
On the Introduction of Guarded Lists in Bach:
Expressiveness, Correctness, and Efficiency Issues

Manel Barkallah – Jean-Marie Jacquet

Namur Digital Research Institute
University of Namur, Belgium

June 2023

Coordination as a powerful paradigm

a concurrent framework based on shared information

clear separation between interactional and computational
aspects

☞ many models and languages
☞ many theoretical pieces of work
☞ many implementations

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Coordination as a powerful paradigm . . . but in practice

a concurrent framework based on shared information

clear separation between interactional and computational
aspects

☞ many models and languages
☞ many theoretical pieces of work
☞ many implementations

in practice, how to construct programs?

☞ how to describe (real-life) problems?
☞ how to reason on the programs?
☞ how to be sure that what is described by the programs

corresponds to what has to be modelled?

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Coordination as a powerful paradigm . . . but in practice

a concurrent framework based on shared information

clear separation between interactional and computational
aspects

☞ many models and languages
☞ many theoretical pieces of work
☞ many implementations

in practice, how to construct programs?

☞ how to describe (real-life) problems?
☞ how to reason on the programs?
☞ how to be sure that what is described by the programs

corresponds to what has to be modelled?

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Coordination as a powerful paradigm . . . but in practice

a concurrent framework based on shared information

clear separation between interactional and computational
aspects

☞ many models and languages
☞ many theoretical pieces of work
☞ many implementations

in practice, how to construct programs?

☞ how to describe (real-life) problems?
☞ how to reason on the programs?
☞ how to be sure that what is described by the programs

corresponds to what has to be modelled?

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Coordination as a powerful paradigm . . . but in practice

a concurrent framework based on shared information

clear separation between interactional and computational
aspects

☞ many models and languages
☞ many theoretical pieces of work
☞ many implementations

in practice, how to construct programs?

☞ how to describe (real-life) problems?
☞ how to reason on the programs?
☞ how to be sure that what is described by the programs

corresponds to what has to be modelled?

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Coordination as a powerful paradigm . . . but in practice

a concurrent framework based on shared information

clear separation between interactional and computational
aspects

☞ many models and languages
☞ many theoretical pieces of work
☞ many implementations

in practice, how to construct programs?

☞ how to describe (real-life) problems?
☞ how to reason on the programs?
☞ how to be sure that what is described by the programs

corresponds to what has to be modelled?

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Coordination as a powerful paradigm . . . but in practice

a concurrent framework based on shared information

clear separation between interactional and computational
aspects

☞ many models and languages
☞ many theoretical pieces of work
☞ many implementations

in practice, how to construct programs?

☞ how to describe (real-life) problems?
☞ how to reason on the programs?
☞ how to be sure that what is described by the programs

corresponds to what has to be modelled?

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Coordination as a powerful paradigm . . . but in practice

a concurrent framework based on shared information

clear separation between interactional and computational
aspects

☞ many models and languages
☞ many theoretical pieces of work
☞ many implementations

in practice, how to construct programs?

☞ how to describe (real-life) problems?
☞ how to reason on the programs?
☞ how to be sure that what is described by the programs

corresponds to what has to be modelled?

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Coordination as a powerful paradigm . . . but in practice

a concurrent framework based on shared information

clear separation between interactional and computational
aspects

☞ many models and languages
☞ many theoretical pieces of work
☞ many implementations

in practice, how to construct programs?

☞ how to describe (real-life) problems?
☞ how to reason on the programs?
☞ how to be sure that what is described by the programs

corresponds to what has to be modelled?

