∆Qreq (this relation is a partial order,
defined in [11]). Definition 3 gives this more context. Using Definition 3, the systems engineer can work
out the ∆Qobs of an outcome so they can compare the result against the required ∆Qreq.

Remark 1. Note that, according to Definition 3, we get ∆Q[[o1 •→−•o2]] = ∆Q[[o2 •→−•o1]]. This may seem
counter-intuitive because o1 •→−• o2 ̸= o2 •→−• o1. ∆Q[[o1 •→−• o2]] = ∆Q[[o2 •→−• o1]] is, nonetheless, valid
because, intuitively, o1 •→−• o2 is just as timely as o2 •→−• o1. See the proof of Theorem 2 [12] for the
mathematical justification of that intuition.
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4.3 Connecting Algebra to Timeliness

In our accompanying technical report [12], we give a model theoretic formulation for studying the alge-
braic properties of resource consumption. This paper focuses on time as its solo resource of interest and
uses that formulation for time exclusively without getting into the technical details of the formulation
itself.

An algebraic structure often consists of a carrier set, a few operations on the carrier set, and a finite
set of identities that those operations need to satisfy. Given our focus on timeliness à la ∆QSD, the carrier
set will always be O in this paper. The full set of operators on O is {•→−•,∥∀,∥∃,⇋}. However, most
algebraic structures do not need all those operators. Different structures work with different number of
operations. (For example, a monoid works with only one operation; whilst a group works with two.)
Finally, the identities are of the form ol = or.

We take ∆Q[[.]] (Definition 3) to be the model of time consumption for O. We write

• ⊙⊙ time ⊨ ol = or when ∆Q[[ol]] = ∆Q[[or]]. That is when ol and or are as timely.

• ⊙⊙ time ⊨ (O,P) : s for an algebraic structure s and a set of ∆QSD operators P when
⊙⊙ time ⊨ ol = or, for every equation ol = or

– that is constructed using the operators in P, and
– that is required for the formation of s.

With time being our solo resource of interest in this paper, we might drop the initial “⊙⊙ time ⊨”
from the above formulation hereafter.

5 Algebraic Structures

This section establishes several important properties on O:

• probabilistic choice forms a magma (Theorem 1);

• sequential composition forms a commutative monoid with ⊤ and ⊥ as the identity and absorbing
elements (Theorem 2);

• all-to-finish forms a commutative monoid with ⊤ and ⊥ as the identity and absorbing elements
(Theorem 3);

• any-to-finish forms a commutative monoid with ⊥ and ⊤ as the identity and absorbing elements
(Theorem 4); and

• neither all-to-finish nor any-to-finish nor their combination form the familiar richer algebraic struc-
tures (Remarks 2, 3, and 4).

Theorem 1. (O,⇋) forms a magma when observing time.

A magma is the weakest algebraic structure. That is because ⇋ is not even associative. Despite this,
expressions containing two consecutive occurrences of ⇋ can still be re-associated. However, in this
case the coefficients will change. Lemmas 2 and 3 give the exact formulae.

Theorem 2. ⊙⊙ time ⊨ (O,•→−•) : f orms a commutative monoid with ⊤ and ⊥ as the identity and ab-
sorbing elements, respectively.

Theorem 3. ⊙⊙ time ⊨ (O,∥∀) : f orms a commutative monoid with ⊤ and ⊥ as the identity and absorb-
ing elements, respectively.
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Remark 2. It is important to notice that, when observing time, (O,∥∀) does not form a group. That is
because, in general, an outcome has no inverse element - intuitively, one can never undo an outcome!

In order to prove that claim formally, suppose otherwise. That is, suppose that there exist a pair of
outcomes o1 and o2 such that o1 ∥∀ o2 =⊤. Then, ∆Q[[o1 ∥∀ o2]] = ∆Q[[⊤]] which implies δ1×δ2 = 1⇒
δ2 = 1

δ1
. However, given that δ1 ≤ 1, we get δ2 ≥ 1. The latter inequality can only be satisfied when

o1 =⊤. Restricting the application of ∆QSD to perfection is not practical.

Theorem 4. ⊙⊙ time ⊨ (O,∥∃) : f orms a commutative monoid with ⊥ and ⊤ as the identity and absorb-
ing elements, respectively.

Remark 3. Similar to the case for ∥∀, it is important to note that, when observing time, (O,∥∃) does not
form a group. Again, it is the lack of an inverse element that is causing the trouble. Here is how. Suppose
that there exist a pair of outcomes o1 and o2 such that o1 ∥∃ o2 =⊥. Then, ∆Q[[o1 ∥∃ o2]] = ∆Q[[⊥]] which
implies δ1 + δ2− δ1× δ2 = 0⇒ δ2 =

δ1
δ1−1 . However, because δ1 ≤ 1, we get δ2 ≤ 0. But, only ⊥ can

satisfy the latter inequality. There is no reason to develop a system in which all the outcomes will fail
unconditionally!

Having established that both (O,∥∀) and (O,∥∃) form commutative monoids for time, a natural
question is whether (O,∥∀,∥∃) or (O,∥∃,∥∀) form semi-rings. This is not the case, since they do not
distribute over one another.

Lemma 1 helps Remark 4 demonstrate how the above desirable distributivities fail.

Lemma 1. ⊙⊙ time ⊨ o1 ∥∃ o2 =⊤ implies o1 =⊤ and o2 =⊤.

Remark 4. Neither (O,∥∀,∥∃) nor (O,∥∃,∥∀) form a semi-ring when observing time: for this to be the
case, ∥∀ and ∥∃ would need to distribute over one another. The first distributivity requirement is:

o1 ∥∃ (o2 ∥∀ o3)
?
= (o1 ∥∃ o2) ∥∀ (o1 ∥∃ o3) (7)

Equating ∆Q[[.]]s of the two sides, one eventually makes it to the requirement that either δ1 = 0 or
∆Q[[(o1 ∥∃ o3) ∥∃ o2]] =⊤. In other words, it follows by Lemma 1 that Equation (7) can only hold under
the trivial conditions when either o1 =⊥ or o1 = o2 = o3 =⊤. The second distributivity requirement is

o1 ∥∀ (o2 ∥∃ o3)
?
= (o1 ∥∀ o2) ∥∃ (o1 ∥∀ o3) (8)

Again, equating ∆Q[[.]]s of the two sides, one eventually comes to observe that Equation (8) only holds
when δ1 = 1∧δ2 ̸= 0∧δ3 ̸= 0, i.e., when o1 =⊤∧o2 ̸=⊥∧o3 ̸=⊥.

6 Equivalences Containing Constant Outcomes

∆QSD is already in use by its practitioners, who, amongst other usages, simplify outcome expressions
according to their timeliness analysis. In particular, Figure 7 distils a list of equivalences that are used in
such simplifications. Those equivalences all contain constant outcomes (⊤ or ⊥).

Equivalences of Figure 7 provide the basis for rewrite rules that are useful for construction of normal
forms, such as expressing a given system as a convolution of probabilistic choices or a probabilistic
choice of convolutions. Such rewriting allows for: extraction of common sub-expressions permitting
aggregation of failure rates (distinguishing between conditional and non-conditional failure); identifying
minimal delays; and highlighting branching probabilities to identify issues of relative criticality. This is
useful for quickly assessing whether a particular outcome decomposition is feasible without having to
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⊥⇋⊥=⊥ (o1 ⇋⊥)•→−•o2 = (o1 •→−•o2)⇋⊥ o•→−•⊥=⊥ ⊤⇋⊤=⊤
⊥•→−•o =⊥ o1 •→−• (o2 ⇋⊥) = (o1 •→−•o2)⇋⊥ ⊤•→−•o = o o•→−•⊤= o
⊤∥∀o = o (o1 ⇋⊤)•→−•o2 = (o1 •→−•o2)⇋o2 o1 •→−• (o2 ⇋⊤) = (o1 •→−•o2)⇋o1

⊥∥∃o = o o1
[p]
⇋ (o2

[q]
⇋⊤) = o2

[q(1−p)]
⇋ (o1

[
p

1−q(1−p)

]

⇋ ⊤) ⊥ [p]
⇋ (⊥ [q]

⇋o) =⊥ [p+(1−p)q]
⇋ o

Figure 7: Equivalences Containing ⊤ and ⊥

compute the complete ∆Q. See Section 2, for example. In addition, the equivalences of Figure 7 are very
handy in the proofs of properties such as those established in this paper. Two examples, amongst many,
are the proofs of Theorem 9 and Lemma 4.

Before we delve into Figure 7, we prove a result about re-associating probabilistic choice. Given an
expression with two consecutive probabilistic choices, one of which wrapped inside a pair of parentheses,
the ∆QSD practitioner might be interested in wrapping the other two inside a pair of parentheses – re-
associating the probabilistic choices, in effect. Lemmata 2 and 3 give the conditions on the coefficients
of those probabilistic choices.
Lemma 2. o1

[p]
⇋ (o2

[q]
⇋o3) = (o1

[p′]
⇋o2)

[q′]
⇋o3 iff p′ = p

1−(1−p)(1−q) and q′ = 1− (1− p)(1−q).

Lemma 3. (o1
[p]
⇋o2)

[q]
⇋o3 = o1

[p′]
⇋ (o2

[q′]
⇋o3) iff p′ = pq and q′ = q(1−p)

1−pq .

Theorem 5. The equivalences in Fig. 7 are correct.

Proof. We will only present the proof of ⊥
m1⇋
m2
⊥ = ⊥ here. The rest of the equivalences are proved

similarly:
∆Q[[⊥

m1⇋
m2
⊥]] = m1

m1 +m2
0+

m2

m1 +m2
0 = 0 = ∆Q[[⊥]].

Remark 5. The very last equivalence in Fig. 7 was incorrectly formulated (though never published)
prior to this paper. Thanks to the formalisation developed in [11], that mistake was corrected, and the
equivalences have been given a sound footing.

7 Distributivity

In this section, we consider the distributivity results between the ∆QSD operators. Recall that out of the
four P operators, three are commutative (i.e., •→−•, ∥∀, and ∥∃) and one is not (i.e., ⇋). Hence, it is only
possible for right- and left-distributivity to differ when ⇋ is the outermost operator. That gives rise to
2×

(3
1

)
+
(3

1

)(3
1

)
= 15 possible ways for distributing P operators over each other. Theorem 6 establishes

3 of those 15. In Section 7.1, we show how the routine technique for examining the equivalence of
expressions (i.e., equating the ∆Q[[.]] of the two sides) is not that helpful for the study of the remaining
12 distributivity results. That leads to Sections 7.2 and 7.3, which disprove the generality of 8 and 4
distributivity results using properisation (Theorem 8) and counterexamples (Theorem 9), respectively.

We use the following syntactic convention: when, in an equivalence, two ⇋s are used without
weights, each on precisely one side of the equivalence, we will assume that the weights of those ⇋s
are the same. We therefore do not bother to repeat those weights. For example, in the theorem below,
there exist weights m2 and m3 such that o2

m2⇋
m3

o3 and (o1 •→−•o2)
m2⇋
m3

(o1 •→−•o3), but we omit these.
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Theorem 6. Let o1,o2,o3 ∈O and p ∈ {•→−•,∥∀,∥∃}. Then,

• ⊙⊙ time ⊨ o1 p (o2 ⇋o3) = (o1 p o2)⇋ (o1 p o3), and

• ⊙⊙ time ⊨ (o1 ⇋o2) p o3 = (o1 p o3)⇋ (o2 p o3).

7.1 Potential Distributivity

As we are going to see in Sections 7.2 and 7.3, the remaining 12 potential distributivity results do not
hold in general. Nevertheless, this section uses the routine technique for studying the equivalence of
expressions: Equating the ∆Q[[.]] of the two sides. That is important because

• firstly, it shows why the routine technique does not help, thereby motivating the next sections.

• secondly, it presents some of the necessary conditions for those distributivity results to hold. Al-
though pretty immature, such conditions help the ∆QSD practitioner to verify, under special cir-
cumstances, whether their given IRVs can satisfy the provided conditions.

We do not know of better necessary conditions for the remaining 12 results (if indeed they are soluble at
all). In this section, we demonstrate the necessary conditions of one distributivity result out the 12.

We begin by Proposition 1, which is a simple yet handy result.

Proposition 1. Suppose that o1 = o2 •→−•o3. Then, ⊙⊙ time ⊨ δ1(t) =
∫
(δ ′2 ∗δ ′3)(t)dt.

When observing time, for

(o1 •→−•o2)
m⇋
m′

o3
?
= (o1

m⇋
m′

o3)•→−• (o2
m⇋
m′

o3) (9)

to hold, according to Proposition 1,

∆Q[[(o1 •→−•o2)
m⇋
m′

o3]] =
m

m+m′

∫
(δ ′1 ∗δ ′2)(t)dt +

m′

m+m′
δ3

=
m

m+m′

∫∫
δ ′1(τ)δ

′
2(t− τ)dτ dt +

m′

m+m′
δ3 (10)

and

∆Q[[(o1
m⇋
m′

o3)•→−• (o2
m⇋
m′

o3)]] =
∫ (

m
m+m′

δ ′1 +
m′

m+m′
δ ′3

)
∗
(

m
m+m′

δ ′2 +
m′

m+m′
δ ′3

)
(t)dt

=
∫∫ (

m
m+m′

δ ′1(t)+
m′

m+m′
δ ′3(t)

)
×
(

m
m+m′

δ ′2(t− τ)+
m′

m+m′
δ ′3(t− τ)

)
dτ dt. (11)

For Equation (9) to hold, the right-hand-sides of Equations (10) and (11) need to be equal. That is,

m
m+m′

∫∫
δ ′1(τ)δ

′
2(t− τ)dτ dt +

m′

m+m′
δ3 =

∫∫ (
m

m+m′
δ ′1(t)+

m′

m+m′
δ ′3(t)

)
×
(

m
m+m′

δ ′2(t− τ)+
m′

m+m′
δ ′3(t− τ)

)
dτ dt (12)

This is a differential equation for which we do not know a general solution. Given particular values for
δ1, δ2, and δ3, however, the ∆QSD practitioner might be able to solve it.
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7.2 Properisation

This section sets the stage using Theorem 7 for a technique that we call properisation and use for dis-
proving equivalences (in their full generality).

Properisation is based on the following important observation: if two outcomes do not fail similarly,
they are not equivalent. Properisation is an algebraic technique for swiftly extracting the failure behaviour
of outcomes via rewriting but without assessing the rest of their timeliness behaviour. Once the failure
parts of the timeliness behaviours are at hand for the two sides, one can check whether they are equal,
and if they are not, deduce that the outcomes in question are therefore unequal.

Our intuition for the choice of name “properisation” for this technique follows: recall that ∆Qs are
CDFs (or PDFs) of improper random variables. Properisation is a technique based on making the ∆Q of
an outcome o proper (by proportionating it) and restoring its amount of improperness – i.e., o’s intangible
mass, denoted by ℑ(∆Q(o)) – as a probabilistic choice (of the right weights) between o and ⊥. That is
also the intention behind the symbol we use for properisation: “ →

| .” As one can see in Figure 5, the CDF
of an improper random variable needs not to make it to the “ceiling” (i.e., 1). The symbol “ →

| ” that we
use is to resemble the act of sticking the CDF to the ceiling (represented by the horizontal bar at the top
of “ →

| ”)!
Now, the formal definition of properisation; both of an outcome and a basic assignment.

Notation 1. Write o[o′/β ] for the familiar λ -Calculus notation for substitutions: o in which every in-
stance of β is replaced by o′.

Definition 4. Fix a basic assignment ∆ and a base variable β such that ∆(β ) = δ where ℑ(δ ) = i. Write
o →

| β
∆ = o[(β [1−i]

⇋ ⊥)/β ]. Also, write ∆ →
| β for the basic assignment such that

∆ →
| β

(β ′) = ∆(β ′) when β ′ ̸= β ∆ →
| β

(β ′) = 1
1−i δ otherwise.

Finally, write o →
| β1,β2

∆ for
(

o →
| β1

∆

)

→
| β2

∆ and ∆ →
| β1,β2 for

(
∆ →

| β1
)

→
| β2 .

We say ∆ →
| β is the result of properisation of β in ∆. Likewise, we say that o →
| β

∆ is the result
properisation of β in o according to ∆.

As one can see from Definition 4, the act of properisation of a base variable β is according to a given
basic assignment ∆. That act is performed by taking two steps in unison:

1. proportionating according to the intangible mass of ∆(β ) so that β is no longer improper in the
resulting new basic assignment ∆ →

| β ; and,

2. replacing every occurrence of β in every outcome o with the probabilistic choice that is weighted
according to the intangible mass of ∆(β ), resulting in the new outcome o →

| β
∆ .

We now have all the prerequisites of Theorem 7.

Theorem 7. Suppose ∆ and ∆′ are two basic assignments such that ∆′ = ∆ →
| β1,β2,...,βn , for some β1,β2,

. . . ,βn ∈ B. Suppose also that o1,o2 ∈O. Then, ∆Q[[o1]]∆ = ∆Q[[o2]]∆ iff

∆Q[[o1 →
| β1,β2,...,βn

∆ ]]∆′ = ∆Q[[o2 →
| β1,β2,...,βn

∆ ]]∆′ .

