Algebraic Reasoning About Timeliness by Seyed Hossein HAERI 12 Peter W. THOMPSON 13 Peter VAN ROY 4 Magne HAVERAAEN 2 Neil J. DAVIES 13 Mikhail BARASH 2 Kevin HAMMOND 1 James CHAPMAN 1 (1 IOG, 2 University of Bergen, 3 PNSol, 4 UCLouvain) on 19 Jun 2023 16th Interaction and Concurrency Experience NOVA University, Lisbon, Portugal ## » Why predict performance? Introduction - * Weather forecast of today can't arrive tomorrow! - * Without performance prediction - * Performance issues exposed late in design cycle - * Either: - * Re-architect the design, with cost and delay, or - * Allocate excessive resources, with cost and inefficiency. - * With performance prediction - * Performance issues exposed early in design cycle - * Re-architect the design before time and money spent, and - * Control resources, avoiding cost and inefficiency. #### See [1, §1.1] for more: Mind Your Outcomes: The \triangle QSD Paradigm for Quality-Centric Systems Development and Its Application to a Blockchain Case Study. Computers 11(3): 45 (2022) https://www.mdpi.com/2073-431X/11/3/45 ## » Why does IOG fund research on performance? - * Good Starting Point: Kevin Hammond's Keynote in Lambda Days 2023 https://tinyurl.com/3t42t3wn - * IOG is a prominent blockchain company. https://iohk.io - * The effective operation of the Cardano network depends on a performance aware design. - * PNSol is world-leading performance company. http://www.pnsol.com - * The Δ QSD Team on Formalising Performance Aspects ## » △QSD Advertisement #### Last Year's DisCoTec Tutorial by Peter VAN ROY https://www.youtube.com/watch?v=iBYZEJZwKm0 Introduction 0000 ## **Timeliness** is delivering results within the required time bounds (sufficiently often). ## **Cache Example** - * Outcome Diagrams - * Outcome Expressions - * An Algebraic Perspective on Timeliness - * Where is the algebra? ## **Cache Example** - * Outcome Diagrams - * Outcome Expression: - An Algebraic Perspective on Timeliness - st Where is the algebra ## » Big Picture #### Block Diagram #### » Hit or Miss #### Note: - Outcomes: What the System Gains by Performing One its Tasks - * NOT System States - * NOT Subsystems - * NOT Classes/Objects - ∗ Probabilistic Choice (⇐) ## » Lookup from Main Memory #### Note: - * Sequential Composition - Left-to-Right Causality ### » Error Correction #### Time-Bounded Network Connection Back & Forth ## \Rightarrow Timeout (2 of 3) #### Note: * Any-to-Finish (\exists) ## **Cache Example** - * Outcome Diagrams - * Outcome Expressions - An Algebraic Perspective on Timeliness - st Where is the algebra ## » ECC Only ### Expression: $$\mathsf{main} \overset{1}{\underset{10^{-16}}{\leftrightharpoons}} \bot$$ #### Note: * " \perp " is for failure. #### » ECC + Network #### Expression: $$\mathsf{net} \bullet \!\!\!\!\! \to \!\!\!\!\! \bullet (\mathsf{main} \underset{10^{-16}}{\overset{1}{\leftrightarrows}} \bot) \bullet \!\!\!\! \to \!\!\!\! \bullet \mathsf{net}$$ #### Note: * " $\bullet \to \bullet$ " is for sequential composition. ## » ECC + Network + Timeout #### Expression: $$(\mathsf{net} \bullet \!\!\!\! \to \!\!\!\! \bullet (\mathsf{main} \underset{10^{-16}}{\overset{1}{\longleftarrow}} \bot) \bullet \!\!\!\! \to \!\!\!\! \bullet \mathsf{net}) \parallel^{\exists} \mathsf{t-out}$$ #### Note: * " \parallel 3" is for any-to-finish. ## » Full Expression $$\text{c-hit} \overset{[95\%]}{\leftrightharpoons} (\text{c-miss} \bullet \!\!\!\! \to \!\!\!\! \bullet ((\text{net} \bullet \!\!\! \to \!\!\!\! \bullet (\text{main} \underset{10^{-16}}{\overset{t}{\leftrightharpoons}} \bot) \bullet \!