On the Introduction of Guarded Lists in Bach: Expressiveness, Correctness, and Efficiency Issues

Manel Barkallah – Jean-Marie Jacquet

Namur Digital Research Institute University of Namur, Belgium

June 2023

nadi.unamur.be

Coordination as a powerful paradigm

• a concurrent framework based on shared information

- clear separation between interactional and computational aspects
 - many models and languages
 - many theoretical pieces of work
 - many implementations

- a concurrent framework based on shared information
- clear separation between interactional and computational aspects
 - many models and languages
 - many theoretical pieces of work
 - many implementations
- in practice, how to construct programs?
 - how to describe (real-life) problems?
 - Image with the programs?
 - how to be sure that what is described by the programs corresponds to what has to be modelled?

- a concurrent framework based on shared information
- clear separation between interactional and computational aspects
 - many models and languages

many theoretical pieces of work

- many implementations
- in practice, how to construct programs?
 - how to describe (real-life) problems?
 - Image with the programs?
 - how to be sure that what is described by the programs corresponds to what has to be modelled?

- a concurrent framework based on shared information
- clear separation between interactional and computational aspects
 - $\ensuremath{\,^{\scriptsize \mbox{\scriptsize wave}}}$ many models and languages
 - many theoretical pieces of work
 - many implementations
- in practice, how to construct programs?
 - how to describe (real-life) problems?
 - how to reason on the programs?
 - how to be sure that what is described by the programs corresponds to what has to be modelled?

- a concurrent framework based on shared information
- clear separation between interactional and computational aspects
 - $\ensuremath{\,^{\scriptsize \mbox{\scriptsize small}}}$ many models and languages
 - many theoretical pieces of work
 - many implementations
- in practice, how to construct programs?
 - how to describe (real-life) problems?
 - how to reason on the programs?
 - how to be sure that what is described by the programs corresponds to what has to be modelled?

- a concurrent framework based on shared information
- clear separation between interactional and computational aspects
 - many models and languages
 - many theoretical pieces of work
 - many implementations

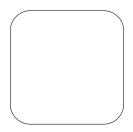
• in practice, how to construct programs?

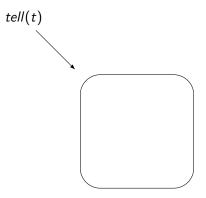
- how to describe (real-life) problems?
- how to reason on the programs?
- how to be sure that what is described by the programs corresponds to what has to be modelled?

- a concurrent framework based on shared information
- clear separation between interactional and computational aspects
 - $\ensuremath{\,^{\scriptsize \mbox{\scriptsize small}}}$ many models and languages
 - many theoretical pieces of work
 - many implementations
- in practice, how to construct programs?
 - how to describe (real-life) problems?
 - how to reason on the programs?
 - how to be sure that what is described by the programs corresponds to what has to be modelled?

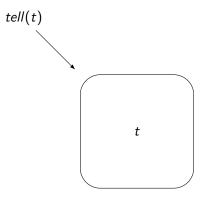
- a concurrent framework based on shared information
- clear separation between interactional and computational aspects
 - $\ensuremath{\,^{\scriptsize \mbox{\scriptsize small}}}$ many models and languages
 - many theoretical pieces of work
 - many implementations
- in practice, how to construct programs?
 - how to describe (real-life) problems?
 - how to reason on the programs?
 - how to be sure that what is described by the programs corresponds to what has to be modelled?

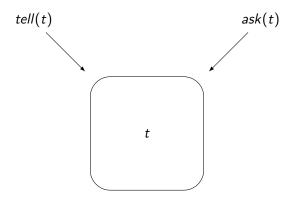
- a concurrent framework based on shared information
- clear separation between interactional and computational aspects
 - $\ensuremath{\,^{\scriptsize \mbox{\scriptsize ward}}}\xspace$ many models and languages
 - many theoretical pieces of work
 - many implementations
- in practice, how to construct programs?
 - how to describe (real-life) problems?
 - how to reason on the programs?
 - how to be sure that what is described by the programs corresponds to what has to be modelled?