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

The Bach Coordination Language

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

The Bach Coordination Language

tell(t)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

The Bach Coordination Language

tell(t)

t

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

The Bach Coordination Language

tell(t)

t

ask(t)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

The Bach Coordination Language

tell(t)

t

ask(t)

get(t)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

The Bach Coordination Language

tell(t) ask(t)

get(t)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

The Bach Coordination Language

tell(t) ask(t)

get(t)nask(t)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Transition system

(T) ⟨ tell(t) | σ ⟩ −→ ⟨ E | σ ∪ {t} ⟩

(A) ⟨ ask(t) | σ ∪ {t} ⟩ −→ ⟨ E | σ ∪ {t} ⟩

(G) ⟨ get(t) | σ ∪ {t} ⟩ −→ ⟨ E | σ ⟩

(N)
t ̸∈ σ

⟨ nask(t) | σ ⟩ −→ ⟨ E | σ ⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Rush hour as a running example

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Modeling rush-hour

1

1

2

2

3

3

4

4

5

5

6

6

trucks and cars as concurrent agents

competing through free places on the shared space

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Modeling rush-hour

1

1

2

2

3

3

4

4

5

5

6

6

trucks and cars as concurrent agents

competing through free places on the shared space

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Data

finite sets

e s e t RCInt = { 1 , 2 , 3 , 4 , 5 , 6} .

maps and equations as rewriting rules

map down truck : RCInt −> RCInt .
eqn down truck (1) = 4 . down truck (2) = 5 .

down truck (3) = 6 .

structured pieces of information

flat tokens: a, b, . . . , t, u, . . .
composed terms: f (a1, . . . , an)

☞ free places as free(i,j)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Data

finite sets

e s e t RCInt = { 1 , 2 , 3 , 4 , 5 , 6} .

maps and equations as rewriting rules

map down truck : RCInt −> RCInt .
eqn down truck (1) = 4 . down truck (2) = 5 .

down truck (3) = 6 .

structured pieces of information

flat tokens: a, b, . . . , t, u, . . .
composed terms: f (a1, . . . , an)

☞ free places as free(i,j)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Data

finite sets

e s e t RCInt = { 1 , 2 , 3 , 4 , 5 , 6} .

maps and equations as rewriting rules

map down truck : RCInt −> RCInt .
eqn down truck (1) = 4 . down truck (2) = 5 .

down truck (3) = 6 .

structured pieces of information

flat tokens: a, b, . . . , t, u, . . .
composed terms: f (a1, . . . , an)

☞ free places as free(i,j)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Data

finite sets

e s e t RCInt = { 1 , 2 , 3 , 4 , 5 , 6} .

maps and equations as rewriting rules

map down truck : RCInt −> RCInt .
eqn down truck (1) = 4 . down truck (2) = 5 .

down truck (3) = 6 .

structured pieces of information

flat tokens: a, b, . . . , t, u, . . .
composed terms: f (a1, . . . , an)

☞ free places as free(i,j)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Data

finite sets

e s e t RCInt = { 1 , 2 , 3 , 4 , 5 , 6} .

maps and equations as rewriting rules

map down truck : RCInt −> RCInt .
eqn down truck (1) = 4 . down truck (2) = 5 .

down truck (3) = 6 .

structured pieces of information

flat tokens: a, b, . . . , t, u, . . .
composed terms: f (a1, . . . , an)

☞ free places as free(i,j)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Data

finite sets

e s e t RCInt = { 1 , 2 , 3 , 4 , 5 , 6} .

maps and equations as rewriting rules

map down truck : RCInt −> RCInt .
eqn down truck (1) = 4 . down truck (2) = 5 .

down truck (3) = 6 .

structured pieces of information

flat tokens: a, b, . . . , t, u, . . .
composed terms: f (a1, . . . , an)

☞ free places as free(i,j)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Data

finite sets

e s e t RCInt = { 1 , 2 , 3 , 4 , 5 , 6} .

maps and equations as rewriting rules

map down truck : RCInt −> RCInt .
eqn down truck (1) = 4 . down truck (2) = 5 .

down truck (3) = 6 .

structured pieces of information

flat tokens: a, b, . . . , t, u, . . .
composed terms: f (a1, . . . , an)