Armed with Theorem 7, we can now outline the properisation technique:
Suppose two outcome expressions o and o′ the equivalence of which is to be studied. One begins

by studying the equivalence of o →
| β1,...,βn and o′ →
| β1,...,βn for some β1, . . . ,βn ∈ B. Now, suppose that
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– after the application of algebraic laws – one gets to rewrite o →
| β1,...,βn to (. . .) [p]

⇋⊥ and o′ →
| β1,...,βn to

(. . .) [p
′]

⇋⊥. One concludes that o ̸= o′ if one can show that p ̸= p′.
We start the application of our properisation technique by obtaining some useful results. Lemma 4

paves the way for the applications of the above technique. They instruct one on how to accumulate
failure at the rightmost corner when the operator between two pairs of parentheses is •→−•, ⇋, and ∥∀,
respectively. Unfortunately, ∥∃ has no such property, as will be shown by Remark 6.

Lemma 4. For every o1,o2,o3 ∈O,

(o1
[p1]⇋⊥)•→−• (o2

[p2]⇋⊥) = (o1 •→−•o2)
[p1 p2]⇋ ⊥

(o1
[p1]⇋⊥)

[p]
⇋ (o2

[p2]⇋⊥) = (o1
[q]
⇋o2)

[r]
⇋⊥ where q = pp1

p2−pp2+pp1
and r = p2− pp2 + pp1

(o1
[p1]⇋⊥)∥

∀(o2
[p2]⇋⊥) = (o1∥∀o2)

[p1 p2]⇋ ⊥.

Proof. We only prove the first equivalence here. The proof is similar for the other two equivalences.
By Theorems 6 and 5,

(o1
[p1]⇋⊥)•→−• (o2

[p2]⇋⊥) = ((o1
[p1]⇋⊥)•→−•o2)

[p2]⇋⊥= ((o1 •→−•o2)
[p1]⇋⊥)

[p2]⇋⊥= (o1 •→−•o2)
[p1 p2]⇋ ⊥.

Remark 6. Interestingly enough, there is no p such that the following holds in its full generality:

(o1
[p1]⇋⊥)∥

∃(o2
[p2]⇋⊥)

?
= (o1∥∃o2)

[p]
⇋⊥.

Suppose there were such a p. One gets to observe after some workout that equating the ∆Q[[.]] of the two
sides implies p = p1 = p2 = 1 or p = p1 = p2 = 0. When (o1

[p1]⇋⊥)∥
∃(o2

[p2]⇋⊥) is o1∥∃o2, in which o1
and o2 are being properised, that is either when o1 = o2 =⊤ or o1 = o2 =⊥.

Hereafter, we will write o1
[.]
⇋o2 to mean o1

[p]
⇋o2 for some unimportant p.

The desirable inequalities in Theorem 8 are all of the form ol ̸= or, with the outcome variables in ol
and or being o1, o2, and o3. In order to show ol ̸= or, we proceed by properisation of o1, o2, and o3 in ol
and or.

To that end, we fix a basic assignment ∆, such that ∆Q[[ok]]∆ = δk and ℑ(δk) = ik for k ∈ {1,2,3}.
Then, we take pk = 1− ik for k ∈ {1,2,3}, o′k = ok →

| o1,o2,o3
∆ for k ∈ {l,r}, and ∆′ = ∆ →
| o1,o2,o3 . We show

that ∆Q[[o′l]]∆′ ̸= ∆Q[[o′r]]∆′ to conclude that ∆Q[[ol]]∆ ̸= ∆Q[[or]]∆ by Theorem 7 and the result follows.

Theorem 8. For every o1,o2,o3 ∈O,

(o1 •→−•o2)⇋o3 ̸= (o1 ⇋o3)•→−• (o2 ⇋o3) o1 ⇋ (o2 •→−•o3) ̸= (o1 ⇋o2)•→−• (o1 ⇋o3)
(o1∥∀o2)⇋o3 ̸= (o1 ⇋o3)∥∀(o2 ⇋o3) o1 ⇋ (o2∥∀o3) ̸= (o1 ⇋o2)∥∀(o1 ⇋o3)
(o1∥∀o2)•→−•o3 ̸= (o1 •→−•o3)∥∀(o2 •→−•o3) o1 •→−• (o2∥∀o3) ̸= (o1 •→−•o2)∥∀(o1 •→−•o3).

Proof. We only prove
(o1 •→−•o2)

[p]
⇋o3 ̸= (o1

[p]
⇋o3)•→−• (o2

[p]
⇋o3) (13)

for a given p here. The rest can be proved similarly using Lemma 4.
One can rewrite the left-hand-side of Inequality (13)’s properisation using Lemma 4 as ((o1•→−•o2)

[.]
⇋

o3)
[q]
⇋⊥ where q = p3− pp3 + pp1 p2. Likewise, the right-hand-side of Inequality (13)’s properisation

can be rewritten as ((o1
[.]
⇋o3)•→−•(o2

[.]
⇋o3))

[r1r2]⇋ ⊥where r1 = p3− pp3+ pp1 and r2 = p3− pp3+ pp2.
Should the desirable inequality not hold, the conclusion would be q = r1r2. That is p3− pp3 + pp1 p2 =
(p3− pp3 + pp1)(p3− pp3 + pp2). But, that is not an equation that holds in general.
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7.3 Counterexamples

As worked out in Remark 6, properisation does not quite work for outcome expressions containing ∥∃
because ⊥ is not compositional under ∥∃. In this section, we present another technique for refuting
distributivity results, which is even easier: counterexamples. It suffices for one to refute an equivalence
to simply provide a single counterexample. That is how we refute the remaining four distributivity results
(in their full generality).

Theorem 9. For every o1,o2,o3 ∈O,

o1 ⇋ (o2∥∃o3) ̸= (o1 ⇋o2)∥∃(o1 ⇋o3) (o1∥∃o2)⇋o3 ̸= (o1 ⇋o3)∥∃(o2 ⇋o3)
o1∥∃(o2 •→−•o3) ̸= (o1∥∃o2)•→−• (o1∥∃o3) o1 •→−• (o2∥∃o3) ̸= (o1 •→−•o2)∥∃(o1 •→−•o3).

Proof. We only prove the last item here. The other inequalities can be proved similarly using the same
technique. Take o2 = o3 =⊤ and let ∆Q[[o1]] = δ1. By Theorem 5, o1 •→−• (o2∥∃o3) = o1 •→−• (⊤∥∃⊤) =
o1 •→−•⊤= o1. Therefore,

∆Q[[o1 •→−• (o2∥∃o3)]] = δ1. (14)

On the other hand, by Theorem 5, (o1 •→−•o2)∥∃(o1 •→−•o3) = (o1 •→−•⊤)∥∃(o1 •→−•⊤) = o1∥∃o1. Thus,

∆Q[[(o1 •→−•o2)∥∃(o1 •→−•o3)]] = δ1 +δ1−δ1δ1. (15)

Equations (14) and (15) together imply δ1 = 2δ1−δ 2
1 ⇒ δ1 = 0∨δ1 = 1⇒ o1 =⊥∨o1 =⊤. The result

follows because, for any other o1 and o2 = o3 =⊤, the two sides will not be equal.

8 Related Work

∆QSD has been used in practice by a small group of practitioners for a couple of decades now [20, 19, 6,
14, 5]. The first formalisation of ∆QSD was, however, done quite recently by Haeri et al. [11]. We use
that formalisation as a foundation.

Teigen et al [14] use ∆Q to develop a novel model of WiFi performance that produces complete
latency distributions. The model is validated by comparison with previous modeling work and real-world
measurements. It would be very interesting to apply ∆QSD to an outcome description of the protocol to
see if this can replicate the same results.

Elsewhere, Gajda [10] attempts to model latency distributions but allows operations that do not pre-
serve total probability. In our context, these would lead to incorrect conclusions about failure probabili-
ties.

Business Process Modelling and Notation (BPMN) [18] is a diagram scheme which is closely related
to Outcome Diagrams (although with some details that are not considered relevant to ∆QSD). BPMN
supports all ∆QSD operators except probabilistic choice. The closest operator is their “xor” gateway,
which is essentially [0.5]

⇋ . It is less expressive to the extent that it makes it impossible to consider systems
such as the example in Section 2. Of the attempts for formalising BPMN, those of Wong and Gibbons
[23, 24] are the most related to our work. Wong and Gibbons use the CSP process algebra for that
purpose and further develop it to enable the specification of timing constraints on concurrent systems.
Their developments allow mechanical verification of behavioural properties of BPMN diagrams using
the FDR2 [15] refinement checker. Whilst Wong and Gibbons prove many interesting properties of their
BPMN instances, they do not consider algebraic equivalences or algebraic structures for BPMN as we
do in this work for ∆QSD. A less related BPMN formalisation work is that of El Hichami et al. [8],
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which provides a denotational semantics based on the Max+ algebra as an execution model for BPMN.
They list a handful of algebraic equivalences in Max+ only axiomatically. Nevertheless, El Hichami et
al. make no attempt to study the equivalence of BPMN diagrams based on their Max+ semantics.

When it comes to timeliness analysis, an important advantage of outcome diagrams over BPMNs is
Definition 3, which formally defines the timeliness analysis of outcome diagrams. Definition 3 is funda-
mental to the applicability of the model theory we employ in this paper (Section 4.3). We are not aware
of any formally defined recipe for timeliness analysis of BPMNs. The two closest attempts that we could
find are the following two: Friedenstab et al. [9] borrow constructs from Business Activity Monitoring
[4] to augment BPMN with a graphical notation for describing certain timeliness matters. Likewise,
Morales [16] informally describes how to transform BPMN diagrams to timed automata networks, sug-
gesting qualitative analysis of timeliness.

Performance Evaluation Process Algebra (PEPA) [13] is an algebraic language for performance mod-
elling of systems. PEPA is successful and well-published with a rich family of formalisations with
various interesting theoretical properties. However, PEPA suffers from several shortcomings that make
difficult to apply to real-world software systems. For example, PEPA does not model open or partially-
specified systems; every detail of the system needs to be determined in advance. Since PEPA does not
allow goals and objectives to be specified, it offers no assistance when comparing the predicted perfor-
mance with the requirements. PEPA also suffers from state explosion, rapidly making it impractical,
although more recent PEPA technology employs continuous approximations of the states, which contain
some of the state explosion. This is similar to the use of IRVs in ∆QSD but rather ad hoc compared with
the systematic use of ∆Qs in ∆QSD. Less conservative alternatives to PEPA like SCEL [7] allow open
systems but suffer from even more state explosion. CARMA [2] addresses a lot of the problems with
PEPA, using a fluid approximation to manage the state explosion.

PerformERL [3] is an Erlang toolset, which focuses on monitoring the relationship between load
repeatability and internal resource allocation. The authors advertise their toolset as an assistant for mak-
ing early stage performance decisions, but it is unclear how it does this. Uunlike ∆QSD, monitoring
(like testing) requires implementation of the system specification up to a certain level. The closer the
implementation is to the full specification, the more reliable the monitoring will become, but the analysis
is then no longer early-stage. Less accurate monitoring, on the other hand, is not reliable for decision
making. The closest PerformERL gets to the work described in this paper is its lightweight theoretical
work out of the monitoring overhead it imposes to the system under development.

Finally, Failure Modes Effects Analysis [1] (FMEA) considers how failures propagate through a
system but, unlike ∆QSD, does not model delays. We are not aware of any formalisation of FMEA that
can serve algebraic developments like those on failure in this paper.

9 Conclusion and Future Work

This paper lays down model-theoretic foundations for timeliness analysis à la ∆QSD. It establishes time
as a resource that is consumed by outcomes. In doing so, it enables timeliness analysis via the study of
quality attenuation, simultaneously capturing both delay and failure. With our focus being exclusively on
timeliness, we discuss the algebraic structures that the ∆QSD operators form with outcome expressions
(Theorems 1–4). We refute the formation of richer algebraic structures by the ∆QSD operators and
outcome expressions (Remarks 2, 3, and 4). We consider the 15 distributivity results about the ∆QSD
operators. We prove 3 (Theorem 6) and disprove 8 (Theorem 8) using the newly formalised technique
developed in this paper called properisation (Theorem 7) and 4 using counterexamples (Theorem 9). We
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also provide guidelines for studying the existence of potential distributivity (Section 7.1). Finally, we
establish 14 important equivalences that have already been used in the practice of ∆QSD over the past
few decades (Lemmas 2–3 and Theorem 5).

Our immediate future work is to study the algebraic properties of other resources à la ∆QSD, with the
eventual goal of providing an algebraic categorisation of resources. A sound theoretical foundation is es-
sential for the construction of robust tool support, which is, in turn, a prerequisite for wider application of
the ∆QSD paradigm. Currently, there is a numerically-based tool prototype. However, to deal effectively
with large complex systems, this needs to be made more symbolic. The aim is for the expressions to be
simplified before calculation, and to be able to represent performance unknowns. Algebraic structures
are essential for correctly manipulating and simplifying expressions. This work informs both ongoing
practical work and tool development. Conversely, consideration of specific aspects of system design and
operation will inform the most productive directions for the theoretical developments.

To conclude, this paper has introduced a number of important algebraic properties for ∆QSD out-
come expressions. These properties have a highly practical application in the analysis of timeliness and
resource consumption. For the first time, we have shown distributivity of the ∆QSD operators over prob-
abilistic choice, and placed a set of ‘folklore’ equivalences (Theorem 5) that are in common usage for
∆QSD on a sound footing. These equivalences are essential for rapid recognition of infeasibility and for
sound manipulation of outcome expressions to reduce computational complexity.
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Concurrency theory has received considerable attention, but mostly in the scope of synchronous
process algebras such as CCS, CSP, and ACP. As another way of handling concurrency, data-based
coordination languages aim to provide a clear separation between interaction and computation by
synchronizing processes asynchronously by means of information being available or not on a shared
space. Although these languages enjoy interesting properties, verifying program correctness remains
challenging. Some works, such as Anemone, have introduced facilities, including animations and
model checking of temporal logic formulae, to better grasp system modelling. However, model
checking is known to raise performance issues due to the state space explosion problem. In this
paper, we propose a guarded list construct as a solution to address this problem. We establish that
the guarded list construct increases performance while strictly enriching the expressiveness of data-
based coordination languages. Furthermore, we introduce a notion of refinement to introduce the
guarded list construct in a correctness-preserving manner.

1 Introduction

Concurrency theory has been the attention of a considerable effort these last decades. However most
of the effort has been devoted to algebra based on synchronous communication, such as CCS [31],
CSP [21] and ACP [3]. Another path of research has been initiated by Gelernter and Carriero, who
advocated in [18] that a clear separation between the interactional and the computational aspects of
software components has to take place in order to build interactive distributed systems. Their claim
has been supported by the design of a model, Linda [9], originally presented as a set of inter-agent
communication primitives which may be added to almost any programming language. Besides process
creation, this set includes primitives for adding, deleting, and testing the presence/absence of data in
a shared dataspace. In doing so they proposed a new form of synchronization of processes, occurring
asynchronously, through the availability or absence of pieces of information on a shared space.

A number of other models, now referred to as coordination models, have been proposed afterwards.
However, although many pieces of work have been devoted to the proposal of new languages, semantics
and implementations, few articles have addressed the concerns of practically constructing programs in
coordination languages, in particular in checking that what is described by programs actually corresponds
to what has to be modelled.

Based on previous results [6, 7, 11, 12, 13, 14, 24, 26, 27, 28, 29], we have introduced in [22] a
workbench Scan to reason on programs written in Bach, a Linda-like dialect developed by the authors. It
has been refined in [23] to cope with relations, processes and multiple scenes. The resulting workbench
is named Anemone. In both cases, one of our goals was to allow the user to check properties by model
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Figure 1: Rush Hour Problem. On the left part, the game as illustrated at
https://www.michaelfogleman.com/rush. On the right part, the game modeled as a grid of 6× 6,
with cars and trucks depicted as rectangles of different colors.

checking temporal logic formulae and by producing traces that can be replayed as evidences of the es-
tablishment of the formulae. However, as well-known in model checking, this goal raises performance
issues related to the state space explosion. In particular, letting animation-related primitives interleave in
many ways duplicates research paths during model checking, with considerable performance problems
to check that formulae are established. To address this problem, we introduce in this paper a guarded list
construct and establish that it yields an increase in performance while strictly enriching the expressive-
ness of Bach.

The rest of the paper is organized as follows. Section 2 presents the reference Linda-like language
Bach employed by Scan and Anemone. Section 3 introduces the guarded list construction as well as the
refinement relation. It is proved to increase the expressiveness of the Bach language in Section 4 while
the gain of efficiency in model-checking is established in Section 5. Finally, Section 6 compares our
work with related work and Section 7 sums up the paper and sketches future work.

It is worth observing that, as duly compared in Section 6, introducing an atomic construct is not
new. However, our contribution is (i) to introduce a construct tailored to coordination languages, (ii) to
establish that it yields a gain of performance in model checking and also an increase of expressiveness,
and finally (iii) to identify refinement-based criteria so as to guide the programmer to introduce the
guarded list construct in a correctness-preserving manner.