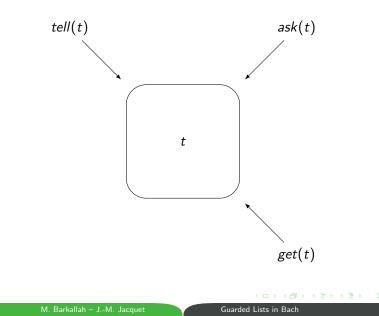


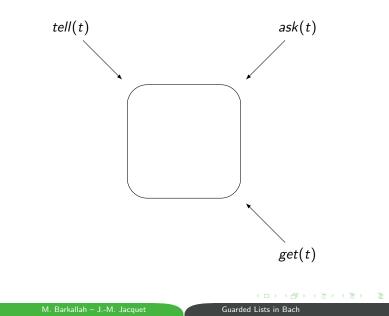
M. Barkallah – J.-M. Jacquet

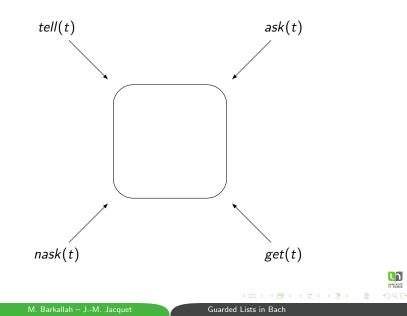




M. Barkallah – J.-M. Jacquet







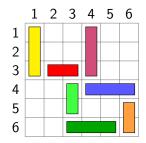
Transition system

(T)
$$\langle \operatorname{tell}(t) | \sigma \rangle \longrightarrow \langle E | \sigma \cup \{t\} \rangle$$

(A) $\langle \operatorname{ask}(t) | \sigma \cup \{t\} \rangle \longrightarrow \langle E | \sigma \cup \{t\} \rangle$
(G) $\langle \operatorname{get}(t) | \sigma \cup \{t\} \rangle \longrightarrow \langle E | \sigma \rangle$
(N) $\frac{t \notin \sigma}{\langle \operatorname{nask}(t) | \sigma \rangle \longrightarrow \langle E | \sigma \rangle}$

Rush hour as a running example

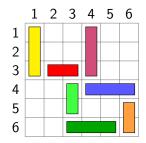
Modeling rush-hour



- trucks and cars as concurrent agents
- competing through free places on the shared space

uh

Modeling rush-hour



- trucks and cars as concurrent agents
- competing through free places on the shared space

uh

eset $RCInt = \{ 1, 2, 3, 4, 5, 6 \}$.

• maps and equations as rewriting rules

• structured pieces of information

- flat tokens: a, b, ..., t, u, ...
- composed terms: f(a₁,..., a_n)
 - free places as free (i, j).

eset $RCInt = \{ 1, 2, 3, 4, 5, 6 \}.$

maps and equations as rewriting rules

structured pieces of information

- flat tokens: a, b, ..., t, u, ...
- composed terms: f(a₁,..., a_n)
 - free places as free (i, j).

eset
$$RCInt = \{ 1, 2, 3, 4, 5, 6 \}.$$

maps and equations as rewriting rules

• structured pieces of information

- flat tokens: a, b, ..., t, u, ...
- composed terms: $f(a_1, \ldots, a_n)$

🕫 free places as firee (i., j).

```
eset RCInt = \{ 1, 2, 3, 4, 5, 6 \}.
```

maps and equations as rewriting rules

map down_truck : RCInt
$$\rightarrow$$
 RCInt.
eqn down_truck(1) = 4. down_truck(2) = 5.
down_truck(3) = 6.

structured pieces of information

• flat tokens: a, b, ..., t, u, ...

• composed terms: $f(a_1, \ldots, a_n)$

🗢 free places as firee(i, j)

周 🕨 🖉 🖻 🖌 🖉 🕨

```
eset RCInt = \{ 1, 2, 3, 4, 5, 6 \}.
```

maps and equations as rewriting rules

structured pieces of information

flat tokens: a, b, ..., t, u, ...,
 composed terms: f(a₁,..., a_n)
 free places as free (1, 1)

```
eset RCInt = \{ 1, 2, 3, 4, 5, 6 \}.
```

maps and equations as rewriting rules

```
map down_truck : RCInt \rightarrow RCInt.
eqn down_truck(1) = 4. down_truck(2) = 5.
down_truck(3) = 6.
```

structured pieces of information

• flat tokens: a, b, ..., t, u, ...