☞ free places as free(i,j)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Data

finite sets

e s e t RCInt = { 1 , 2 , 3 , 4 , 5 , 6} .

maps and equations as rewriting rules

map down truck : RCInt −> RCInt .
eqn down truck (1) = 4 . down truck (2) = 5 .

down truck (3) = 6 .

structured pieces of information

flat tokens: a, b, . . . , t, u, . . .
composed terms: f (a1, . . . , an)

☞ free places as free(i,j)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Agents

A ::= Prim | Proc |

A ; A | A || A | A + A |

C → A ⋄ A |
∑
e∈S

Ae

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Agents

A ::= Prim | Proc |

A ; A | A || A | A + A |

C → A ⋄ A |
∑
e∈S

Ae

where Prim represents a primitive, Proc a procedure call, C a
condition, e a variable and S a set.

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Rush-hour with animations

1

1

2

2

3

3

4

4

5

5

6

6

e s e t RCInt = { 1 , 2 , 3 , 4 , 5 , 6} .
Co l o r s = { ye l l ow , green , b lue , pu rp l e , red , o range } .

proc Ve r t i c a lT r u c k (r : RCInt , c : RCInt , p : Co l o r s) =
((r>1 & r<5) −> (ge t (f r e e (pred (r) , c)) ;

moveTruck (pred (r) , c , p) ;
t e l l (f r e e (succ (succ (r)) , c)) ;
V e r t i c a lT r u c k (pred (r) , c , p)))

+
((r<4) −> (ge t (f r e e (down truck (r) , c)) ;

moveTruck (succ (r) , c , p) ;
t e l l (f r e e (r , c)) ;
V e r t i c a lT r u c k (succ (r) , c , p))) .

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Model checking

Key information on the store: #free(1, 1)

Basic formulae: equalities or inequalities involving integers
and key information

☞ #free(1, 1) = 3

Propositional state formulae: combination of basic formulae
by usual Boolean operators

Linear temporal logic fragment:

TF ::= PF | Next TF | PF Until TF

Reach formulae:

Reach (#out = 1) ≡ true Until (#out = 1)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Model checking

Key information on the store: #free(1, 1)

Basic formulae: equalities or inequalities involving integers
and key information

☞ #free(1, 1) = 3

Propositional state formulae: combination of basic formulae
by usual Boolean operators

Linear temporal logic fragment:

TF ::= PF | Next TF | PF Until TF

Reach formulae:

Reach (#out = 1) ≡ true Until (#out = 1)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Model checking

Key information on the store: #free(1, 1)

Basic formulae: equalities or inequalities involving integers
and key information

☞ #free(1, 1) = 3

Propositional state formulae: combination of basic formulae
by usual Boolean operators

Linear temporal logic fragment:

TF ::= PF | Next TF | PF Until TF

Reach formulae:

Reach (#out = 1) ≡ true Until (#out = 1)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Model checking

Key information on the store: #free(1, 1)

Basic formulae: equalities or inequalities involving integers
and key information

☞ #free(1, 1) = 3

Propositional state formulae: combination of basic formulae
by usual Boolean operators

Linear temporal logic fragment:

TF ::= PF | Next TF | PF Until TF

Reach formulae:

Reach (#out = 1) ≡ true Until (#out = 1)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Model checking

Key information on the store: #free(1, 1)

Basic formulae: equalities or inequalities involving integers
and key information

☞ #free(1, 1) = 3

Propositional state formulae: combination of basic formulae
by usual Boolean operators

Linear temporal logic fragment:

TF ::= PF | Next TF | PF Until TF

Reach formulae:

Reach (#out = 1) ≡ true Until (#out = 1)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Model checking

Key information on the store: #free(1, 1)

Basic formulae: equalities or inequalities involving integers
and key information

☞ #free(1, 1) = 3

Propositional state formulae: combination of basic formulae
by usual Boolean operators

Linear temporal logic fragment:

TF ::= PF | Next TF | PF Until TF

Reach formulae:

Reach (#out = 1) ≡ true Until (#out = 1)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Model checking

Key information on the store: #free(1, 1)

Basic formulae: equalities or inequalities involving integers
and key information

☞ #free(1, 1) = 3

Propositional state formulae: combination of basic formulae
by usual Boolean operators

Linear temporal logic fragment:

TF ::= PF | Next TF | PF Until TF

Reach formulae:

Reach (#out = 1) ≡ true Until (#out = 1)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Model checking

Key information on the store: #free(1, 1)

Basic formulae: equalities or inequalities involving integers
and key information

☞ #free(1, 1) = 3

Propositional state formulae: combination of basic formulae
by usual Boolean operators

Linear temporal logic fragment:

TF ::= PF | Next TF | PF Until TF

Reach formulae:

Reach (#out = 1) ≡ true Until (#out = 1)

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Scan & Anemone

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Scan & Anemone

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Problem

1

1

2

2

3

3

4

4

5

5

6

6

get (f r e e (pred (r) , c)) ; ge t (f r e e (pred (r) , c)) ;
move (t r u ck img (c) , pred (r) , c) ; move (t r u ck img (c) , pred (r) , c) ;
t e l l (f r e e (succ (succ (r)) , c)) t e l l (f r e e (succ (succ (r)) , c))

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Problem

1

1

2

2

3

3

4

4

5

5

6

6

get (f r e e (pred (r) , c)) ; ge t (f r e e (pred (r) , c)) ;
move (t r u ck img (c) , pred (r) , c) ; move (t r u ck img (c) , pred (r) , c) ;
t e l l (f r e e (succ (succ (r)) , c)) t e l l (f r e e (succ (succ (r)) , c))

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Problem

1

1

2

2

3

3

4

4

5

5

6

6

get (f r e e (pred (r) , c)) ; ge t (f r e e (r , p red (c))) ;
move (t r u ck img (c) , pred (r) , c) ; move (t r u ck img (c) , pred (r) , c) ;
t e l l (f r e e (succ (succ (r)) , c)) t e l l (f r e e (r , succ (succ (c))))

[ge t (f r e e (pred (r) , c)) −>
move (t r u ck img (c) , pred (r) , c) ,
t e l l (f r e e (succ (succ (r)) , c))]

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

A guarded list construct

The construct

[p → p1, · · · , pn] where p, p1, . . . , pn are primitives

(Le) ⟨ [] | σ ⟩ −→ ⟨ E | σ ⟩

(Ln)
⟨ p | σ ⟩ −→ ⟨ E | τ ⟩, ⟨ L | τ ⟩ −→∗ ⟨ E | ϕ ⟩

⟨ [p|L] | σ ⟩ −→ ⟨ E | ϕ ⟩

(GL)
⟨ p | σ ⟩ −→ ⟨ E | τ ⟩, ⟨ L | τ ⟩ −→∗ ⟨ E | ϕ ⟩

⟨ [p → L] | σ ⟩ −→ ⟨ E | ϕ ⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Objectives

Introduce a new construct called guarded list

Establish an increase of expressiveness

Propose a theory of refinement

Show an increase of performance

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Objectives

Introduce a new construct called guarded list

Establish an increase of expressiveness

Propose a theory of refinement

Show an increase of performance

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Objectives

Introduce a new construct called guarded list

Establish an increase of expressiveness

Propose a theory of refinement

Show an increase of performance

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Objectives

Introduce a new construct called guarded list

Establish an increase of expressiveness

Propose a theory of refinement

Show an increase of performance

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness

L′

L

Obs ′

Obs-

-

?

6

O′

O

C D

L embeds L′

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness - Proof example

Propositions

Lg (ask , tell) ̸≤ Lr (ask, tell)

Inability for Lr (ask, tell) to atomically test the
presence of two distinct tokens a and b.