To make the article more concrete, we shall use the running example of [23], namely a solution to
the rush hour puzzle. This game, illustrated in Figure 1, consists in moving cars and trucks on a 6× 6
grid, according to their direction, such that the red car can exit. It can be formulated as a coordination
problem by considering cars and trucks as autonomous agents which have to coordinate on the basis of
free places.

2 The Anim-Bach language

2.1 Definition of data

Following Linda, the Bach language [14, 25] uses four primitives for manipulating pieces of information:
tell to put a piece of information on a shared space, ask to check its presence, nask to check its absence
and get to check its presence and remove one occurrence. In its simplest version, named BachT, pieces
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of information consist of atomic tokens and the shared space, called the store, amounts to a multiset of
tokens. Although in principle such a framework is sufficient to code many applications, it is however
too elementary in practice to code them easily. To that end, we introduce more structured pieces of
information which may employ sets defined as in

e s e t RCInt = { 1 , 2 , 3 , 4 , 5 , 6 } .

in which the set RCInt is defined as the set containing the elements 1 to 6. In addition to sets, maps can be
defined between them as functions that take zero or more arguments. In practice, mapping equations are
used as rewriting rules, from left to right in the aim of progressively reducing a complex map expression
into a set element.

As an example of a map, assuming a grid of 6 by 6 featuring the rush hour problem as in [23] and
assuming that trucks in this game take three cells and are identified by the upper and left-most cell they
occupy, the operation down_truck determines the cell to be taken by a truck moving down:

map down_t ruck : RCInt −> RCInt .
eqn down_t ruck ( 1 ) = 4 . down_t ruck ( 2 ) = 5 . down_t ruck ( 3 ) = 6 .

Note from this example that mappings may be partially defined, with the responsibility put on the pro-
grammer to use them only when defined.

Structured pieces of information to be placed on the store consist of flat tokens as well as expressions
of the form f (a1, · · · ,an) where f is a functor and a1, . . . , an are set elements or structured pieces of
information. As an example, in the rush hour example, it is convenient to represent the free places of the
game as pieces of information of the form free(i,j) with i a row and j a column.

The set of structured pieces of information is subsequently denoted by I . For short, si-term is used
later to denote a structured piece of information. Mapping definitions induce a rewriting relation that we
shall subsequently denote by ;, that rewrites si-terms to final si-terms, namely si-terms that cannot be
reduced further.

2.2 Primitives

The primitives consist of the tell, ask, nask and get primitives already introduced, which take as
arguments elements of I . A series of graphical primitives are added to them. They aim at animating the
executions. They include draw, move_to, place_at, hide, show primitives, to cite only a few. The key
point for this paper is that they always succeed and do not interfere with the shared space. For the rest
of the paper, we shall assume a set GPrim of graphical primitives and will take primitives from it. The
coordinated Bach language enriched by graphical primitives is subsequently referred to as Anim-Bach.

The execution of primitives is formalized by the transition steps of Figure 2. Configurations are
taken there as pairs of instructions, for the moment reduced to simple primitives, coupled to the contents
of the shared space. Following the constraint-like setting of Bach in which the Linda primitives have
been rephrased, the shared space is renamed as store and is formally defined as a multiset of si-terms.
As a result, rule (T) states that the execution of the tell(t) primitive amounts to enriching the store by
an occurrence of t. The E symbol is used in this rule as well as in other rules to denote a terminated
computation. Similarly, rules (A) and (G) respectively state that the ask(t) and get(t) primitives check
whether t is present on the store with the latter removing one occurrence. Dually, as expressed in rule
(N), the primitive nask(t) tests whether t is absent from the store. Finally, rule (Gr) expresses that any
graphical primitive succeeds without modifying the store.
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(T)
t ; u

〈 tell(t) | σ 〉 −→ 〈 E | σ ∪{u} 〉

(A)
t ; u

〈 ask(t) | σ ∪{u} 〉 −→ 〈 E | σ ∪{u} 〉

(G)
t ; u

〈 get(t) | σ ∪{u} 〉 −→ 〈 E | σ 〉

(N)
t ; u,u 6∈ σ

〈 nask(t) | σ 〉 −→ 〈 E | σ 〉

(Gr)
p ∈ GPrim

〈 p | σ 〉 −→ 〈 E | σ 〉

Figure 2: Transition rules for the primitives

2.3 Agents

Primitives can be composed to form more complex agents by using traditional composition operators
from concurrency theory: sequential composition, parallel composition and non-deterministic choice.
Another mechanism is added in Anim-Bach: conditional statements of the form c→ s1 � s2, which com-
putes s1 if c evaluates to true or s2 otherwise. As a shorthand, c→ s1 is used to compute s1 when c
evaluates to true. Conditions of type c are obtained from elementary ones, thanks to the classical and,
or and negation operators, denoted respectively by &, | and !. Elementary conditions are obtained by
relating set elements or mappings on them by equalities (denoted =) or inequalities (denoted=, <, <=,
>, >=).

Procedures are defined similarly to mappings through the proc keyword by associating an agent with
a procedure name. As in classical concurrency theory, it is assumed that the defining agents are guarded,
in the sense that any call to a procedure is preceded by the execution of a primitive or can be rewritten in
such a form.

As an example, the behavior of a vertical truck in the rush hour puzzle can be modelled by the
following code:

proc V e r t i c a l T r u c k ( r : RCInt , c : RCInt ) =
( ( r >1 & r < 5 ) − > ( g e t ( f r e e ( p red ( r ) , c ) ) ; t e l l ( f r e e ( succ ( succ ( r ) ) , c ) ;

V e r t i c a l T r u c k ( p red ( r ) , c ) )
+
( ( r < 4 ) − > ( g e t ( f r e e ( down_t ruck ( r ) , c ) ) ; t e l l ( f r e e ( r , c ) ) ;

V e r t i c a l T r u c k ( succ ( r ) , c ) ) ) .

To understand it, remember that a truck is identified by the upper and left-most cell it occupies. The
parameters of the VerticalTruck procedure are precisely the row number and the line number of this
cell. Given that a vertical truck can move one cell up or one cell down, the procedure offers two alter-
natives through the "+" operator. The first one corresponds to a truck moving one cell up. To make this
move realistic, the row r occupied by the truck should be strictly greater than one. Otherwise, the truck
is already on the first row (like the yellow truck of Figure 1) and cannot move up. Moreover, as we shall
see in a few seconds, the row r should also be strictly smaller than 5. Assuming the two conditions hold
(r > 1&r < 5) moving a truck one cell up proceeds in three steps. First we need to make sure that the
cell up is free. This is obtained by getting the si-term f ree(pred(r),c)) by means of the execution of the
get(free(pred(r),c)) primitive. Note that pred(r) is actualy coded by a map as being r−1. Second
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(S) 〈A | σ〉 −→ 〈A′ | σ ′〉
〈A ; B | σ〉 −→ 〈A′ ; B | σ ′〉

(P)
〈A | σ〉 −→ 〈A′ | σ ′〉

〈A || B | σ〉 −→ 〈A′ || B | σ ′〉
〈B || A | σ〉 −→ 〈B || A′ | σ ′〉

(C)

〈A | σ〉 −→ 〈A′ | σ ′〉
〈A + B | σ〉 −→ 〈A′ | σ ′〉
〈B + A | σ〉 −→ 〈A′ | σ ′〉

(Co)
|=C, 〈A | σ〉 −→ 〈A′ | σ ′〉
〈C→ A�B | σ〉 −→ 〈A′ | σ ′〉
〈!C→ B�A | σ〉 −→ 〈A′ | σ ′〉

(Pc) P(x) = A,〈A[x/u | σ〉 −→ 〈A′ | σ ′〉
〈P(u) | σ〉 −→ 〈A′ | σ ′〉

Figure 3: Transition rules for the operators

the cell liberated by moving the truck one cell up is to be declared free. This is obtained by telling the
corresponding f ree si-term on the store, namely by executing tell(free(succ(succ(r)),c). Note
that succ(r) is coded as r + 1 by a map, which is why r needs to be smaller than 5. Third the truck
procedure has to be called recursively with pred(r) and c as new coordinates for the upper and left-most
cell it occupies.

The behavior of the alternative movement in which the truck goes down by one cell is similar. As r
is assumed to be in set RCInt = {1, · · · ,6} and we do not perform a pred operation there is no need to
check that r is greater or equal to 1. However to get the cell down we need to check that r is strictly less
than 4.

The operational semantics of complex agents is defined through the transition rules of Figure 3. They
are quite classical. Rules (S), (P) and (C) provide the usual semantics for sequential, parallel and choice
compositions. As expected, rule (Co) specifies that the conditional instruction C→ A�B behaves as A if
condition C can be evaluated to true and as B otherwise. Note that the notation |=C is used to denote the
fact that C evaluates to true. Finally, rule (Pc) makes procedure call P(u) behave as the agent A defining
procedure P with the formal arguments x replaced by the actual ones u.

In these rules, it is worth noting that we assume agents of the form (E;A), (E || A) and (A || E) to be
rewritten as A.

2.4 A fragment of temporal logic

Linear temporal logic is widely used to reason on dynamic systems. The Scan and Anemone work-
benches use a fragment of PLTL [16].

As usual, the logic employed relies on propositional state formulae. In the coordination context, these
formulae are to be verified on the current contents of the store. Consequently, given a structured piece
of information t, the notation #t is introduced to denote the number of occurrences of t on the store and
basic propositional formulae are defined as equalities or inequalities combining algebraic expressions
involving integers and number of occurrences of structured pieces of information. An example of such a
basic formulae is # f ree(1,1) = 1 which states that the cell of coordinates (1,1) is free.

Propositional state formulae are built from these basic formulae by using the classical propositional
connectors. On the point of notations, given a store σ and a propositional state formulae PF , we shall
write σ |= PF to indicate that PF is established on store σ .



6 On the Introduction of Guarded Lists in Bach: Expressiveness, Correctness, and Efficiency Issues

The fragment of temporal logic used in Scan and Anemone is then defined from these propositional
state formulae by the following grammar :

T F ::= PF |Next T F |PF Until T F

where PF is a propositional formula. A classical use, on which we shall focus in this paper, is to
determine whether a propositional state formulae can be reached at some state. As an example, coming
back to the rush hour problem, if the red car indicates that it leaves the grid by placing out on the store,
a solution to the rush problem is obtained by verifying the formula

true Until(#out = 1)

which we shall subsequently abbreviate as Reach(#out = 1).
The algorithm used in Scan and Anemone to establish reach properties basically consists of a breadth-

first search on the state space engendered by an agent starting from the empty store. During this search,
for each newly created state, a test is made to check whether the considered reach property holds.

Such an elementary algorithm works well for simple problems. However it becomes difficult to
use when more complex problems are tackled. One of the reasons comes from the fact that states are
duplicated many times by interleaving. Consider for instance the code for the VerticalTruck proce-
dure introduced above. With primitives to animate its execution and colors introduced for visualization
purposes, its more complete code is as follows:

proc V e r t i c a l T r u c k ( r : RCInt , c : RCInt , p : C o l o r s ) =
( ( r >1 & r <5) − > ( g e t ( f r e e ( p red ( r ) , c ) ) ;

moveTruck ( p red ( r ) , c , p ) ;
t e l l ( f r e e ( succ ( succ ( r ) ) , c ) ) ;
V e r t i c a l T r u c k ( p red ( r ) , c , p ) ) )

+
( ( r < 4 ) − > ( g e t ( f r e e ( down_t ruck ( r ) , c ) ) ;

moveTruck ( succ ( r ) , c , p ) ;
t e l l ( f r e e ( r , c ) ) ;
V e r t i c a l T r u c k ( succ ( r ) , c , p ) ) ) .

Consider now two vertical trucks in parallel and for illustration the first three statements:
get(free(pred(r),c)), moveTruck(pred(r),c,p) tell(free(succ(succ(r)),c)). Interleav-
ing them in the two parallel instances of VerticalTruck is of no interest for checking whether out has
been produced since what really matters is the state resulting after the three steps. Hence, provided the
first get primitive succeeds, the two other primitives may be executed in a row. This observation leads us
to introduce so-called guarded lists of primitives.

3 A guarded list construct

A guarded list of primitives is a construct of the form [p→ p1, · · · , pn] where p, p1, . . . , pn are primi-
tives, with the list p1, . . . , pn being possibly empty. In that latter case, we shall write [p] for simplicity
of the notations.

Basically, a guarded list of primitives is a list of primitives containing at least one primitive. The
reason for writing guarded lists with an arrow and for calling it guarded comes from the fact that, provided
the first primitive can be successfully executed, all the others are executed immediately after without
rollback in case of failure. It is of course the responsibility of the programmers to guarantee that in
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(Le) 〈 [] | σ 〉 −→ 〈 E | σ 〉

(Ln)
〈 p | σ 〉 −→ 〈 E | τ 〉, 〈 L | τ 〉 −→∗ 〈 E | φ 〉

〈 [p|L] | σ 〉 −→ 〈 E | φ 〉

(GL)
〈 p | σ 〉 −→ 〈 E | τ 〉, 〈 L | τ 〉 −→∗ 〈 E | φ 〉

〈 [p→ L] | σ 〉 −→ 〈 E | φ 〉

Figure 4: Transition rules for guarded lists

case the first primitive can be successfully evaluated the remaining primitives can also be successfully
executed. Note that this is obviously the case for tell primitives and the graphical primitives which
always succeed regardless of the current content of the store. Note also that we shall subsequently
identify criteria to introduce guarded lists while preserving correctness.

It is worth observing that guarded lists are atomic constructs which makes them different from con-
ditional statements. In two words, the execution of [p→ p1, · · · , pn] is as follows. First the store is
locked and the execution of p is tested. If it fails then no modification is performed on the store and the
store is released. Otherwise not only p is executed but also after p1, . . . , pn in a row. After that the store
is released. In contrast, the execution of the conditional statement c→ s1 � s2 amounts to check c, which
does not require to lock the store since conditions are built on comparing si-terms and not their presence
or absence on the store. If c is evaluated to true then s1 is executed, which means that one step of s1 is
done if this is possible. If c is evaluated to false then one step of s2 is attempted.

The operational semantics of guarded lists is defined by rules (Le), (Ln) and (GL) of Figure 4. The
first two rules define the semantics of lists of primitives, as being successively executed. Rule (Le)
concerns the empty list of primitives [ ] while rule (Ln) inductively specifies that of a non-empty list [p|L]
with p the first primitive and L is the list of the other primitives1. Rule (GL) then states that the guarded
list [p→ L] can do a computation step from the store σ to φ provided the primitive p can do a step
changing the store σ to τ and provided the list of primitives L can change τ to φ .

Of course, introducing guarded lists as an atomic construct reduces the interleaving possibilities
between parallel processes. This is in fact what we want to achieve to get speed ups in the model
checking phase. However from a programming point of view, one needs to guarantee that computations
are kept in some way. This is the purpose of the introduction of the histories and of their contractions.

Definition 1

1. Define the set of computational histories (or histories for short) Shist as the set Sstoreω ∪
Sstore∗.{δ+,δ−}where Sstore denotes the set of stores (namely of finite multisets of final si-terms),
the ∗ and ω symbols are used to respectively denote finite and infinite repetitions and where δ+

and δ− are used as ending marks respectively denoting successful and failing computations.

2. A history hc is a contraction of an history h if it can be obtained from the latter by removing a finite
number (possibly 0) elements of it, except the terminating marks δ+ and δ−. This is subsequently
denoted by hc � h.

1These list notations [ ] and [p|L] come from the logic programming way of handling lists.
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3. Given a contraction hc = σ0. · · · .σn.δ (resp. hc = σ0. · · · .σn. · · ·) of an history h, there are thus
sequences of stores, σ0, . . . , σn such that h = σ0.σ0. · · · .σn.σn.δ (resp. h = σ0.σ0. · · · .σn.σn. · · ·).
For any logic formula F, the history hc is said to be F-preserving iff, for any i and for any store τ
of σi, one has τ |= F iff σi |= F. This is subsequently denoted as hc�F h.

Contractions and F-preserving contractions can be lifted in an obvious way to sets of histories.

Definition 2 A set Sc of histories is a contraction (resp. a F-preserving contraction) of a set S of histories
if any history of Sc is the contraction (resp. a F-preserving contraction) of a history of S. By lifting
notations on histories, this is subsequently denoted by Sc � S (resp. Sc�F S).

We can now define the history-based operational semantics as the one delivering all the computational
histories. To make it general, we shall define it on any contents of the initial store.

Definition 3 Define the language Lg as the Anim-Bach language with the guard list construct.

Definition 4 Define the operational semantics Oh : Lg→P(Shist) as the following function. For any
agent A and any store τ

Oh(A)(τ) =
{σ0. · · · .σn.δ+ : 〈A | σ0〉 −→ ·· · −→ 〈E | σn〉,σ0 = τ,n≥ 0}
∪{σ0. · · · .σn.δ− : 〈A | σ0〉 −→ ·· · −→ 〈An | σn〉 6−→,σ0 = τ,An 6= E,n≥ 0}
∪{σ0. · · · .σn. · · · : 〈A | σ0〉 −→ ·· · −→ 〈An | σn〉 −→ ·· · ,σ0 = τ,∀n≥ 0 : An 6= E}

We are now in a position to define the refinement of agents.