\!\!\! \to \!\!\!\! \bullet \text{net}) \parallel^{\exists} t\text{-out}))$$ ## **Cache Example** - * Outcome Diagrams - Outcome Expressions - * An Algebraic Perspective on Timeliness - st Where is the algebra ## \Rightarrow What's a \triangle Q? - **Quality Attenuation** - * A Measure for Delay (and Failure) - Represented using a Cumulative Distribution Function (CDF) - Improper Random Variable (IRV) [2] #### » Timeliness Semantics Definition (Haeri et al. [1]): Given a basic assignment $\Delta_{\circ}\llbracket. rbracket : \overline{\mathbb{B}} o \Delta$, define $\Delta \mathbf{Q}\llbracket. rbracket : \mathbb{D} o \mathbb{I}$ such that #### » Timeliness Semantics Definition (Haeri et al. [1]): Given a basic assignment $\Delta_{\circ}\llbracket. rbracket : \overline{\mathbb{B}} o \Delta$, define $\Delta \mathbf{Q}\llbracket. rbracket_{\Delta_{\circ}} : \mathbb{O} o \mathbb{I}$ such that #### » Timeliness Semantics Definition (Haeri et al. [1]): Given a basic assignment $\Delta_\circ \llbracket . rbracket : rbracket o \Delta$, define $\Delta \mathsf{Q} \llbracket . rbracket _{\Delta_\circ} : \mathbb{O} o \mathbb{I}$ such that $$\begin{split} \Delta \mathbb{Q}[\![\beta]\!]_{\Delta_o} &= \left\{ \begin{array}{ll} \mathbf{1} & \text{when } \Delta_o[\![\beta]\!] \notin \mathbb{I} \\ \Delta_o[\![\beta]\!] & \text{otherwise} \end{array} \right. \\ \Delta \mathbb{Q}[\![o \Longrightarrow o']\!]_{\Delta_o} &= \Delta \mathbb{Q}[\![o]\!]_{\Delta_o} * \Delta \mathbb{Q}[\![o']\!]_{\Delta_o} \\ \Delta \mathbb{Q}[\![o \frac{m}{m'} o']\!]_{\Delta_o} &= \frac{m}{m+m'} \Delta \mathbb{Q}[\![o]\!]_{\Delta_o} + \frac{m'}{m+m'} \Delta \mathbb{Q}[\![o']\!]_{\Delta_o} \\ \Delta \mathbb{Q}[\![o \parallel^\forall o']\!]_{\Delta_o} &= \Delta \mathbb{Q}[\![o]\!]_{\Delta_o} \times \Delta \mathbb{Q}[\![o']\!]_{\Delta_o} \\ \Delta \mathbb{Q}[\![o \parallel^\exists o']\!]_{\Delta_o} &= \Delta \mathbb{Q}[\![o]\!]_{\Delta_o} + \Delta \mathbb{Q}[\![o']\!]_{\Delta_o} - \Delta \mathbb{Q}[\![o]\!]_{\Delta_o} \times \Delta \mathbb{Q}[\![o']\!]_{\Delta_o} \end{split}$$ ## $\rightarrow \Delta Q$ of the Cache Example Given $$\Delta_\circ \supseteq \{\Delta \mathsf{Q}_\mathsf{c-hit}, \Delta \mathsf{Q}_\mathsf{c-miss}, \Delta \mathsf{Q}_\mathsf{mem}, \Delta \mathsf{Q}_\mathsf{t-out}, \Delta \mathsf{Q}_\mathsf{mem}, \Delta \mathsf{Q}_\mathsf{t-out}\}$$, one calculates: $$\Delta \mathbf{Q}_{\mathrm{obs}} = 0.95 \times \Delta \mathbf{Q}_{\mathrm{c-hit}} + 0.05 \times (\Delta \mathbf{Q}_{\mathrm{c-miss}} * (\Delta \mathbf{Q}_{\mathrm{mem}} + \Delta \mathbf{Q}_{\mathrm{t-out}} - \Delta \mathbf{Q}_{\mathrm{mem}} \times \Delta \mathbf{Q}_{\mathrm{t-out}})),$$ where $$\Delta \mathbf{Q}_{\mathsf{mem}} = \Delta \mathbf{Q}_{\mathsf{net}} * (1 - 10^{-16}) \times \Delta \mathbf{Q}_{\mathsf{main}} * \Delta \mathbf{Q}_{\mathsf{net}}.$$ #### » Timeliness for the Cache - *~10% of queries up to 4ms - * 50% of queries up to 6ms - *~90% of queries up to 14ms - 10% of queries never ## **Cache Example** - * Outcome Diagrams - * Outcome Expressions - An Algebraic Perspective on Timeliness - * Where is the algebra? #### » ECC Revisited ## Expression: $$\operatorname{c-hit} \overset{[95\%]}{\leftrightharpoons} (\operatorname{c-miss} \bullet \!\!\!\! \to \!\!\!\! \bullet (\operatorname{main} \overset{1}{\overset{-}{\leftrightharpoons}} \bot))$$ ## » Algebraic Manipulation $$\begin{array}{c} \text{c-hit} \stackrel{[95\%]}{=} (\text{c-miss} \bullet \!\!\!\!\! \to \!\!\!\! \bullet (\text{main} \stackrel{\stackrel{1}{=}}{\underset{10^{-16}}{\stackrel{}{=}}} \bot)) \\ \text{c-hit} \stackrel{[95\%]}{=} ((\text{c-miss} \bullet \!