Assume AB = [ask(a) → ask(b)] and C(AB) a coder (in
Lr (ask , tell))

C(AB) in general form:

tell(t1) ; A1 + · · ·+ tell(tp) ; Ap

+ ask(u1) ; B1 + · · ·+ ask(uq) ; Bq

+ gp1 ; C1 + · · ·+ gpr ; Cr

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness - Proof example

Propositions

Lg (ask , tell) ̸≤ Lr (ask, tell)

Inability for Lr (ask, tell) to atomically test the
presence of two distinct tokens a and b.

Assume AB = [ask(a) → ask(b)] and C(AB) a coder (in
Lr (ask , tell))

C(AB) in general form:

tell(t1) ; A1 + · · ·+ tell(tp) ; Ap

+ ask(u1) ; B1 + · · ·+ ask(uq) ; Bq

+ gp1 ; C1 + · · ·+ gpr ; Cr

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness - Proof example

Propositions

Lg (ask , tell) ̸≤ Lr (ask, tell)

Inability for Lr (ask, tell) to atomically test the
presence of two distinct tokens a and b.

Assume AB = [ask(a) → ask(b)] and C(AB) a coder (in
Lr (ask , tell))

C(AB) in general form:

tell(t1) ; A1 + · · ·+ tell(tp) ; Ap

+ ask(u1) ; B1 + · · ·+ ask(uq) ; Bq

+ gp1 ; C1 + · · ·+ gpr ; Cr

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness - Proof example

Propositions

Lg (ask , tell) ̸≤ Lr (ask, tell)

Inability for Lr (ask, tell) to atomically test the
presence of two distinct tokens a and b.

Assume AB = [ask(a) → ask(b)] and C(AB) a coder (in
Lr (ask , tell))

C(AB) in general form:

tell(t1) ; A1 + · · ·+ tell(tp) ; Ap

+ ask(u1) ; B1 + · · ·+ ask(uq) ; Bq

+ gp1 ; C1 + · · ·+ gpr ; Cr

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness - Proof example

Propositions

Lg (ask , tell) ̸≤ Lr (ask, tell)

Inability for Lr (ask, tell) to atomically test the
presence of two distinct tokens a and b.

Assume AB = [ask(a) → ask(b)] and C(AB) a coder (in
Lr (ask , tell))

C(AB) in general form:

tell(t1) ; A1 + · · ·+ tell(tp) ; Ap

+ ask(u1) ; B1 + · · ·+ ask(uq) ; Bq

+ gp1 ; C1 + · · ·+ gpr ; Cr

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness – Proof example

⟨C([tell(a)]) | ∅⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness – Proof example

⟨C([tell(a)]) | ∅⟩ · · · −→ ⟨E | {a1, · · · , am}⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness – Proof example

⟨C([tell(a)]) | ∅⟩ · · · −→ ⟨E | {a1, · · · , am}⟩

⟨C([tell(b)]) | ∅⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness – Proof example

⟨C([tell(a)]) | ∅⟩ · · · −→ ⟨E | {a1, · · · , am}⟩

⟨C([tell(b)]) | ∅⟩ · · · −→ ⟨E | {b1, · · · , bm}⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness – Proof example

⟨C([tell(a)]) | ∅⟩ · · · −→ ⟨E | {a1, · · · , am}⟩

⟨C([tell(b)]) | ∅⟩ · · · −→ ⟨E | {b1, · · · , bm}⟩

⟨C([tell(b)]) | τ⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness – Proof example

⟨C([tell(a)]) | ∅⟩ · · · −→ ⟨E | {a1, · · · , am}⟩

⟨C([tell(b)]) | ∅⟩ · · · −→ ⟨E | {b1, · · · , bm}⟩

⟨C([tell(b)]) | τ⟩ · · · −→ ⟨E | τ ∪ {b1, · · · , bn}⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness – Proof example