Definition 5 Agent A is said to refine agent B iff Oh(A)(τ)� Oh(B)(τ), for any store τ .

The following proposition is a direct consequence of the above definitions. Its interest is to establish
contractions and F-preserving properties from a syntactic characterization.

Proposition 1

1. If p1, · · · , pn are tell primitives or graphical primitives then for any primitive p, the guarded list
GL = [p→ p1, · · · , pn] refines the sequential composition SC = p; p1; · · · ; pn. As a result, any
reachable property proved on the stores generated by the execution of GL from a given store τ is
also established on the stores generated by the execution of SC from τ .

2. Assuming additionally that the arguments of the tell primitives of p1, · · · , pn are distinct from the
si-terms appearing in the reachable formulae F, then GL is also a F-preserving contraction of SC.
It results that F is established on the stores resulting from the execution of SC from any store τ iff
it is established on the stores resulting from the execution of GL from τ .

For the study of expressiveness, it will be useful to turn to a simpler semantics focusing on the
resulting stores of finite computations. Such a semantics is defined as follows.

Definition 6 Define the operational semantics O f : Lg→P(Sstore×{δ+,δ−}) as the following func-
tion: for any agent A ∈Lg

O f (A) = {(σ ,δ+) : 〈A | /0〉 →∗ 〈E | σ〉}
∪
{(σ ,δ−) : 〈A | /0〉 →∗ 〈B | σ〉 6→,B 6= E}

It is immediate to verify that, for any agent A, the semantics O f (A) is obtained by considering the
final stores of the finite histories of Oh(A)( /0).
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Figure 5: Basic embedding.

4 Expressiveness

Although it is interesting to bring efficiency during model checking, the guarded list construct also brings
an increase of expressiveness. This is evidenced in this section by using the notion of modular embedding
introduced in [5]. As pointed out there, from a computational point of view, all “reasonable” sequential
programming languages are equivalent, as they express the same class of functions. Still it is common
practice to speak about the “power” of a language on the basis of the expressibility or non-expressibility
of programming constructs. In general, a sequential language L is considered to be more expressive than
another sequential language L′ if the constructs of L′ can be translated in L without requiring a “global
reorganization of the program” [17], that is, in a compositional way. Of course the translation must
preserve the meaning, at least in the weak sense of preserving termination.

When considering concurrent languages, the notion of termination must be reconsidered as each pos-
sible computation represents a possible different evolution of a system of interacting processes. Moreover
deadlock represents an additional case of termination. We shall consequently rely on the operational se-
mantics O f of Definition 6, focused on the final store of finite computations together with the termination
mark.

The basic definition of embedding, given by Shapiro [34] is the following. Consider two languages L
and L′. Moreover assume we are given the semantics mappings O : L→ Obs and O ′ : L′→ Obs′, where
Obs and Obs′ are some suitable domains. Then L can embed L′ if there exists a mapping C (coder) from
the statements of L′ to the statements of L, and a mapping D (decoder) from Obs to Obs′, such that the
diagram of Figure 5 commutes, namely such that for every statement A ∈ L′: D(O(C (A))) = O ′(A).

The basic notion of embedding is too weak since, for instance, the above equation is satisfied by
any pair of Turing-complete languages. De Boer and Palamidessi hence proposed in [5] to add three
constraints on the coder C and on the decoder D in order to obtain a notion of modular embedding
usable for concurrent languages:

1. D should be defined in an element-wise way with respect to O:

∀X ∈ Obs : D(X) = {Del(x) | x ∈ X} (P1)

for some appropriate mapping Del;

2. the coder C should be defined in a compositional way with respect to the sequential, parallel and
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choice operators2:
C (A ; B) = C (A) ; C (B)
C (A || B) = C (A) || C (B)

C (A + B) = C (A) + C (B)
(P2)

3. the embedding should preserve the behavior of the original processes with respect to deadlock,
failure and success (termination invariance):

∀X ∈ Obs,∀x ∈ X : tm′(Del(x)) = tm(x) (P3)

where tm and tm′ extract the information on termination from the observables of L and L′, respec-
tively.

An embedding is then called modular if it satisfies properties P1, P2, and P3.
The existence of a modular embedding from L′ into L is denoted as L′ ≤ L. It is easy to see that ≤ is

a pre-order relation. Moreover if L′ ⊆ L then L′ ≤ L that is, any language embeds all its sublanguages.
This property descends immediately from the definition of embedding, by setting C and D equal to the
identity function.

Let us now compare the Anim-Bach language with guarded lists with the Anim-Bach language with-
out guarded lists. As introduced before, the former is denoted by Lg. The latter will be denoted by Lr.
Following [7], we shall also test three sublanguages composed (i) of the ask, tell primitives, (ii) of the
ask, tell, get primitives and (iii) of the ask, tell, get, nask primitives. These sublanguages will be denoted
by specifying the primitives between parentheses, as in Lg(ask, tell). Moreover, to focus on the core
features, we shall discard conditional statements and procedures, which are essentially introduced for
the ease of coding applications.

By language inclusion, a first obvious result is that the Anim-Bach sublanguages with guarded lists
embed their counterparts without guarded lists.

Proposition 2 For any subset X of primitives, one has Lr(X )≤Lg(X ).

The converse relations do not hold. Intuitively, this is due to the fact that, in contrast to Lr, the
languages Lg have the possibility of atomically testing the simultaneous presence of two si-terms on the
store. The formal proof requires of course a deeper treatment. It turns out however that the techniques
employed in [7] can be adapted to guarded lists. One of them, which results from classical concurrency
theory, is that any agent can be reformulated in a so-called normal form.

Definition 7 Agents (of Lg) in normal forms are agents of Lg which obey the following grammar, where
N is an agent in normal form, p is a primitive (either graphical or store-related) or a guarded list of
primitives and A denotes an arbitrary (non restricted) agent

N ::= p | p ; A | N + N.

Proposition 3 For any agent A of Lg, there is an agent N of Lg in normal form which has the same
derivation sequences as A.

2Actually, this is not required for the sequential operator in [5] since it does not occur in that work.
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Proof. Indeed, it is possible to associate to any agent A an agent τ(A) in normal form by using the
following translation defined inductively on the structure of A:

τ(p) = p

τ(X ;Y ) = τ(X);Y

τ(X +Y ) = τ(X)+ τ(Y )
τ(X ‖ Y ) = τ(X) Y + τ(Y ) X

p Z = p;Z

(p;A) Z = p;(A ‖ Z)

(N1 +N2) Z = N1 Z +N2 Z

It is easy to verify that, for any agent A, the agent τ(A) is in normal form. Moreover, it is straightforward
to verify that A and τ(A) share the same derivation sequences. ut

We are now in a position to establish that Lg(ask, tell) cannot be embedded in Lr(ask, tell).

Proposition 4 Lg(ask, tell) 6≤Lr(ask, tell)

Proof. Let us proceed by contradiction and assume the existence of a coder C and a decoder D . The
proof is composed of three main steps.

STEP 1: on the coding of tell(a) and tell(b). Let a, b be two distinct si-terms. Since O f ([tell(a)]) =
{({a},δ+)}, any computation of C ([tell(a)]) starting in the empty store succeeds by property P3. Let

〈C ([tell(a)]) | /0〉 −→ ·· · −→ 〈E | {a1, · · · ,am}〉

be one computation of C ([tell(a)]). Similarly, any computation of C ([tell(b)]) starting on the empty
store succeeds. Let

〈C ([tell(b)]) | /0〉 −→ ·· · −→ 〈E | {b1, · · · ,bn}〉
be one computation of C ([tell(b)]). Note that, as we only consider ask and tell primitives, this computa-
tions can be reproduced on any store τ . We thus have also that

〈C ([tell(b)]) | τ〉 −→ ·· · −→ 〈E | τ ∪{b1, · · · ,bn}〉

In particular, as C ([tell(a)]; [tell(b)]) = C ([tell(a)]);C ([tell(b)]), we have that

〈C ([tell(a)]; [tell(b)]) | /0〉 −→ ·· ·
−→ 〈C ([tell(b)]) | {a1, · · · ,am}〉 −→ ·· ·
−→ 〈E | {a1, · · · ,am,b1, · · · ,bn}〉

STEP 2: coding of an auxiliary statement AB. Consider now AB = [ask(a)→ ask(b)]. Obviously, as it
requires a to be present, the execution of AB on the empty store cannot do any step and thus O f (AB) =
{( /0,δ−)}. Let us now turn to its coding C (AB). By Proposition 3, it can be regarded in its normal form.
As it is in Lr(tell,ask), its more general form is as follows

tell(t1) ; A1 + · · ·+ tell(tp) ; Ap +ask(u1) ; B1 + · · ·+ask(uq) ; Bq +gp1 ; C1 + · · ·+gpr ; Cr
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where gp1, . . . , gpr are graphical primitives. Let us first establish that there is no alternative guarded by
a tell(ti) operation. Indeed, if this was the case, then

D = 〈C (AB) | /0〉 −→ 〈Ai | {ti}〉

would be a valid computation prefix of C (AB). As O f (AB) = {( /0,δ−)}, this prefix should deadlock
afterwards. However, as C (AB+ [tell(a)]) = C (AB) +C ([tell(a)]), the computation step D is also a
valid computation prefix of C (AB+[tell(a)]). Hence, C (AB+[tell(a)]) admits a failing computation
which, by property P3, contradicts the fact that O f (AB + [tell(a)]) = {({a},δ+)}. The proof of the
absence of an alternative guarded by a graphical primitive gpi proceeds similarly.

Let us now establish that none of the ui’s belong to {a1, · · · ,am} ∪ {b1, · · · ,bn}. Indeed, if u j ∈
{a1, · · · ,am} for some j ∈ {1, · · · ,q}, then, as C ([tell(a)] ; AB) = C ([tell(a)]) ; C (AB), the derivation

D′ = 〈C ([tell(a)] ; AB) | /0〉 −→ ·· ·−→ 〈C (AB) | {a1, · · · ,am}〉
−→ 〈B j | {a1, · · · ,am}〉

is a valid computation prefix of C ([tell(a)] ; AB). However, by applying rule (T),

〈[tell(a)] ; AB | /0〉 −→ 〈AB | {a}〉 6−→

By Property P3, it follows that D′ can only be continued by failing suffixes. However, thanks to the
fact that C ([tell(a)] ; (AB+[ask(a)])) = C ([tell(a)]) ; (C (AB)+C ([ask(a)])) the prefix D′ induces the
following computation prefix D′′ for C ([tell(a)] ; (AB+[ask(a)]))

D′′ = 〈C ([tell(a)] ; (AB+[ask(a)])) | /0〉 −→ ·· ·
−→ 〈C (AB)+C ([ask(a)]) | {a1, · · · ,am}〉
−→ 〈B j | {a1, · · · ,am}〉.

which can only be continued by failing suffixes whereas [tell(a)] ; (AB+[ask(a)]) only admits a success-
ful computation.

The proof proceeds similarly in the case u j ∈{b1, · · · ,bn} for some j∈{1, · · · ,q} by then considering
[tell(b)] ; AB and [tell(b)] ; (AB+[ask(b)]).

STEP 3: combining the first two steps to produce a contradiction. The ui’s are thus forced not to belong
to {a1, · · · ,am}∪ {b1, · · · ,bn}. However, this induces a contradiction. To that end, let us first observe
that C (AB) cannot do any step on the store {a1, · · · ,am,b1, · · · ,bn} since none of the ask(ui) primitives
can do a step. As a result,

〈AB | {a1, · · · ,am,b1, · · · ,bn}〉 6−→
Now, by compositionality of the coder with respect to the sequential composition (property P2),
C ([tell(a)] ; [tell(b)] ; AB) =C ([tell(a)]) ; C ([tell(b)]) ; C (AB), and consequently the following deriva-
tion is valid:

〈C ([tell(a)] ; [tell(b)] ; AB) | /0〉 −→ ·· · −→ 〈AB | {a1, · · · ,am,b1, · · · ,bn}〉

and yields a failing computation for C ([tell(a)] ; [tell(b)] ; AB). However, as easily checked,
[tell(a)] ; [tell(b)] ; AB has only one successful computation. ut

Using similar arguments as in [7], it is possible to extend the previous proof so as to establish the
following results.
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Proposition 5

1. Lg(get, tell) 6≤Lr(get, tell)

2. Lg(ask,get, tell) 6≤Lr(ask,get, tell)

3. Lg(ask,nask,get, tell) 6≤Lr(ask,nask,get, tell)

5 Performance

Let us now illustrate the gain of efficiency during model-checking obtained by the guarded list construct.
To that end, we shall subsequently compare the performance of the Scan and Anemone breath-first search
model checker on various examples of the rush hour puzzle coded, on the one hand, without the guarded
list construct, and, on the other hand, with the guarded list construct.

As described in the previous sections, the rush hour puzzle can be formulated as a coordination
problem by considering cars and trucks as autonomous agents which have to coordinate on the basis
of free places. The complete code is available at [4]. Besides sets, maps and widget definitions, it is
basically composed of generic procedures for coding horizontal cars and trucks as well as vertical cars
and trucks. Specific cars and trucks are then obtained by instantiating colors and places and are put in
parallel.

The code for the cars and trucks follows the pattern of the code presented in page 6. Basically, under
some conditions, each car and truck amounts to (i) obtaining a free place to move through the execution
of a get primitive, (ii) then to operating the movement graphically through the execution of a move

primitive and (iii) finally to freeing the place previously occupied by means of the execution of a tell

primitive. As an example, the following code is a snippet refining the code of page 6.

g e t ( f r e e ( p red ( r ) , c ) ) ;
move ( t r u c k _ i m g ( c ) , p r ed ( r ) , c ) ;
t e l l ( f r e e ( s u cc ( succ ( r ) ) , c ) )

The problem is solved when the out si-term is put on the store, which leads to checking that the
property #out = 1 can be reached. As easily checked, the hypotheses of Proposition 1 are verified so that
we can replace the above code snippet by the following:

[ g e t ( f r e e ( p re d ( r ) , c )) − >
move ( t r u c k _ i m g ( c ) , p r e d ( r ) , c ) ,
t e l l ( f r e e ( suc c ( s ucc ( r ) ) , c ) ) ]

This code is indeed an F-preserving contraction for the formulae F = (#out = 1).
By performing this transformation, one gains per vehicle the computation of two stores on four,

which induces the hope of a gain of performance of 2n if n is the number of vehicles in parallel. To
verify the actual gain of performance, we have model checked the two codes (one with guarded list and
the other without guarded list) on the examples of Table 1. They are inspired by cards of the real game
and, in view of the above hope, are taken by progressively adding vehicles. The last column in Table 1
gives a brief description of the considered game. The V and H prefixes refer to a vehicle put vertically
or horizontally, while the coordinates are those of the rows (counted from top to bottom) and columns
(counted from left to right).

Table 2 reports on the data obtained on a portable computer Lenovo x64 bits, running Windows 10
with 16 GB of memory. The first column refers to the test case, the second and the third columns give the
time in milliseconds necessary for model checking, the fourth column the time ratio and the last column
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Case Nb’s cars/trucks Game
1 2 VPurpleTruck(2,4), HRedCar(3,2)
2 3 VPurpleTruck(2,1), HRedCar(3,2), HGreenCar(1,1)
3 4 VPurpleTruck(2,1), HRedCar(3,2), HGreenCar(1,1), VOrangeCar(5,1)
4 5 VPurpleTruck(2,1), HRedCar(3,2), HGreenCar(1,1), VOrangeCar(5,1),

VBlueTruck(2,4)
5 6 VPurpleTruck(2,1), HRedCar(3,2), HGreenCar(1,1), VOrangeCar(5,1),

VBlueTruck(2,4), HGreenTruck(6,3)
6 7 VPurpleTruck(2,1), HRedCar(3,2), HGreenCar(1,1), VOrangeCar(5,1),

VBlueTruck(2,4), HGreenTruck(6,3), VYellowTruck(1,6)

Table 1: Test cases

Case Without GL With GL Gain Expected gain
1 2630 ms (2s) 298 ms (0s) 8.82 4
2 64341 ms (64s |1m) 355 ms (0s) 181 8
3 60339 ms (60s |1m) 770 ms (1s) 78 16
4 495578 ms (496s | 8m) 1032 ms (1s) 480 32
5 3271343 ms (3271s | 55m) 4100 ms (4s) 797 64
6 ≥ 10h 4862322 (1h35m) ≥ 6 128

Table 2: Performance results

the hoped gain according to 2n where n is the number of vehicles in the game. As can be seen from this
table, guarded lists lead to a real performance gain and even a greater performance than expected3. This
can be explained by the fact that the Scan and Anemone model checker relies on non-optimized structures
like sequential lists and basically evaluates dynamically the transition system during the model-checking
phase. It is also interesting to observe that the exponential behavior resulting from the interleaving of
behaviors is kept to a reasonable cost for the first five cases with guarded lists, while it starts exploding
from the fourth case without guarded lists. The interested reader may redo the campaign of tests by using
the material available at [4].