• composed terms: $f(a_1, \ldots, a_n)$

📧 free places as free(i,j)

```
eset RCInt = \{ 1, 2, 3, 4, 5, 6 \}.
```

maps and equations as rewriting rules

```
map down_truck : RCInt \rightarrow RCInt.
eqn down_truck(1) = 4. down_truck(2) = 5.
down_truck(3) = 6.
```

- structured pieces of information
 - flat tokens: a, b, ..., t, u, ...
 - composed terms: $f(a_1, \ldots, a_n)$

Image free places as free(i,j)

```
eset RCInt = \{ 1, 2, 3, 4, 5, 6 \}.
```

maps and equations as rewriting rules

```
map down_truck : RCInt \rightarrow RCInt.
eqn down_truck(1) = 4. down_truck(2) = 5.
down_truck(3) = 6.
```

- structured pieces of information
 - flat tokens: a, b, ..., t, u, ...
 - composed terms: $f(a_1, \ldots, a_n)$

free places as free(i,j)

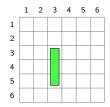
$$A ::= Prim | Proc |$$
$$A; A | A | | A | A + A |$$
$$C \rightarrow A \diamond A | \sum_{e \in S} A_e$$

$$A ::= Prim | Proc |$$
$$A; A | A | | A | A + A |$$
$$C \rightarrow A \diamond A | \sum_{e \in S} A_e$$

where *Prim* represents a primitive, *Proc* a procedure call, C a condition, e a variable and S a set.

th

Rush-hour with animations



Model checking

• Key information on the store: #free(1,1)

 Basic formulae: equalities or inequalities involving integers and key information
 #free(1,1) = 3

• Propositional state formulae: combination of basic formulae by usual Boolean operators

• Linear temporal logic fragment: TF ::= PF | Next TF | PF Until T

• Reach formulae:

Model checking

- Key information on the store: #free(1,1)
- Basic formulae: equalities or inequalities involving integers and key information

#free(1,1) = 3

- Propositional state formulae: combination of basic formulae by usual Boolean operators
- Linear temporal logic fragment:
 TF ::= PF | Next TF | PF Until T

• Reach formulae:

- Key information on the store: #free(1,1)
- Basic formulae: equalities or inequalities involving integers and key information
 #free(1,1) = 3
- Propositional state formulae: combination of basic formulae by usual Boolean operators
- Linear temporal logic fragment:
 TF ::= PF | Next TF | PF Until T
- Reach formulae:

- Key information on the store: #free(1,1)
- Basic formulae: equalities or inequalities involving integers and key information

#free(1,1) = 3

- Propositional state formulae: combination of basic formulae by usual Boolean operators
- Linear temporal logic fragment:
 TF ::= PF | Next TF | PF Until TF

Reach formulae:

- Key information on the store: #free(1,1)
- Basic formulae: equalities or inequalities involving integers and key information

free(1,1) = 3

- Propositional state formulae: combination of basic formulae by usual Boolean operators
- Linear temporal logic fragment:

TF ::= PF | Next TF | PF Until TF

• Reach formulae:

 $Reach(\#out = 1) \equiv true Until(\#out = 1)$

- Key information on the store: #free(1,1)
- Basic formulae: equalities or inequalities involving integers and key information

free(1,1) = 3

- Propositional state formulae: combination of basic formulae by usual Boolean operators
- Linear temporal logic fragment: TF ::= PF | Next TF | PF Until TF
 - Reach formulae: Reach (#out = 1) ≡ true Until (#ou

- Key information on the store: #free(1,1)
- Basic formulae: equalities or inequalities involving integers and key information

$$#free(1,1) = 3$$

- Propositional state formulae: combination of basic formulae by usual Boolean operators
- Linear temporal logic fragment: TF ::= PF | Next TF | PF Until TF
- Reach formulae:

 $Reach(\#out = 1) \equiv true Until(\#out = 1)$

- Key information on the store: #free(1,1)
- Basic formulae: equalities or inequalities involving integers and key information

#free(1,1) = 3

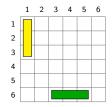
- Propositional state formulae: combination of basic formulae by usual Boolean operators
- Linear temporal logic fragment: TF ::= PF | Next TF | PF Until TF
- Reach formulae:

 $Reach(\#out = 1) \equiv true Until(\#out = 1)$

S 🔵 🗊 The interactive blackboard	
Current store	
a [1]	
Tell token : t multiplicity : 1 Cet	
New Autonomous Agent New Interactive Agent New Description New Model Checker	

Scan & Anemone

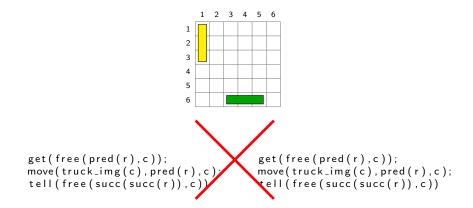
💿 Agent number 4	
Agent to be processed	
LaunchVehicules	Submit
Agent introduced	
Here will be displayed the parsed agent	
formula to be processed	
	Submit
ormula introduced	
Here will be displayed the parsed formula	
Model Check	
Status of the model checking	
Simulate trace	
	・ロト ・部 ト ・ 語 ト ・ 国