⟨C([tell(a)]) | ∅⟩ · · · −→ ⟨E | {a1, · · · , am}⟩

⟨C([tell(b)]) | ∅⟩ · · · −→ ⟨E | {b1, · · · , bm}⟩

⟨C([tell(b)]) | τ⟩ · · · −→ ⟨E | τ ∪ {b1, · · · , bn}⟩

⟨C([tell(a)]; [tell(b)]) | ∅⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness – Proof example

⟨C([tell(a)]) | ∅⟩ · · · −→ ⟨E | {a1, · · · , am}⟩

⟨C([tell(b)]) | ∅⟩ · · · −→ ⟨E | {b1, · · · , bm}⟩

⟨C([tell(b)]) | τ⟩ · · · −→ ⟨E | τ ∪ {b1, · · · , bn}⟩

⟨C([tell(a)]; [tell(b)]) | ∅⟩ · · · −→ ⟨C([tell(b)]) | {a1, · · · , am}⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness – Proof example

⟨C([tell(a)]) | ∅⟩ · · · −→ ⟨E | {a1, · · · , am}⟩

⟨C([tell(b)]) | ∅⟩ · · · −→ ⟨E | {b1, · · · , bm}⟩

⟨C([tell(b)]) | τ⟩ · · · −→ ⟨E | τ ∪ {b1, · · · , bn}⟩

⟨C([tell(a)]; [tell(b)]) | ∅⟩ · · · −→ ⟨C([tell(b)]) | {a1, · · · , am}⟩

⟨E | {a1, · · · , am, b1, · · · , bn}⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness - Proof example

ui ’s /∈ {a1, · · · , am} ∪ {b1, · · · , bn}

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness - Proof example

ui ’s /∈ {a1, · · · , am} ∪ {b1, · · · , bn}

⟨([tell(a)] ; [tell(b)] ; AB) | ∅⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness - Proof example

ui ’s /∈ {a1, · · · , am} ∪ {b1, · · · , bn}

⟨([tell(a)] ; [tell(b)] ; AB) | ∅⟩ · · · −→ ⟨E | {a, b}⟩

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness - Proof example

ui ’s /∈ {a1, · · · , am} ∪ {b1, · · · , bn}

⟨([tell(a)] ; [tell(b)] ; AB) | ∅⟩ · · · −→ ⟨E | {a, b}⟩

⟨C([tell(a)] ; [tell(b)] ; AB) | ∅⟩

C

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Expressiveness - Proof example

ui ’s /∈ {a1, · · · , am} ∪ {b1, · · · , bn}

⟨([tell(a)] ; [tell(b)] ; AB) | ∅⟩ · · · −→ ⟨E | {a, b}⟩

⟨C([tell(a)] ; [tell(b)] ; AB) | ∅⟩

C

⟨AB | {a1, · · · , am, b1, · · · , bn}⟩ ̸−→

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Performance

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
·107

Case

T
im

e
(m

s)

Without GL

Without GL: The graph shows the time values without GL for
different cases.

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Performance

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
·107

Case

T
im

e
(m

s)

With GL

With GL: The graph displays the time values with GL for different
cases.

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Performance

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
·107

Case

T
im

e
(m

s)

Without GL
With GL

Comparison: The graph compares the time values with and
without GL for different cases.

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Conclusion

Introduce a new construct called guarded list

Establish an increase in expressiveness

Propose a theory of refinement

Show an increase in performance

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Conclusion

Introduce a new construct called guarded list

Establish an increase in expressiveness

Propose a theory of refinement

Show an increase in performance

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Conclusion

Introduce a new construct called guarded list

Establish an increase in expressiveness

Propose a theory of refinement

Show an increase in performance

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

Conclusion

Introduce a new construct called guarded list

Establish an increase in expressiveness

Propose a theory of refinement

Show an increase in performance

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

M. Barkallah – J.-M. Jacquet Guarded Lists in Bach