6 Related work

Although, to the best of our knowledge, it has not been exploited by coordination languages, the idea
of forcing statements to be executed without interruption is not new. In [15] Dijkstra has introduced
guarded commands, which are statements of the form of G→ S that atomically executes statement S
provided the condition G is evaluated to true. They are mostly combined in repetitive constructs of the

3In the last case, we stopped the model-checker after 10 hours of run
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form
do G0→ S0
2 G1→ S1
· · ·

2 Gn→ Sn

od
which repetitively selects one of the executable guarded commands until none of them are executable. A
non-deterministic choice is operated in the selection of the guarded commands in case several of them
can be executed. Later Abrial has used guarded commands in the Event-B method [1]. Such a construct is
also at the core of the guarded Horn clause framework proposed by Ueda in [35] to introduce parallelism
in logic programming. There Horn clauses are rewritten in the following form

H← G1, · · · ,Gm|B1, · · · ,Bn

with H, G1, . . . , Gm, B1, . . . , Bn being atoms. The classical SLD-resolution used to reduce an atom is
modified as follows. Assume A is the atom to be reduced. All the clauses whose head H is unifiable with
A have their guard G1, · · · ,Gm evaluated. The first one which succeeds determines the clause that is used,
the other being simply discarded. To avoid mismatching instantiations of variables, the evaluation of any
Gi is suspended if it can only succeed by binding variables. Finally, several pieces of work have tried
to incorporate transactions and atomic constructs in “classical” process algebras, like CCS. For instance,
A2CCS [20] proposes to refine complex actions into sequences of elementary ones by modelling atomic
behaviors at two levels, with so-called high-level actions being decomposed into atomic sequences of
low-level actions. To enforce isolation, atomic sequences are required to go into a special invisible state
during all their execution. In fact, sequences of elementary actions are executed sequentially, without
interleaving with other actions, as though in a critical section. RCCS [10] is another process algebra
incorporating distributed backtracking to handle transactions inside CCS. The main idea is that, in RCCS,
each process has access to a log of its synchronization history and may always wind back to a previous
state. A similar idea of log is used in AtCCS [2]. There, during the evaluation of an atomic block,
actions are recorded in a private log and have no effects outside the scope of the transaction until it is
committed. An explicit termination action “end” is used to signal that a transaction is finished and should
be committed. States are used in addition to model the evaluation of expressions and can be viewed as
tuples put or retrieved from shared spaces in coordination languages. When a transaction has reached
commitment and if the local state meets the global one, then all actions present in the log are performed
at the same time and the transaction is closed. Otherwise the transaction is aborted.

Our guarded list construct share similarities with these pieces of work. A major difference is however
that we restrict the guard to a single primitive to be evaluated. This eases the implementation since, once
the primitive has been successfully evaluated, the remaining primitives can be executed in a row without
using distributed backtracking as in RCCS, private spaces as in AtCCS for speculative computations
and checks for compatibility between local and global environments. Intricate suspensions inherent in
guarded Horn clauses are also avoided. Nevertheless, under this restriction, the combination with the
non deterministic choice operator + allows to achieve computations similar to the repetitive statements
of guarded commands. With respect to these pieces of work, our contribution is also to focus on model
checking and to propose a refinement strategy that allows to transform programs by introducing the
guarded list construct. An expressiveness study is also proposed in this paper and not in these pieces of
work.

Limiting the state explosion problem in model checking by limiting interleaving is similar in spirit
with the partial-order reduction introduced in [19, 30, 32, 36]. Realizing that n independent parallel
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transitions result in n! different orderings and 2n different states, the idea is to select a representative
composed of n+1 states. Indeed, as the transitions are independent, properties need only to be verified
on a possible ordering. This technique has been employed in many research efforts for model checking
asynchronous systems. However, these efforts aim at designing more efficient algorithms on optimized
automata. The approach taken here is different. We do not change our algorithm for model checking,
but rather introduce a new construct as well as considerations on refinements to transform programs into
more efficient programs.

7 Conclusion

In the aim of improving the performance of the model checking tool introduced in the workbenches
Scan [22] and Anemone[23], thÄl’s article has introduced a new construct, named guarded list. It has
been proved to yield an increase of expressiveness to Linda-like languages, while indeed bringing an
increase of efficiency during the model checking phase. In order to pave the way to transform programs
by safely introducing the guarded list construct, we have also proposed a notion of refinement and have
characterized situations in which one can safely replace a sequence of primitives by a guarded list of
primitives.

Our work opens several paths for future research. As regards the expressiveness study, we have
used the approach proposed in [6] for a few sublanguages. This naturally leads to deepen the study to
include all the sublanguages and to compare them with the LMR and LCS families of languages studied
in [6]. Moreover this approach is only one of the possible approaches to compare languages. It would
be for instance interesting to verify whether the absolute approach promoted by Zavattaro et al in [8]
would change the expressiveness hierarchy of languages. Moreover, expressiveness studies based on
bisimulations and fully abstract semantics such as reported in [33] are also worth exploring. As regards
model-checking, the algorithm embodied in the Scan and Anemone workbenches is quite elementary
and calls for improvements. In that line of research, it would be interesting to study how state collapsing
and pruning techniques used for checking large distributed systems may improve the performance of the
model checker.
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Many concurrent and distributed systems are safety-critical and therefore have to provide a high degree
of assurance. Important properties of such systems are frequently proved on the specification level,
but implementations typically deviate from specifications for practical reasons. Machine-checked
proofs of bisimilarity statements are often useful for guaranteeing that properties of specifications
carry over to implementations. In this paper, we present a way of conducting such proofs with a focus
on network communication. The proofs resulting from our approach are not just machine-checked
but also intelligible for humans.

1 Introduction
Concurrent and distributed systems are difficult to design and implement, and their correctness is hard
to ensure. However, many such systems are safety-critical and therefore have to provide a high degree
of assurance. Machine-checked proofs can greatly help to meet this demand. A particular application
area of them is the verification of design refinements. A specification may undergo a series of refinement
steps to account for practical limitations, ultimately resulting in an implementation. Proving that these
refinement steps preserve important properties of the system is vital for assuring the implementation’s
correctness.

Our current research program focuses on applying design refinement verification to the blockchain
consensus protocols of the Ouroboros family [2, 6, 9]. For conducting machine-checked proofs, we use
the Isabelle proof assistant together with a custom process calculus, called the Þ-calculus. As a first step,
we have proved [8] that direct broadcast, which the protocol specifications assume as the means of data
distribution, is behaviorally equivalent to broadcast via multicast, which implementations of the protocols
use. For our proof, we have used a domain-specific language for describing network communication,
which is embedded in the Þ-calculus.

A weakness of this existing broadcast equivalence proof is that it is not grounded in a formal
semantics of the communication language but based on the assumption that certain lower-level bisimilarity
statements hold. In this paper, we present a way of proving such bisimilarity statements such that the
resulting proofs are machine-checked and intelligible. Concretely, we make the following contributions:

• We present a transition system semantics for the Þ-calculus and derive a transition system semantics
for the communication language from it.

• We walk in detail through the proof of a lemma from which several fundamental bisimilarity
statements about communication language processes can be derived. The proof of this lemma
exemplifies a general way of conducting bisimulation proofs in a concise and human-friendly
yet machine-checked fashion. Central to this approach is the combination of the Isabelle/Isar
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proof language, a formalized algebra of “up to” methods, Isabelle’s coinduction proof method, and
higher-order abstract syntax.

The formal broadcast equivalence proof and its prerequisites can be obtained from the following
sources:

• https://github.com/input-output-hk/equivalence-reasoner
• https://github.com/input-output-hk/transition-systems
• https://github.com/input-output-hk/thorn-calculus
• https://github.com/input-output-hk/network-equivalences/pull/23

2 The Þ-Calculus
Our language for describing communication networks is embedded in the Þ-calculus (pronounced “thorn
calculus”). The Þ-calculus is a general-purpose process calculus, which we have devised as a tool
for convenient development of machine-checked proofs about concurrent and distributed systems. The
Þ-calculus in turn is embedded in Isabelle/HOL. We use higher-order abstract syntax (HOAS) for this
embedding, since this allows us to have the object language (the Þ-calculus) only deal with the key features
of process calculi, which are concurrency and communication, while shifting the treatment of local names,
data, computation, conditional execution, and repetition to the meta-language (Isabelle/HOL).

The Þ-calculus strongly resembles the asynchronous 𝜋-calculus [7]. Processes communicate via
asynchronous channels, which can be global or created locally. Channels are first-class and can therefore
be transmitted through other channels, thus making them visible outside their original scopes. This is
the mobility feature pioneered by the (synchronous) 𝜋-calculus. However, mobility plays only a marginal
role in this paper, since it is not exploited by the communication language.
Definition 1 (Syntax of Þ-calculus processes). The syntax of Þ-calculus processes is given by the following
BNF rule, where 𝑎 denotes channels, 𝑥 denotes values, 𝑝 and 𝑞 denote processes, and 𝑃 denotes functions
from channels or from values to processes, depending on the context:

Process ::= 0 | 𝑎◁ 𝑥 | 𝑎▷ 𝑥. 𝑃𝑥 | 𝑝 ∥ 𝑞 | 𝜈𝑎. 𝑃 𝑎

The processes generated by the different alternatives of this BNF rule are called the stop process, senders,
receivers, parallel compositions, and restrictions, respectively. Parallel composition is right-associative
and has lowest precedence; the other constructs have highest precedence.

Informally, the semantics of the Þ-calculus is characterized by the following behavior of processes:
• The stop process 0 does nothing.
• A sender 𝑎◁ 𝑥 sends value 𝑥 to channel 𝑎.
• A receiver 𝑎▷ 𝑥. 𝑃𝑥 receives a value 𝑥 from channel 𝑎 and continues like 𝑃𝑥.
• A parallel composition 𝑝 ∥ 𝑞 performs 𝑝 and 𝑞 in parallel.
• A restriction 𝜈𝑎. 𝑃 𝑎 introduces a local channel 𝑎 and behaves like 𝑃𝑎.
Formally, the semantics is defined as a labeled transition system. Since mobility is not essential to

the topics of this paper and is at the same time complex to handle, we present only a simplified version
of the semantics that ignores mobility.1

1We refer the reader to the accompanying Isabelle code for the full semantics.
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𝑎◁ 𝑥
𝑎◁𝑥−−−→ 0

(◁)
𝑎▷ 𝑥. 𝑃𝑥

𝑎▷𝑥−−−→ 𝑃𝑥
(▷)

𝑝
𝑎◁𝑥−−−→ 𝑝′ 𝑞

𝑎▷𝑥−−−→ 𝑞′

𝑝 ∥ 𝑞 𝜏−→ 𝑝′ ∥ 𝑞′
(𝜏→) 𝑝

𝑎▷𝑥−−−→ 𝑝′ 𝑞
𝑎◁𝑥−−−→ 𝑞′

𝑝 ∥ 𝑞 𝜏−→ 𝑝′ ∥ 𝑞′
(𝜏←)

𝑝
𝛼−→ 𝑝′

𝑝 ∥ 𝑞 𝛼−→ 𝑝′ ∥ 𝑞
(∥1) 𝑞

𝛼−→ 𝑞′

𝑝 ∥ 𝑞 𝛼−→ 𝑝 ∥ 𝑞′
(∥2) ∀𝑎. 𝑃 𝑎

𝛼−→𝑄𝑎

𝜈𝑎. 𝑃 𝑎
𝛼−→ 𝜈𝑎.𝑄 𝑎

(𝜈)

Figure 1: No-mobility versions of the transition rules of the Þ-calculus

Definition 2 (Syntax of Þ-calculus actions). The syntax of Þ-calculus actions is given by the following
BNF rule, where 𝑎 denotes channels and 𝑥 denotes values:

Action ::= 𝑎◁ 𝑥 | 𝑎▷ 𝑥 | 𝜏

The actions generated by the different alternatives of this BNF rule are called sending actions, receiving
actions, and the internal-transfer action, respectively.

The intuitive meanings of the different actions are as follows:

• A sending action 𝑎◁ 𝑥 means sending value 𝑥 to channel 𝑎.

• A receiving action 𝑎▷ 𝑥 means receiving value 𝑥 from channel 𝑎.

• The internal-transfer action 𝜏 means transferring some value through some channel.

Definition 3 (Semantics of the Þ-calculus). The semantics of the Þ-calculus is given by the transition
relation −→ ⊆ Process×Action×Process that is defined by the introduction rules in Figure 1.

As usual, 𝑝
𝛼−→ 𝑞 intuitively means that process 𝑝 can perform action 𝛼 and then continue like

process 𝑞.

Definition 4 (Strong and weak bisimilarity of Þ-calculus processes). The relations ∼ ⊆ Process×Process
and ≈ ⊆ Process×Process denote strong and weak bisimilarity derived from −→ in the usual way.

Strong and weak bisimilarity possess various properties common for process calculi, for which proofs
can be found in the accompanying Isabelle code.

Lemma 1 (Inclusion of strong bisimilarity in weak bisimilarity). Strongly bisimilar processes are also
weakly bisimilar; formally, ∼ ⊆ ≈.

Lemma 2 (Congruence properties of bisimilarities). Strong and weak bisimilarity are congruence rela-
tions with respect to parallel composition and restriction; that is, they are equivalence relations, and the
following propositions hold:

𝑝1 ∼ 𝑝2 ∧ 𝑞1 ∼ 𝑞2→ 𝑝1 ∥ 𝑞1 ∼ 𝑝2 ∥ 𝑞2 (1)
𝑝1 ≈ 𝑝2 ∧ 𝑞1 ≈ 𝑞2→ 𝑝1 ∥ 𝑞1 ≈ 𝑝2 ∥ 𝑞2 (2)
(∀𝑎. 𝑃1 𝑎 ∼ 𝑃2 𝑎) → 𝜈𝑎. 𝑃1 𝑎 ∼ 𝜈𝑎. 𝑃2 𝑎 (3)
(∀𝑎. 𝑃1 𝑎 ≈ 𝑃2 𝑎) → 𝜈𝑎. 𝑃1 𝑎 ≈ 𝜈𝑎. 𝑃2 𝑎 (4)
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Lemma 3 (Fundamental bisimilarity properties). The following strong bisimilarity properties hold:

0 ∥ 𝑝 ∼ 𝑝 (5)
𝑝 ∥ 0 ∼ 𝑝 (6)

(𝑝 ∥ 𝑞) ∥ 𝑟 ∼ 𝑝 ∥ (𝑞 ∥ 𝑟) (7)
𝑝 ∥ 𝑞 ∼ 𝑞 ∥ 𝑝 (8)

𝜈𝑎. 𝜈𝑏. 𝑃 𝑎 𝑏 ∼ 𝜈𝑏. 𝜈𝑎. 𝑃 𝑎 𝑏 (9)
𝜈𝑎. 𝑝 ∼ 𝑝 (10)

Unlike the asynchronous 𝜋-calculus, the Þ-calculus does not contain a construct for guarded recursion,
and it also does not contain a replication construct as found in the synchronous 𝜋-calculus. This is because
the use of HOAS allows us to resort to the recursion features of the host language and in particular to
build infinite processes, since the type of processes is coinductive. We could use this possibility to
define guarded recursion and replication on top of the Þ-calculus and also directly to construct processes
involving repetition. However, we introduce a guarded replication construct instead, which we use to
realize any repetition.
Definition 5 (Repeating receivers). Processes 𝑎▷∞ 𝑥. 𝑃𝑥, where 𝑎 denotes channels, 𝑥 denotes values,
and 𝑃 denotes functions from values to processes, are defined as follows:

𝑎▷∞ 𝑥. 𝑃𝑥 = 𝑎▷ 𝑥. (𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥) (11)

Such processes are called repeating receivers. The precedence of ▷∞ is the same as the one of ▷.
As can be seen from Equation 11, a repeating receiver 𝑎▷∞ 𝑥. 𝑃𝑥 repeatedly receives values 𝑥 from

channel 𝑎 and after each receipt initiates the execution of 𝑃𝑥.
Lemma 4 (Transitions from repeating receivers). The only transitions possible from repeating receivers
are of the form 𝑎▷∞ 𝑥. 𝑃𝑥

𝑎▷𝑥−−−→ 𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥.

Proof. According to Equation 11, repeating receivers are receivers of a special kind. The only transition
rule that introduces transitions from receivers is ▷, and applying this rule to repeating receivers leads to
transitions of the above-mentioned form. □

3 The Communication Language
The communication language is a process calculus specifically designed for describing communication
networks. It differs from the Þ-calculus in that it does not allow for arbitrary sending and receiving
but instead provides constructs for forwarding, removing, and duplicating values in channels. These
constructs are more high-level than the Þ-calculus constructs they replace. They are also more limiting
but still permit the communication language to express data flow in a network. By staying within the
confines of the communication language, our network-related specifications and proofs tend to be well
structured and comprehensible.
Definition 6 (Syntax of communication language processes). The syntax of communication language
processes is given by the following BNF rule, where 𝑎, 𝑏, and 𝑏𝑖 denote channels, 𝑝 and 𝑞 denote
processes, and 𝑃 denotes functions from channels to processes:

Process ::= 0 | 𝑎⇒[𝑏1, . . . , 𝑏𝑛] | 𝑎→ 𝑏 | 𝑎↔ 𝑏 | ¤?𝑎 | ¤+𝑎 | ¤∗𝑎 | 𝑝 ∥ 𝑞 | 𝜈𝑎. 𝑃 𝑎
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The processes generated by the different alternatives of this BNF rule are called the stop process, distrib-
utors, unidirectional bridges, bidirectional bridges, losers, duplicators, duplosers, parallel compositions,
and restrictions, respectively. Parallel composition is right-associative and has lowest precedence; the
other constructs have highest precedence.