\!\!\! \to \!\!\!\! \bullet \text{main}) \stackrel{\stackrel{1}{=}}{\underset{10^{-16}}{\stackrel{}{=}}} \bot) \\ \text{(c-hit} \stackrel{[.]}{=} (\text{c-miss} \bullet \!\!\!\! \to \!\!\!\! \bullet \text{main})) \stackrel{[q]}{=} \bot \\ \end{array}$$ * 17 nines vs 9 nines of Ericsson AXD301 Just ruling out infeasibility with this level of information. ## » Benefit of Algebraic Manipulation - * What if we had already implemented the cache? - * Will simply throwing more hardware at it work? - * Re-architecture from scratch? Algebraic Results ## » Algebraic Structures | $\mathbb O$ with | Forms | |---|--| | ⇔
•→•
 [∀]
 [∃] | magma commutative monoid with \top and \bot as the identity and absorbing elements commutative monoid with \top and \bot as the identity and absorbing elements commutative monoid with \bot and \top as the identity and absorbing elements | #### Note: Neither $\|^{\forall}$ nor $\|^{\exists}$ nor their combination form the familiar richer algebraic structures. $$\bot = \bot = \bot \quad o \longrightarrow \bullet \bot = \bot \quad \top = \top \quad \bot \longrightarrow \bullet o = \bot$$ $$\top \longrightarrow \bullet \circ = o \quad o \longrightarrow \bullet \top = o \quad \top \parallel^{\forall} o = o \quad \bot \parallel^{\exists} o = o$$ ECC followed by a net failure is as timely as failure itself! $$\bot = \bot = \bot \qquad o \longrightarrow \bullet \bot = \bot \qquad \top = \top \qquad \bot \longrightarrow \bullet o = \bot$$ $$\top \longrightarrow \bullet \circ = o \qquad o \longrightarrow \bullet \top = o \qquad \top \parallel^{\forall} o = o \qquad \bot \parallel^{\exists} o = o$$ $$\begin{array}{c} o_1 \overset{\bullet}{\longrightarrow} \bullet & (o_2 \overset{\cdot}{\Longrightarrow} \bot) = (o_1 \overset{\bullet}{\longrightarrow} \bullet o_2) \overset{\cdot}{\Longrightarrow} \bot \\ (o_1 \overset{\cdot}{\leftrightarrows} \bot) \overset{\bullet}{\longrightarrow} \bullet & o_2 = (o_1 \overset{\bullet}{\longrightarrow} \bullet o_2) \overset{\cdot}{\leftrightarrows} \bot \\ (o_1 \overset{\cdot}{\Longrightarrow} \top) \overset{\bullet}{\longrightarrow} \bullet & o_2 = (o_1 \overset{\bullet}{\longrightarrow} \bullet o_2) \overset{\cdot}{\Longrightarrow} o_2 \\ o_1 \overset{\cdot}{\longleftarrow} \bullet & (o_2 \overset{\cdot}{\Longrightarrow} \top) = (o_1 \overset{\bullet}{\longrightarrow} \bullet o_2) \overset{\cdot}{\Longrightarrow} o_1 \\ o_1 \overset{[p]}{\Longrightarrow} (o_2 \overset{[q]}{\Longrightarrow} \top) = o_2 \overset{[q(1-p)]}{\Longrightarrow} (o_1 \overset{[p-q(1-p)]}{\Longrightarrow} \top) \\ \bot \overset{[p]}{\Longrightarrow} (\bot \overset{[q]}{\Longrightarrow} o) = \bot \overset{[p+(1-p)q]}{\Longrightarrow} o \end{array}$$ Seen at the Algebraic Manipulation of the Cache Example Algebraic Results #### Theoren Let $o_1, o_2, o_3 \in and p \in \{\bullet \rightarrow \bullet, \|\forall, \|\exists\}$. Then - $* \odot \odot$ time $dash o_1 p(o_2 \leftrightharpoons o_3) = (o_1 p o_2) \leftrightharpoons (o_1 p o_3)$, and - $* \odot \odot$ time $\vDash (o_1 \leftrightharpoons o_2) \ p \ o_3 = (o_1 \ p \ o_3) \leftrightharpoons (o_2 \ p \ o_3)$ Bad News! Only 3 Out of the Possible 15 - * Formalisation of Δ QSD Ongoing Project - Algebraic Manipulations \Rightarrow Tool Support - * Properisation - * Ordinary $\Delta Q [[.]]$ doesn't work! - * The First IRV Body of Theorems Ever! ## » Questions? ## » Thank you very much! K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Wiley, New York, NY, USA, 2 edition, 2002.