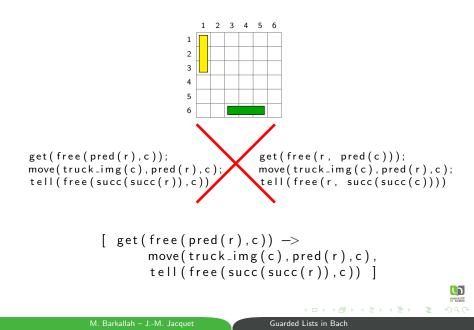


```
get(free(pred(r),c));
move(truck_img(c),pred(r),c);
tell(free(succ(succ(r)),c))
```

get(free(pred(r),c)); move(truck_img(c),pred(r),c); tell(free(succ(succ(r)),c))

th





The construct

 $[p \rightarrow p_1, \cdots, p_n]$ where p, p_1, \ldots, p_n are primitives

(Le)
$$\langle [] \mid \sigma \rangle \longrightarrow \langle E \mid \sigma \rangle$$

(Ln) $\frac{\langle p \mid \sigma \rangle \longrightarrow \langle E \mid \tau \rangle, \langle L \mid \tau \rangle \longrightarrow^* \langle E \mid \phi \rangle}{\langle [p|L] \mid \sigma \rangle \longrightarrow \langle E \mid \phi \rangle}$
(GL) $\frac{\langle p \mid \sigma \rangle \longrightarrow \langle E \mid \tau \rangle, \langle L \mid \tau \rangle \longrightarrow^* \langle E \mid \phi \rangle}{\langle [p \rightarrow L] \mid \sigma \rangle \longrightarrow \langle E \mid \phi \rangle}$

h

• Introduce a new construct called guarded list

• Establish an increase of expressiveness

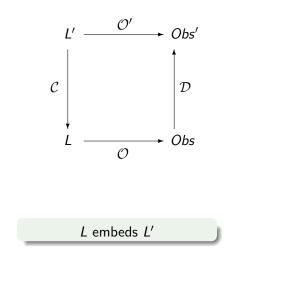
- Propose a theory of refinement
- Show an increase of performance

- Introduce a new construct called guarded list
- Establish an increase of expressiveness
- Propose a theory of refinement
- Show an increase of performance

- Introduce a new construct called guarded list
- Establish an increase of expressiveness
- Propose a theory of refinement
- Show an increase of performance

M. Barkallah – J.-M. Jacquet

- Introduce a new construct called guarded list
- Establish an increase of expressiveness
- Propose a theory of refinement
- Show an increase of performance



Guarded Lists in Bach

- $\mathcal{L}_g(ask, tell) \not\leq \mathcal{L}_r(ask, tell)$
- Inability for $\mathcal{L}_r(ask, tell)$ to atomically test the presence of two distinct tokens *a* and *b*.
- Assume $AB = [ask(a) \rightarrow ask(b)]$ and C(AB) a coder (in $\mathcal{L}_r(ask, tell)$)
- C(AB) in general form:

$$tell(t_1) ; A_1 + \dots + tell(t_p) ; A_p + ask(u_1) ; B_1 + \dots + ask(u_q) ; B_q + gp_1 ; C_1 + \dots + gp_r ; C_r$$

Propositions

•
$$\mathcal{L}_g(ask, tell) \not\leq \mathcal{L}_r(ask, tell)$$

• Inability for $\mathcal{L}_r(ask, tell)$ to atomically test the presence of two distinct tokens *a* and *b*.

- Assume $AB = [ask(a) \rightarrow ask(b)]$ and C(AB) a coder (in $\mathcal{L}_r(ask, tell)$)
- C(AB) in general form:

$$tell(t_1) ; A_1 + \dots + tell(t_p) ; A_p + ask(u_1) ; B_1 + \dots + ask(u_q) ; B_q + gp_1 ; C_1 + \dots + gp_r ; C_r$$

- $\mathcal{L}_g(ask, tell) \not\leq \mathcal{L}_r(ask, tell)$
- Inability for L_r(ask, tell) to atomically test the presence of two distinct tokens a and b.
- Assume $AB = [ask(a) \rightarrow ask(b)]$ and C(AB) a coder (in $\mathcal{L}_r(ask, tell)$)
- C(AB) in general form:

$$tell(t_1) ; A_1 + \dots + tell(t_p) ; A_p + ask(u_1) ; B_1 + \dots + ask(u_q) ; B_q + gp_1 ; C_1 + \dots + gp_r ; C_r$$