The stop process, parallel compositions, and restrictions behave like they do in the Þ-calculus. The
behavior of the other communication language constructs is informally characterized as follows:

• A distributor 𝑎⇒[𝑏1, . . . , 𝑏𝑛] continuously forwards values from channel 𝑎 to all channels 𝑏𝑖 .

• A unidirectional bridge 𝑎→ 𝑏 continuously forwards values from channel 𝑎 to channel 𝑏.

• A bidirectional bridge 𝑎↔ 𝑏 continuously forwards values from channel 𝑎 to channel 𝑏 and from
channel 𝑏 to channel 𝑎.

• A loser ¤?𝑎 continuously removes values from channel 𝑎.

• A duplicator ¤+𝑎 continuously duplicates values in channel 𝑎.

• A duploser ¤∗𝑎 continuously removes values from and duplicates values in channel 𝑎.

Example 1 (Reliable anycast with three receivers). Consider a reliable anycast connection between a
sender and three receivers, the latter being numbered from 1 to 3. Assume that the sender is equipped
with a buffer for packets to be sent and each receiver is equipped with a buffer for packets received. If we
model the sender’s buffer by a channel 𝑠 and the buffer of each receiver 𝑖 by a channel 𝑟𝑖 , this anycast
connection can be modeled by the following process:

𝜈𝑡. (𝑠→ 𝑡 ∥ 𝑡→ 𝑟1 ∥ 𝑡→ 𝑟2 ∥ 𝑡→ 𝑟3)

Note that values in the local channel 𝑡 model packets in transit.
Example 2 (Unreliable broadcast with three receivers). Consider a broadcast connection between a
sender and three receivers that is unreliable in the sense that packets may be lost or duplicated. If
channels 𝑠, 𝑟1, 𝑟2, and 𝑟3 model send and receive buffers like in Example 1, this broadcast connection
can be modeled by the following process:

𝜈𝑡. (𝑠→ 𝑡 ∥ ¤∗𝑡 ∥ 𝑡→ 𝑟1 ∥ 𝑡→ 𝑟2 ∥ 𝑡→ 𝑟3)

This process models indeed a broadcast connection, not an anycast connection, because due to duplication
a single value sent to 𝑡 may be forwarded to different channels 𝑟𝑖 .
Definition 7 (Embedding of the communication language in the Þ-calculus). The communication lan-
guage is a DSL embedded in the Þ-calculus. The stop process, parallel composition, and restriction are
directly taken from the Þ-calculus, and the other communication language constructs are derived from
Þ-calculus constructs and the repeating receiver construct as follows:

𝑎⇒[𝑏1, . . . , 𝑏𝑛] = 𝑎▷∞ 𝑥. (𝑏1◁ 𝑥 ∥ . . . ∥ 𝑏𝑛 ◁ 𝑥 ∥ 0) (12)
𝑎→ 𝑏 = 𝑎⇒[𝑏] (13)
𝑎↔ 𝑏 = 𝑎→ 𝑏 ∥ 𝑏→ 𝑎 (14)

¤?𝑎 = 𝑎⇒[] (15)
¤+𝑎 = 𝑎⇒[𝑎, 𝑎] (16)
¤∗𝑎 = ¤?𝑎 ∥ ¤+𝑎 (17)
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𝑎◁ 𝑥
𝑎◁𝑥−−−→ 0

(◁)

𝑎⇒[𝑏1, . . . , 𝑏𝑛] 𝑎▷𝑥−−−→ (𝑏1◁ 𝑥 ∥ . . . ∥ 𝑏𝑛 ◁ 𝑥 ∥ 0) ∥ 𝑎⇒[𝑏1, . . . , 𝑏𝑛]
(⇒)

𝑝
𝑎◁𝑥−−−→ 𝑝′ 𝑞

𝑎▷𝑥−−−→ 𝑞′

𝑝 ∥ 𝑞 𝜏−→ 𝑝′ ∥ 𝑞′
(𝜏→) 𝑝

𝑎▷𝑥−−−→ 𝑝′ 𝑞
𝑎◁𝑥−−−→ 𝑞′

𝑝 ∥ 𝑞 𝜏−→ 𝑝′ ∥ 𝑞′
(𝜏←)

𝑝
𝛼−→ 𝑝′

𝑝 ∥ 𝑞 𝛼−→ 𝑝′ ∥ 𝑞
(∥1) 𝑞

𝛼−→ 𝑞′

𝑝 ∥ 𝑞 𝛼−→ 𝑝 ∥ 𝑞′
(∥2) ∀𝑎. 𝑃 𝑎

𝛼−→𝑄𝑎

𝜈𝑎. 𝑃 𝑎
𝛼−→ 𝜈𝑎.𝑄 𝑎

(𝜈)

Figure 2: No-mobility versions of the transition rules of the extended communication language

Note that among the derivations in Definition 7 only the one of distributors directly refers to constructs
outside the communication language; all other derivations refer to communication language constructs
only. Therefore, we consider→,↔, ¤?, ¤+, and ¤∗ as merely providing syntactic sugar and discuss only
the communication language fragment formed by 0,⇒, ∥, and 𝜈 in the remainder of this section.

Since the communication language is embedded in the Þ-calculus, we can derive a formal semantics
for it from the formal semantics of the Þ-calculus.2 For dealing with the constructs inherited from the
Þ-calculus, we reuse the corresponding transition rules, which are 𝜏→, 𝜏←, ∥1, ∥2, and 𝜈. For dealing with
distributors, which are receivers of a particular shape, we specialize the ▷-rule appropriately, resulting in
a new rule⇒. Transitions from distributors with at least one target channel result in processes that contain
senders. Therefore, our transition system must be able to cope with the additional presence of senders
in processes. We reuse the ◁-rule from the Þ-calculus for this purpose. We call the communication
language extended with senders the extended communication language.

Definition 8 (Syntax of processes of the extended communication language). The syntax of processes
of the extended communication language is given by the following BNF rule, where 𝑎, 𝑏, and 𝑏𝑖 denote
channels, 𝑥 denotes values, 𝑝 and 𝑞 denote processes, and 𝑃 denotes functions from channels to processes:

Process ::= 0 | 𝑎◁ 𝑥 | 𝑎⇒[𝑏1, . . . , 𝑏𝑛] | 𝑎→ 𝑏 | 𝑎↔ 𝑏 | ¤?𝑎 | ¤+𝑎 | ¤∗𝑎 | 𝑝 ∥ 𝑞 | 𝜈𝑎. 𝑃 𝑎

The processes generated by the different alternatives of this BNF rule are called the stop process,
senders, distributors, unidirectional bridges, bidirectional bridges, losers, duplicators, duplosers, parallel
compositions, and restrictions, respectively. Parallel composition is right-associative and has lowest
precedence; the other constructs have highest precedence.

Proposition 1 (Semantics of the extended communication language). The restriction of the transition
relation −→ of the Þ-calculus to processes of the extended communication language is generated by the
introduction rules in Figure 2.

Lemma 5 (Strong and weak bisimilarity of processes of the extended communication language). The
strong and weak bisimilarity relations derived from the transition relation described in Figure 2 arise from

2Also this semantics ignores mobility, because we derive it from the no-mobility version of the Þ-calculus semantics.
However, unlike with the Þ-calculus, the gap between the semantics presented here and the full semantics is minimal, since
the absence of arbitrary sending makes it impossible to send local channels to the environment. In fact, the only additional
feature of the full semantics is that it accounts for the possibility of distributors receiving previously unknown channels from
the environment.
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restricting the bisimilarity relations∼ and≈ of the Þ-calculus to processes of the extended communication
language.

Proof. The only difference between the transition rules in Figures 1 and 2 is that the former include ▷
where the latter include⇒. However,⇒ is just ▷ restricted to those situations where the source process
has the shape of a distributor. Therefore, simulation in the extended communication language can be
performed according to the Þ-calculus semantics and only in this way. As a result, processes are strongly
or weakly bisimilar according to the semantics of the extended communication language exactly if they
are bisimilar (strongly or weakly, respectively) according to the semantics of the Þ-calculus. □

Corollary 1. Lemmas 1 to 3 carry over to the extended communication language.

4 A Proof of Idempotency of Repeating Receivers
As mentioned in Section 1, the proof of equivalence of direct broadcast and broadcast via multicast as
presented in our previous work [8] relies on certain lower-level bisimilarity statements. Meanwhile, we
have developed proofs for most of these statements.3 Some of these proofs merely reduce the respective
bisimilarity statements to more basic bisimilarity statements, but the proofs of the fundamental statements
refer directly to the transition system semantics of the Þ-calculus and the communication language. These
latter proofs are bisimulation proofs in the style that we advocate in this paper.

To illustrate this style, let us turn our attention to a group of idempotency laws. First note that
all communication language constructs not inherited from the Þ-calculus are idempotent up to strong
bisimilarity with respect to parallel composition, which is vital for our broadcast equivalence proof.
Lemma 6 (Idempotency of genuine communication language constructs). The following idempotency
properties hold:

𝑎⇒ 𝑏𝑠 ∥ 𝑎⇒ 𝑏𝑠 ∼ 𝑎⇒ 𝑏𝑠 (18)
𝑎→ 𝑏 ∥ 𝑎→ 𝑏 ∼ 𝑎→ 𝑏 (19)
𝑎↔ 𝑏 ∥ 𝑎↔ 𝑏 ∼ 𝑎↔ 𝑏 (20)

¤?𝑎 ∥ ¤?𝑎 ∼ ¤?𝑎 (21)
¤+𝑎 ∥ ¤+𝑎 ∼ ¤+𝑎 (22)
¤∗𝑎 ∥ ¤∗𝑎 ∼ ¤∗𝑎 (23)

The proofs of these idempotency properties are part of the accompanying Isabelle code. They reduce
these properties to a fundamental idempotency law, which is idempotency of repeating receivers.
Lemma 7 (Idempotency of repeating receivers). The following idempotency property holds:

𝑎▷∞ 𝑥. 𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 ∼ 𝑎▷∞ 𝑥. 𝑃𝑥 (24)

It is this idempotency law that we use as our example for demonstrating our style of bisimulation proofs
that are concise and human-friendly yet machine-checked. However, before we turn to the Isabelle/HOL
proof that exhibits this style, we provide a semi-formal proof of this law.

Semi-formal proof of Lemma 7. We prove the idempotency of repeating receivers by bisimulation up to
strong bisimilarity and context.

3These proofs can be found in the accompanying Isabelle code.
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Forward simulation. Assume that 𝑎▷∞ 𝑥. 𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 𝛼−→ 𝑠 for arbitrary but fixed 𝛼 and 𝑠. Looking
at Figure 1, we can see that only rules 𝜏→, 𝜏←, ∥1, and ∥2 can in principle introduce this transition,
given that its source process is a parallel composition.
Rules 𝜏→ and 𝜏←. Introducing the above transition using either of these rules requires a ◁-

transition from 𝑎▷∞ 𝑥. 𝑃𝑥, which is not possible according to Lemma 4.
Rule ∥1. For introducing the above transition using this rule, there must be a process 𝑞 such that

the following statements hold:

𝑎▷∞ 𝑥. 𝑃𝑥
𝛼−→ 𝑞 (i)

𝑠 = 𝑞 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 (ii)

Based on Lemma 4, statement (i) implies that there is an 𝑥 for which the following propositions
are true:

𝛼 = 𝑎▷ 𝑥 (iii)
𝑞 = 𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 (iv)

From (ii) and (iv), we can deduce the following:

𝑠 = (𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥) ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 (v)

Because of (iii) and (v), the transition we have started with has the following concrete shape:

𝑎▷∞ 𝑥. 𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 𝑎▷𝑥−−−→ (𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥) ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 (vi)

We simulate this transition with the transition 𝑎 ▷∞ 𝑥. 𝑃𝑥
𝑎▷𝑥−−−→ 𝑃𝑥 ∥ 𝑎 ▷∞ 𝑥. 𝑃𝑥, whose

existence follows from (i), (iii), and (iv). The target processes of these two transitions are the
processes we have started with up to strong bisimilarity and context. To see why, observe
that the first target process can be transformed into a bisimilar one as follows, employing
Bisimilarity 7:

(𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥) ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 ∼ 𝑃𝑥 ∥ (𝑎▷∞ 𝑥. 𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥) (vii)

Removing the common context 𝑃𝑥 ∥ [·] from the result of this transformation and the target
process of the simulating transition yields 𝑎▷∞ 𝑥. 𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 and 𝑎▷∞ 𝑥. 𝑃𝑥.

Rule ∥2. This rule can be handled analogously to rule ∥1.

Backward simulation. Assume that 𝑎▷∞ 𝑥. 𝑃𝑥
𝛼−→ 𝑠 for arbitrary but fixed 𝛼 and 𝑠. Lemma 4 tells us

that there is an 𝑥 such that 𝛼 = 𝑎 ▷ 𝑥 and 𝑠 = 𝑃𝑥 ∥ 𝑎 ▷∞ 𝑥. 𝑃𝑥, from which we can deduce that
the transition we have started with is concretely 𝑎 ▷∞ 𝑥. 𝑃𝑥

𝑎▷𝑥−−−→ 𝑃𝑥 ∥ 𝑎 ▷∞ 𝑥. 𝑃𝑥. By applying
rule ∥1, we can turn this transition into transition (vi), which we use as the simulating transition.
The target processes of the original and the simulating transition are the processes we have started
with up to strong bisimilarity and context, for essentially the same reasons as in the case of forward
simulation of transitions generated by rule ∥1. □

Figure 3 presents the formal proof of Lemma 7. To not bother the reader with technicalities, this
presentation omits the subproofs that justify the atomic reasoning steps. These subproofs are only short,
straightforward applications of lemmas and proof methods. The complete proof can be found in the
accompanying Isabelle code. Note that the formal proof, also as shown here, refers to the full semantics
and thus has to deal with mobility.

To aid understanding of the formal proof, let us point out a few things:
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lemma repeated_receive_idempotency:
shows 𝑎▷∞ 𝑥. 𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 ∼ 𝑎▷∞ 𝑥. 𝑃𝑥

proof (coinduction rule: up_to_rule [where F = [∼]⌢M])
case (forward_simulation 𝛼 𝑠)
then show ?case
proof cases

case (parallel_left_io 𝜂 𝑎′ 𝑛 𝑥 𝑞)

from ‹𝑎▷∞ 𝑥. 𝑃𝑥
IO 𝜂 𝑎′ 𝑛 𝑥−−−−−−−−→ 𝑞› obtain 𝑡 where 𝑞 = 𝑡 ∥ (𝑎▷∞ 𝑥. 𝑃𝑥) » suffix𝑛

⟨proof ⟩
with ‹𝑎▷∞ 𝑥. 𝑃𝑥

IO 𝜂 𝑎′ 𝑛 𝑥−−−−−−−−→ 𝑞› have 𝑎▷∞ 𝑥. 𝑃𝑥
IO 𝜂 𝑎′ 𝑛 𝑥−−−−−−−−→ 𝑡 ∥ (𝑎▷∞ 𝑥. 𝑃𝑥) » suffix𝑛

⟨proof ⟩
moreover have (𝑡 ∥ 𝑟 » suffix𝑛) ∥ 𝑟 » suffix𝑛 ∼ 𝑡 ∥ (𝑟 ∥ 𝑟) » suffix𝑛 for 𝑟
⟨proof ⟩

ultimately show ?thesis
⟨proof ⟩

next
case (parallel_right_io 𝜂 𝑎′ 𝑛 𝑥 𝑞)

from ‹𝑎▷∞ 𝑥. 𝑃𝑥
IO 𝜂 𝑎′ 𝑛 𝑥−−−−−−−−→ 𝑞› obtain 𝑡 where 𝑞 = 𝑡 ∥ (𝑎▷∞ 𝑥. 𝑃𝑥) » suffix𝑛

⟨proof ⟩
with ‹𝑎▷∞ 𝑥. 𝑃𝑥

IO 𝜂 𝑎′ 𝑛 𝑥−−−−−−−−→ 𝑞› have 𝑎▷∞ 𝑥. 𝑃𝑥
IO 𝜂 𝑎′ 𝑛 𝑥−−−−−−−−→ 𝑡 ∥ (𝑎▷∞ 𝑥. 𝑃𝑥) » suffix𝑛

⟨proof ⟩
moreover have 𝑟 » suffix𝑛 ∥ (𝑡 ∥ 𝑟 » suffix𝑛) ∼ 𝑡 ∥ (𝑟 ∥ 𝑟) » suffix𝑛 for 𝑟
⟨proof ⟩

ultimately show ?thesis
⟨proof ⟩

qed (blast elim: transition_from_repeated_receive)+
next

case (backward_simulation 𝛼 𝑠)
from ‹𝑎▷∞ 𝑥. 𝑃𝑥 𝛼−→ 𝑠› obtain 𝑛 and 𝑥 where 𝛼 = 𝑎▷𝑛 𝑥 and 𝑠 = post_receive𝑛𝑥 𝑃 ∥ (𝑎▷∞ 𝑥. 𝑃𝑥) » suffix𝑛
⟨proof ⟩

with ‹𝑎▷∞ 𝑥. 𝑃𝑥 𝛼−→ 𝑠› have 𝑎▷∞ 𝑥. 𝑃𝑥
𝑎▷𝑛𝑥−−−−→ post_receive𝑛𝑥 𝑃 ∥ (𝑎▷∞ 𝑥. 𝑃𝑥) » suffix𝑛

⟨proof ⟩
then have 𝑎▷∞ 𝑥. 𝑃𝑥 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 𝑎▷𝑛𝑥−−−−→ (post_receive𝑛𝑥 𝑃 ∥ (𝑎▷∞ 𝑥. 𝑃𝑥) » suffix𝑛) ∥ (𝑎▷∞ 𝑥. 𝑃𝑥) » suffix𝑛
⟨proof ⟩

moreover have (𝑡 ∥ 𝑟 » suffix𝑛) ∥ 𝑟 » suffix𝑛 ∼ 𝑡 ∥ (𝑟 ∥ 𝑟) » suffix𝑛 for 𝑟
⟨proof ⟩

ultimately show ?case
⟨proof ⟩

qed respectful

Figure 3: Formal proof of idempotency of repeating receivers
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• The initial proof method uses the term [∼]⌢M to specify “up to strong bisimilarity and context”
as the “up to” method to use. To guarantee that the provided term specifies an “up to” method that
is sound, we have to prove that it fulfills a certain condition. We do that by invoking the automated
proof method respectful at the end of the proof.

• The part on forward simulation mentions actions of the form IO𝜂 𝑎 𝑛𝑥. Such actions can be sending
or receiving actions. For reasons having to do with mobility, there are separate versions of ∥1 and ∥2
for sending and receiving actions on the one hand and the internal-transfer action on the other. The
cases parallel_left_io and parallel_right_io are only about sending and receiving, not about internal
transfer.

• There are no explicit proof steps for showing that the original transition of a forward simulation
cannot be introduced using 𝜏→ or 𝜏←. We have that automatically shown by the proof method
(blast elim: transition_from_repeated_receive)+ at the end of the forward simulation part. This proof
method additionally shows that said transition cannot be introduced using the internal-transfer
versions of ∥1 and ∥2 mentioned in the previous item.

• Mobility makes it possible to receive previously unknown channels from the environment. To deal
with this possibility, some tweaks are necessary, namely adding » suffix𝑛 in a few places, switching
to a more powerful kind of receiving action, ▷𝑛, and replacing 𝑃𝑥 by post_receive𝑛𝑥 𝑃. A deeper
discussion of these tweaks would be outside the scope of this paper.

As can be seen, the formal proof is quite similar to the semi-formal one, which we consider a strength
of our work. It is generally more compact, but the handling of forward simulation of transitions generated
by rule ∥2 had to be spelled out, where the semi-formal proof could just state that it is analogous to what
was done for rule ∥1.

5 Bisimulation Proofs for Humans and Machines
The semi-formal proof of Lemma 7 is geared toward human readers, and its style has been chosen
accordingly. The formal proof, by following the semi-formal proof rather closely, retains this human-
friendly style to a large extend but is machine-checked at the same time. This achievement rests on the
combination of several tools:

The Isabelle/Isar proof language. Isabelle/Isar [15] is a structured, declarative proof language that
incorporates elements of mathematical prose. With these characteristics, Isar proofs differ notably
from proof terms as well as tactics-based proof scripts, with the result of being better understandable
by humans. Despite its human-friendliness, Isar comes with a precise semantics, and the correctness
of Isar proofs can be checked using the Isabelle proof assistant.
The use of Isar is crucial for having the formal proof largely reflect the semi-formal proof. The
block structure achieved by employing proof, case, next, and qed resembles the overall structure of
the semi-formal proof, in particular the nesting of subproofs and the distinction between forward
and backward simulation as well as between different introduction rules. At the bottom layer,
intermediate facts are explicitly stated and later accessed using Isar’s flexible means for fact
referencing. Other, minor, features of Isar serve to further narrow the gap between the formal and
the semi-formal proof.

A formalized algebra of “up to” methods. Both the semi-formal and the formal proof have to cope
with the fact that transitions from 𝑎 ▷∞ 𝑥. 𝑃𝑥 ∥ 𝑎 ▷∞ 𝑥. 𝑃𝑥 and 𝑎 ▷∞ 𝑥. 𝑃𝑥 do not result in these
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processes again but only in processes that can be derived from them by adding a common context
and performing a strong bisimilarity transformation. However, this is not a problem, because
employing the “up to strong bisimilarity and context” method bridges this gap.
A bisimulation proof that does not employ “up to” methods would be much more complex. Such a
proof would have to show that bisimulation is also possible for the above-mentioned target processes
and recursively for any processes that arise from bisimulation of previously considered processes.
In the end, instead of dealing with repeating receivers only, the proof would have to deal with all
processes of the form 𝑢1 ∥ . . . ∥ 𝑢𝑛 ∥ 𝑎▷∞ 𝑥. 𝑃𝑥 where a process 𝑢𝑖 is either a sender or the stop
process. Since the processes to be proved bisimilar contain a total of three repeating receivers, this
would result in an enormous amount of boilerplate that would obscure the key arguments of the
proof. Furthermore, such a proof would be hard to develop in the first place.
In order to prevent such issues, we have implemented an algebra of “up to” methods that are
guaranteed to be sound, using Isabelle/HOL. This implementation enables developers of formal
bisimulation proofs to construct custom “up to” methods that fit the specific bisimilarity statements
to prove. In the proof of idempotency of repeating receivers, we use the “up to” method [∼]⌢M.
This method is built from the primitive methods M and [∼]. M requires target processes to
be source processes up to context4, and [∼] requires target processes to be strongly bisimilar,
independently of source processes. The operator ⌢ serves to combine the two. Note that [∼]⌢M
allows only the first process to deviate by strong bisimilarity, which is the one for which we need
this possibility; full “up to strong bisimilarity and context” is denoted by [∼]⌢M⌢ [∼].

The coinduction proof method. Isabelle’s coinduction proof method [5] makes it possible to conduct
coinductive proofs using the proof–case–next–qed style exemplified by our formal proof of Lemma 7.
Isabelle/HOL supports coinductive definitions of data types and predicates, and in its default mode
the coinduction method enables reasoning along the coinductive structure of the data types and
predicates so defined. In the case of bisimilarity, which is a coinductively defined predicate, this
leads to plain bisimulation proofs, those that do not employ “up to” methods.
However, the coinduction method can also work with user-provided coinduction rules, which can
be lemmas derived from the coinduction rules induced by coinductive data type and predicate
definitions. This allows us to use the coinduction method for bisimulation proofs that apply “up
to” methods. For employing a concrete “up to” method, we can instantiate the generic lemma
up_to_rule for this “up to” method and provide the resulting fact as the coinduction rule to use to
the coinduction proof method.
A feature of the coinduction method that helps making proofs concise is the automatic derivation
of bisimulation relations. As indicated in the previous item, bisimulation relations often have to
cover more than just the processes to be proved bisimilar if “up to” methods are not used, since
target processes typically deviate from source processes. However, in most bisimulation proofs
that do use “up to” methods, including our proof of idempotency of repeating receivers, this issue
does not arise, and the bisimulation relation of choice is the one that just covers the processes
whose bisimilarity is to be shown. The coinduction method derives this relation from the proof goal
and automatically shows the trivial statement that the processes to be proved bisimilar are in this
relation.5 As a result, the proof can concentrate on the actual bisimulation.

4Actually up to mutation, which is more general than up to context.
5This is what distinguishes it from the coinduct method [15, Subsection 6.5.2], which requires the user to specify the

bisimulation relation and prove that the processes to be proved bisimilar are in this relation.
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Higher-order abstract syntax. Higher-order abstract syntax (HOAS) [10] is a technique of embedding
an object language in a higher-order host language where name binding in the object language is
expressed using functions of the host language. When not using HOAS, formal proofs that involve
binding constructs tend to be littered with boilerplate for dealing with issues like name capturing
and freshness conditions. By employing HOAS, this problem can be prevented. As we have seen
in Section 4, also our use of HOAS necessitates additional handling of technicalities as soon as
mobility is taken into account. However, the corresponding amount of extra code tends to be low
compared to the amount of extra code necessary with non-HOAS approaches, including those that
make use of nominal logic, which is generally boilerplate-reducing.6
The use of HOAS makes it possible to construct exotic terms, that is, terms where functions
representing binding yield subterms whose structure depends on the arguments of these functions.
In the case of receivers, we consider this a feature, as it allows us to handle computation and
conditional execution within the meta-language. However, in the case of restrictions, exotic terms
may become an issue when treating mobility naïvely; for example, Bisimilarities 1 and 2 may
not hold anymore. The typical solution to such problems is to restrict the calculus in question to
terms that are not exotic. The solution of the Þ-calculus, however, is different: exotic terms can
be constructed freely, but the transition system semantics does not allow transitions from exotic
restrictions. Only the full transition system, which can be found in the accompanying Isabelle code,
has this feature of preventing such transitions. To achieve it, the transition system has to maintain
lists of channels introduced by restrictions, and this results in the need for the additional tweaks
present in the formal proof.

6 Related Work
Various domain-specific languages for modeling communication networks and reasoning about them
are discussed in the literature. One of them is NetKAT [1], a network programming language based
on Kleene algebra with tests (KAT) that features a complete deductive system and a PSPACE decision
procedure. Unlike our communication language, NetKAT lacks restriction and, being a sequential
language, also parallel composition. On the other hand, it allows for packet inspection and modification.
Another example of a network communication DSL is Nettle [14], a language for programming OpenFlow
networks that is embedded in Haskell and based on the principles of functional reactive programming.
Like with NetKAT, packet inspection and modification is also possible with Nettle.

Process calculi for describing and verifying communication networks have been an active area of
research. For example, the 𝜔-calculus [12] is a process calculus devised to formally reason about mobile
ad-hoc networks (MANETs). It is a conservative extension of the 𝜋-calculus that has built-in support for
unicast and broadcast communication as well as location-based scoping. We have designed the Þ-calculus
as a general-purpose process calculus and have thus avoided the inclusion of application-specific features
like support for broadcast communication. That said, such features can be implemented on top of the
Þ-calculus, as the definition of the communication language as an embedded DSL and Examples 1 and 2
show.

Several well-known process calculi have been formalized by Bengtson and colleagues in Isabelle/HOL,

6For example, the complete implementation of “up to” methods for the Þ-calculus is less than half the size of the implemen-
tation of “up to” methods for 𝜓-calculi [11], which also uses Isabelle/HOL and employs the Nominal Isabelle framework [13].
This considerable difference in code size may also be due to 𝜓-calculi explicitly handling computation and conditional execution,
but the reason that the Þ-calculus does not have to explicitly deal with these features is also because of its use of HOAS.
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in particular the 𝜋-calculus [3] and𝜓-calculi [4]. Unlike our formalization of the Þ-calculus, those formal-
izations do not use HOAS but Nominal Isabelle [13] for dealing with name binding. It appears that this
makes them more complex than the Þ-calculus formalization, although one has to consider that they use
version 1 of Nominal Isabelle, not the improved version 2. Furthermore, the formalizations by Bengtson
et al. suffer from considerable repetition, for example in their handling of strong and weak bisimilarity.
The Þ-calculus formalization, on the other hand, makes more use of abstractions and achieves more
code reuse this way. Another, albeit minor, advantage of the Þ-calculus formalization is its use of the
coinduction proof method. The above-mentioned formalizations of the 𝜋-calculus and 𝜓-calculi use the
less powerful coinduct method, resulting in more boilerplate code. Finally, “up to” methods help to avoid
repetitive, technical proof code on a large scale, which we leverage in the Þ-calculus formalization and
the developments built on it, using our formalized algebra of “up to” methods. The formalizations by
Bengtson et al. also make use of “up to” methods, but the authors have only proved the soundness of
a few specific methods. That said, Åman Pohjola and Parrow have developed a framework for “up to”
methods for 𝜓-calculi [11].

7 Conclusion
We have presented a transition system semantics for the Þ-calculus, which is a general-purpose process
calculus embedded in Isabelle/HOL, and derived from it a transition system semantics for a custom
network communication language, which is embedded in the Þ-calculus. Building on this foundation and
based on an example related to network communication, we have shown a way of conducting bisimulation
proofs such that they become concise and human-friendly, while being machine-checked at the same time.
Our proving style stems from combining the Isabelle/Isar proof language, an algebra of “up to” methods
formalized in Isabelle/HOL, Isabelle’s coinduction proof method, and higher-order abstract syntax.

8 Ongoing and Future Work
As mentioned in Section 4, we have proved most of the lower-level bisimilarity statements on which
our broadcast equivalence proof [8] relies. At the moment, we are completing the last proofs of such
statements.

In accordance with our research program mentioned in Section 1, we plan to verify further design
refinement steps that the consensus protocols of the Ouroboros family have undergone. The refinement
step we want to tackle next is the replacement of whole-chain distribution with a protocol for updating
chains incrementally. Furthermore, we want to add some missing bits, in particular documentation, to
the formalization of the Þ-calculus and the algebra of “up to” methods and submit both formalizations to
Isabelle’s Archive of Formal Proofs (AFP)7.
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Confidential Computing (CC) using hardware-based Trusted Execution Environments (TEEs) has emerged
as a promising solution for protecting sensitive data in all forms. One of the fundamental characteristics
of such TEEs is remote attestation [4] which provides mechanisms for securely measuring and reporting
the state of the remote platform and computing environment to a user. We present a novel approach
combining TEE-agnostic attestation architecture and formal analysis enabling comprehensive and rigor-
ous security analysis of attestation mechanisms in CC. We demonstrate the application of our approach for
three prominent industrial representatives, namely Arm Confidential Compute Architecture (CCA) [1, 2] in
architecture lead solutions, Intel Trust Domain Extensions (TDX) [5] in vendor solutions, and Secure CON-
tainer Environment (SCONE) [3] in frameworks. For each of these solutions, we provide a comprehensive
specification of all phases of the attestation mechanism in confidential computing, namely provisioning,
initialization, and attestation protocol. Our approach reveals design and security issues in Intel TDX and
SCONE attestation. The work is currently under submission at another venue with formal proceedings [6].
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Despite the advantages of Data-Centric Synchronisation (DCS), a high-level declarative approach
that abstracts away from the actual concurrency control mechanism(s) by means of data atomicity
declarations, its practical use in existing solutions is hindered by verbose coding requirements and
the lack of support for interfaces required in most object-oriented programs. ATOMIS is a new
DCS model that requires only an atomicity specification in interfaces and fields, and automatizes
generation of specification consistent code that covers the multiple method variants that cope with
differently qualified parameters. The model is rigorously defined for a type-sound programming
language, a type qualifier inference (atomicites) based on a new type directed constraint solving
algorithm, and a transpilation methodology that, when the analysis described is successful, produces
fully qualified code, with all atomicities sorted out. In this paper we present the foundations for the
ATOMIS analysis stage, developed over OOlong, and formal guarantees that the generated program
is well-typed and that it corresponds behaviourally to the original one. The proofs are mechanised
in Coq. The ultimate goal of ATOMIS is to guarantee the absence of atomicity violations. We
formulate an abstract semantic property capturing that critical result, which depends on the posterior
lock injection stage.

1 Introduction

The de-facto standard when programming concurrent applications is to use shared memory and control
interference by identifying the critical sections and managing access to them via synchronisation mecha-
nisms like locks, monitors, or semaphores. This identification of regions of code that should be executed
in mutual exclusion has proven time and again to be quite difficult.

Data-Centric Synchronisation (DCS) is a high-level declarative approach that shifts reasoning about
concurrency restrictions from control structures to data declaration, abstracting away from the actual
concurrency control mechanism(s) in use. In short, one simply needs to identify critical resources to
protect from interference, instead of code portions. Despite its advantages, the practical use of DCS is
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Figure 1: ATOMIS compilation stages

hindered by the fact that it may require many annotations and/or multiple implementations of the same
method to cope with differently qualified parameters. To overcome these limitations, we have developed
ATOMIS, a new DCS model based on a rigorously defined type-sound programming language.

Programming with ATOMIS requires only (atomic)-qualifying types of parameters and return val-
ues in interface definitions, and of fields in class definitions. From this atomicity specification, a static
analysis infers the atomicity constraints that are local to each method, considering valid only the method
variants that are consistent with the specification, and performs code generation for all valid variants
of each method. The generated code then undergo automatic injection of concurrency control primi-
tives, by plugging into the models pipeline the desired automatic technique. The entire model has been
implemented for Java, using a lock-injection algorithm that is inspired in Autolocker [14], and which
guarantees the expected thread safety properties of absence of atomicity violations, of deadlocks and of
data races.

Why do we propose an oral communication? The main contribution of our work, presented in de-
tail in a technical report1 and summarised herein, is the formal foundations of ATOMIS, a new DCS
language-based approach which requires only atomicity specifications, inferring statically the atomicity
concerns local to each method. The code generated includes atomic versions of the source code’s types
and, for all classes, the code of all valid method variants. Crucially, our approach relies on type qualifiers
for specifying the target resources for the concurrency control mechanism.

As usual for type qualifiers, atomicity annotations do not have an impact in the operational semantics
of the language, though they do represent a desired semantic property that excludes behaviour involving
the access to protected resources. Since the change (mainly loss) in behaviour introduced by the concur-
rency control are to be introduced in a subsequent stage, we do not define a semantics for it. Instead, we
define an abstract semantic property that should be enforced.

We are working on a clarification of the semantics of the atomic qualifiers in the form of a safety
property that excludes programs containing traces that violate exclusivity of atomic accesses within a
unit of work. A valid mechanism for lock injection must then be sound with respect to this property. The
main goal of our communication is to seek feedback from the community regarding the approach we are
pursuing.

Roadmap. If our oral communication proposal is accepted, its technical content is as follows.

1. The presentation of a rigorous formalisation of the ATOMIS analysis in a type sound-core lan-
guage OOlong (in §3), with formal guarantees of type and behavioural soundness (in §4). A
mechanised proof in Coq has been developed for the former 2, and for the latter it is underway.

1https://drive.proton.me/urls/1EFCXGE14W#iNe2lXovYmkO
2https://zenodo.org/record/6382015 and https://zenodo.org/record/6346649
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2. A type qualifier inference methodology that enables to infer complete atomicity qualifiers from an
interface and field-based specification, where the two possible qualifiers (atomic and non-atomic)
are not related by subtyping. This methodology also determines the method variants for all possible
parameter and return type qualifiers that are valid, i.e., are consistent with the specification (in §3).

3. A program synthesis methodology, based on the solved atomicity and valid variant inference, that
produces fully qualified code from all classes and corresponding valid method variants (in §3).

4. A formulation of an abstract semantic property excluding atomicity violations, based on the notion
of unit of work [7] and of exclusivity of atomic units of work (in §2), which can be made concrete
for a specific lock inference algorithm, and provide the bases for ensuring thread safety.

2 The ATOMIS Model

ATOMIS is a generic data-centric synchronisation model applicable to any concurrent language with
shared state. The data-centrality comes from the addition of the atomic type qualifier to variables whose
values are shared across multiple concurrent execution flows, similar to what is found in C++ [12]. We
do this using an atomic annotation, applicable to any type.

Mutable values assigned to variables with atomic type are referred to as atomic values. Atomic values
may only be manipulated within the scope of a unit of work [7], which in ATOMIS translates to blocks
of instructions (such as method bodies) that access at least one atomic value. Atomic values accessible
from the same unit of work implicitly share consistency requirements. The goal of ATOMIS is to ensure
that all accesses to atomic values within each unit of work are, in effect, a single atomic operation.

Atomicity Specification. Concurrency restrictions are specified in the types found in interface and
class definitions. In the case of interfaces, each method specifies what combinations of atomicities are
supported in its parameter and return type, with sequences of elements (q1)→ q2, where q1 denotes the
atomicity of the parameter and q2 the atomicity of the return type. The type in class instantiation may
also be atomic-qualified.

Consider the following interface for lists of atomic objects. We want to specify that the methods
support the insertion and retrieval of atomic values.

interface ListAtomic {
add(element : Object) : Unit [(atomic)→ atomic, (atomic)→ non_atomic]
get(pos : Integer) : Object [(non_atomic)→ atomic, (atomic)→ atomic]
equals(other : List) : Boolean [(non_atomic)→ non_atomic, (non_atomic)→ atomic, (atomic)→ non_atomic,(atomic)→ atomic]

}

add takes an atomic parameter. get takes either atomic or non-atomic Integers and returns a value of
atomic type. Lastly, in equals, we want to be able to compare the contents of the current list with any
other, atomic or not, and the result must be assignable to variables of both atomic and regular types, so
all combinations must be supported.

Regarding class implementations, class fields may be accessed by multiple methods which may, in
turn, be executed by multiple threads. We thus require field atomicity to be specified in the source
code. The following implementation of ListOfAtomic supports concurrent access to list nodes, so they
are specified as atomic. The nodes are implemented as instances of class NodeOfAtomic, which stores
atomic objects.
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1 class NodeOfAtomic {
2 atomic Object value;
3 NodeOfAtomic next , prev;
4 }

class ConcurrentListOfAtomic implements ListOfAtomic {
atomic NodeOfAtomic head , tail;
void add(T element) { ... }
...

}

Listing 1: A concurrent list example.

Atomic Types and Method Variants. Atomic-qualified (atomic, for short) and regular types define
two different type trees, and thus are not convertible into each other. Equivalently, if a class C extends a
class D then atomic C will extend atomic D. As a result, an object with atomic type cannot be cast into
a regular type, and, by this way, give rise to uncontrollable atomicity violations.

Concerning atomic class types, a decision must be made about the atomicity of unqualified fields
of the same type of the hosting class, such as field next from class NodeOfAtomic in Listing 1. The
atomicity of such fields may be inherited from the class itself, preserving the type equality between the
field and the hosting class, or simply remain unaltered, breaking this equality. Currently, we chose to
preserve the equality. Ergo, in Listing 1, the type of head.next is atomic NodeOfAtomic, allowing for
the NodeOfAtomic type to be used both in the implementation of both concurrent and regular lists of
atomic objects.

The atomicity of parameters types must be matched, for each method call, with the atomicity of the
types of the values assigned to them. The atomicity of the types of a method’s local variables and the
return type of that method may depend on the atomicity of the types of the values that have been (or will
be later) assigned to a field or to a parameter. A method may hence have several different signatures, what
we refer to as method variants, corresponding to combinations of atomicity qualifiers for the object itself
(this), the method’s parameters and the return type. For each variant, the atomicity of all non-qualified
local variables is inferred during the compilation process, having as base the atomicity of fields and the
given atomicity combination (more details in §3). Accordingly, some variants may not be type-safe.

Although our approach shares affinities with the context-sensitive field-based type qualifier inference
presented in [10], in our work it is necessary to separate regular from atomic types, rather than defining
a partial-order between them in order to prevent atomicity violations.

Unit of Work. The role of the atomicity specification in ATOMIS is to inform the compilation process,
with the ultimate aim of enforcing exclusive access to atomic values. The Analysis stage thus clarifies
which values are to be treated atomically, and in the Concurrency Control stage a mechanism is intro-
duced to enforce the property over units of work. We say that a thread is executing within a unit of work
when it is executing instructions in between the first and the last access that is performed by a method call
on an atomic value. The work in this paper does not comprise this latter stage, including the algorithm
for enforcing units of work. We can however define the property abstractly.

Let unit of work context of an executing thread refer to the set of atomic values that correspond to the
unit within which the thread is executing, or the empty set if that is not the case. Unit of work context is
defined as expected for thread collections, as the union of unit of work contexts of all threads. We must
ensure that thread collections respect atomicity of units of work throughout their computation. We are
specifically interested in whether the units of work of atomic values are entered exclusively by a single
thread at all times. We say that a thread collection guarantees exclusivity of units of work with respect to a
set of atomic values if it is single-threaded, or if the unit of work contexts of all threads are disjoint (their
intersection is empty) and each thread has also exclusivity of units of work with respect to the same set.
We can then define the operational property of a thread collection respecting exclusivity of atomic units
of work as simply to require that exclusivity be preserved by the execution of programs in the language.
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3 ATOMIS Analysis

The purpose of ATOMIS’ static analysis is to infer all atomic-qualifiers of the program’s types, and to
consistently synthesise the code for the valid variants of every method.

ATOMIS-OOlong. The correctness of the produced program is crucial for ensuring the thread safety
properties of the lock-injection stage that follows. To formally prove the soundness of the analysis we
build on OOlong [2], a principled object-oriented multi-threaded programming calculus with minimal
syntax, a formal static and dynamic semantics, and a computer-aided proof of type soundness, on which
our mechanisation builds. ATOMIS-OOlong extends OOlong to support the declaration of atomic fields
and the instantiation of atomic objects, via the atomic keyword, and signature annotations, which are the
only constructs to express concurrency restrictions. As the output of the analysis is an Oolong program,
we omit the presentation of its semantics here. 3

Analysis stages. The analysis of an ATOMIS-OOlong program Porig produces an OOlong program
(without locks) with safe code (i.e., type-safe and preventing atomicity violations), that determines the
atomicity qualification of every type in Porig. For each type in Porig, the generated code includes its regular
and atomic versions. Moreover, the class types have their original methods unfolded into the correspond-
ing valid variants, and all method calls are explicitly resolved into a valid variant. The complete analysis
of an original program is a partial function, denoted AtomiSAnalysis, that comprises four stages (Fig. 1).

Stage 1 - Check Well-formedness. The analysis requires underlying OOlong programs to be well-
typed. The code, stripped from all atomic and interface signature annotations, is submitted to an in-
strumented version of the original OOlong type system [2]: the original verification includes program
well-formedness and the matching of the types of the various components of the program.

Stage 2 - Solve Atomicities and Validity of Method Variants. This is a three step process that
outputs the solution – a model of a constraint system over variant and atomicity variables, where validity
values are assigned to variant variables and atomicity values are assigned to atomicity variables.

First, a type-based generation of atomicity-related information produces a map that, for each
method of the source program, provides constraints on the atomicity of the method’s local variables,
and the set of the method variants that the method will call in its execution. Constraints are defined
over atomicity variables, which represent yet unresolved atomicities – such as of variables, of method
parameters, of the result of method calls, or of objects – and validity variables – enabling to express
atomicity requirements for a variant to be valid.

Next, the generated atomicity information is used to build a global constraint system with the con-
ditions for the inference to be successful. The system comprises a validity constraint per every possible
variant of each method, and for each call (denoted by a variant variable). The resulting constraints are
conjugated to ensure satisfiability of all calls. Furthermore, the validity of different method variants
needs to be checked for satisfiability of the restrictions imposed by the method’s body, including calls,
plus those imposed (by the variant) on the atomicity of the object, parameter and return value.

Last, the solver is called on the global constraint system which only uses equality, implication, con-
junction and disjunction operations over two sets of binary values, i.e., a Boolean Satisfiability problem.
The model resulting from the system’s satisfiability assigns Boolean values to all validity and atomicity
variables, producing the aforementioned solution.

3The interested reader can check Section 4, namely Figures 8 and 9, of OOlong main reference [2].
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Stage 3 - Check Interface Implementation. An ATOMIS-OOlong interface may feature signature
annotations to explicitly convey the atomicity of method parameters and return types. This stage aims at
guaranteeing that the set of valid variants computed for each class C includes the signatures that result
from the parsing of the interface I implemented by C. To that end, this stage receives the solution – to
retrieve the signatures of the valid variants of the class’ methods – and the source code – to retrieve the
signatures originally defined in the program’s classes and interfaces. Having both sets of signatures, the
stage simply checks if the former includes the latter.

Stage 4 - Generate Code. This stage consists of a syntax directed code transformation that re-
places: 1 - original method signatures in interfaces by the ones resulting from the parsing of the atomicity
annotations; 2 - method definitions in classes by the variants considered valid in the solution generated
by Stage 2; 3 - method names by the right variant in all method calls; and 4 - types and qualifiers by new
types from a set that is implicitly partitioned into atomic and no-atomically qualified types. The resulting
code has thus no ambiguities with regard to variable atomicity.

4 Soundness

The AtomiSAnalysis process guarantees type and behavioural soundness, i.e., that (when successful) it
preserves typeability and atomicity annotations and produces a program behaviourally equivalent to the
original one. Definitions and results are presented informally here.4 Type soundness of the automatically
generated program has been proved in Coq.5

Type Soundness. The results are stated for programs Porig, i.e., ATOMIS-OOlong programs with atom-
icity annotations, for which the analysis succeeds and produces a final OOlong program P+.

Preservation of Base Types: States that if Porig, stripped from atomicity annotations, is typeable
with type t, then the final program P+ is also typeable with a compound of an atomicity ν and type t.

Consistency of Types with Atomicity Annotations: Further guarantees that the field and signa-
ture’s types of the final program P+ are consistent with those in Porig, i.e, that types given to fields
(respectively, to methods) in P+ are a compound of the atomicity and types of the fields (respectively,
of the methods) given to fields (respectively, to methods) with the corresponding name in corresponding
classes of Porig.

Note that the Progress and Preservation results that hold for the OOlong language and type system
ensure that the output of the analysis never goes wrong in what regards both base types and atomicities.

Behavioural Soundness. Our approach performs a program transformation that consistently fleshes
out the atomicity qualifiers of every type in the program, while unfolding classes and methods according
to their determined qualified types. We have proven that the ATOMIS Analysis (up until but not including
lock injection) does not affect the original behaviour, i.e., that the final program does everything the
original one does, and nothing more, according to a notion of indistinguishability that is based on a
bisimulation6. To this end we: (1) define syntactic correspondences mapping types and method names
occurring in the interfaces and classes of the final program, to those from which they originated in the
initial code; and (2) focus on heap correspondences between two heapswith the same domain, and assign,
in corresponding classes, the same field map and lock status to all references.

4Their full and precise formulations are provided in the Technical Report (2023); please see the supplementary material.
5AtomiS-Coq proof of type preservation (2022), https://zenodo.org/record/6346649, https://zenodo.org/record/

6382015
6Theorem 14 in the Technical Report in the supplementary material.
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We design a bisimulation relation to relate thread collections that derive from programs between
which there is a syntactic correspondence, and which preserve a heap correspondence throughout all
possible execution paths. Our operational soundness result establishes that when a program undergoes
the ATOMIS Analysis, the original and the final programs are bisimilar, i.e., exhibit the same behaviour
with respect to the heap correspondence.

5 Related Work

DCS in shared memory programming. Atomic Sets [7, 18] is a reference work in the area. Variables
holding values with consistency properties must be placed in an atomic set. Sets may have multiple units
of work, which can be explicitly augmented to account for multiple method parameters. Likewise, alias
annotations enable the union of sets from distinct classes at object creation. Although a seminal work,
Atomic Sets annotations may hamper reasoning and are error-prone, as some may be easily forgotten.
AWJS [13] combines Atomic Sets with work-stealing-based task parallelism in the Java language. Other
works that perform automatic inference of atomic sets include: AJ-lite [11], a lighter version that assumes
a single atomic set per Java class and is only applicable to libraries and not entire programs; [6], which
is able to automatically infer most atomic sets from patterns recognised in execution traces, although
sensitive to the quality of the input traces, and may generate more annotations than necessary.

Ceze at al. [4] associate variables with consistency proprerties to a colour, defining a consistency
domain. However, concurrency control is not centralised on data declaration. Code annotations have to
be added to the methods’ implementations. Moreover, atomic-region-like control-centric concurrency
control is needed to handle high-level data races [1] in composite operations. In [3], some of the same
authors proposed hardware support for data-centric synchronisation.

RC3 [17] is a DCS model that uses a single keyword (atomic), being a source of inspiration for
ATOMIS. Most of the concerns delegated on the programmer in AJ are shifted to static analyses. How-
ever, the methods’ implementations are atomicity-aware, requiring the duplication of code to account for
the atomicities of the parameters. As in all other DCS solutions, there is no support for interfaces.

Type qualifier inference and Type-directed code synthesis. Generic frameworks and tools for type
qualifier inference have been proposed, e.g. CQUAL [8, 9] and CLARITY [5] for C, and JQual [10] for
Java, and their usage experimented for different purposes (see the latter for a review). The ATOMIS
model performs a field-based, context-sensitive, flow-insensitive, analysis, as JQual, but for specifically
inferring atomicity type qualifiers to achieve strong concurrency control guarantees. Imposing program-
wide atomicity constraints on how data is manipulated, in a flow-insensitive approach in the presence of
alias appears to be incompatible with enabling subtyping between the atomic and non-atomic qualifiers.
Indeed, the same object should not be treated simultaneously as atomic and non-atomic by different parts
of the program. Automatic generation of method variants by the ATOMIS model provides flexibility
compatible with the methods’ code, up to the conservative nature of the constraint generation.

Our code generation approach bears connections with Osera’s [16] constraint-based type-directed
program synthesis technique for producing polymorphic code from types and examples. The main dif-
ferences with respect to our approach are that [16] targets a functional programming language, and that
ATOMIS’s code generation is based on an original program.



8 ATOMIS Type qualifier inference and code synthesis

6 Conclusions

We propose herein the formal foundations of a sound new model of data-centric synchronisation, that
only requires the annotation of interfaces and of atomic class fields. The approach has two main phases
— an analysis, which, when successful, infers missing annotations and produces type-safe atomicity-
related variants of each method; followed by a lock injection phase, to manage concurrency and prevent
interferences. In this paper we present the formalisation of the analysis phase, for a core object calculus
(OOlong), showing that the generated code is type-safe and behaviourally corresponds to the original
one. We provide a computer-verified proof that the resulting generated program is type-safe, using the
Coq proof assistant. We are developing a mechanised proof of ATOMIS’s behavioural soundness.

Up to the formalised stage, the work is largely agnostic to the semantics of atomic annotations. It is
in subsequent stages that the program structures that actually protect atomic resources are injected into
the code, thus shaping the semantics and properties of the final program. We have nevertheless proposed
an abstract formulation for the crucial property of mutual exclusion that is based on the notion of unit of
work. While the computation of units of work and lock inference has been implemented, we are working
on its formalisation, and aim to prove its soundness.
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