- $\mathcal{L}_g(ask, tell) \not\leq \mathcal{L}_r(ask, tell)$
- Inability for L_r(ask, tell) to atomically test the presence of two distinct tokens a and b.
- Assume $AB = [ask(a) \rightarrow ask(b)]$ and C(AB) a coder (in $\mathcal{L}_r(ask, tell))$
- C(AB) in general form:

$$tell(t_1)$$
; $A_1 + \dots + tell(t_p)$; A_p
+ $ask(u_1)$; $B_1 + \dots + ask(u_q)$; B_q
+ gp_1 ; $C_1 + \dots + gp_r$; C_r

- $\mathcal{L}_g(ask, tell) \not\leq \mathcal{L}_r(ask, tell)$
- Inability for L_r(ask, tell) to atomically test the presence of two distinct tokens a and b.
- Assume $AB = [ask(a) \rightarrow ask(b)]$ and C(AB) a coder (in $\mathcal{L}_r(ask, tell))$
- C(AB) in general form:

$$tell(t_1) ; A_1 + \dots + tell(t_p) ; A_p$$

+ $ask(u_1) ; B_1 + \dots + ask(u_q) ; B_q$
+ $gp_1 ; C_1 + \dots + gp_r ; C_r$

$\langle \mathcal{C}([\textit{tell}(\textit{a})]) \mid \emptyset \rangle$

M. Barkallah – J.-M. Jacquet

$\langle \mathcal{C}([tell(a)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{a_1, \cdots, a_m\} \rangle$

M. Barkallah – J.-M. Jacquet

$\langle \mathcal{C}([tell(a)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{a_1, \cdots, a_m\} \rangle$ $\langle \mathcal{C}([tell(b)]) \mid \emptyset \rangle$

M. Barkallah – J.-M. Jacquet

$\langle \mathcal{C}([tell(a)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{a_1, \cdots, a_m\} \rangle$ $\langle \mathcal{C}([tell(b)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{b_1, \cdots, b_m\} \rangle$

$\langle \mathcal{C}([tell(a)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{a_1, \cdots, a_m\} \rangle$ $\langle \mathcal{C}([tell(b)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{b_1, \cdots, b_m\} \rangle$ $\langle \mathcal{C}([tell(b)]) \mid \tau \rangle$

$$\langle \mathcal{C}([tell(a)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{a_1, \cdots, a_m\} \rangle$$

$$\langle \mathcal{C}([tell(b)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{b_1, \cdots, b_m\} \rangle$$

$$\langle \mathcal{C}([tell(b)]) \mid \tau \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \tau \cup \{b_1, \cdots, b_n\} \rangle$$

 $\langle \mathcal{C}([tell(a)]; [tell(b)]) \mid \emptyset \rangle$

$$\langle \mathcal{C}([tell(a)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{a_1, \cdots, a_m\} \rangle$$

$$\langle \mathcal{C}([tell(b)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{b_1, \cdots, b_m\} \rangle$$

$$\langle \mathcal{C}([tell(b)]) \mid \tau \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \tau \cup \{b_1, \cdots, b_n\} \rangle$$

Expressiveness – Proof example

 $\langle \mathcal{C}([tell(a)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{a_1, \cdots, a_m\} \rangle$ $\langle \mathcal{C}([tell(b)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{b_1, \cdots, b_m\} \rangle$ $\langle \mathcal{C}([tell(b)]) \mid \tau \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \tau \cup \{b_1, \cdots, b_n\} \rangle$ $\langle \mathcal{C}([tell(a)]; [tell(b)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle \mathcal{C}([tell(b)]) \mid \{a_1, \cdots, a_m\} \rangle$

Expressiveness – Proof example

 $\langle \mathcal{C}([tell(a)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{a_1, \cdots, a_m\} \rangle$ $\langle \mathcal{C}([tell(b)]) \mid \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \{b_1, \cdots, b_m\} \rangle$ $\langle \mathcal{C}([tell(b)]) \mid \tau \rangle \longrightarrow \cdots \longrightarrow \langle E \mid \tau \cup \{b_1, \cdots, b_n\} \rangle$ $\langle \mathcal{C}([tell(a)]; [tell(b)]) | \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle \mathcal{C}([tell(b)]) | \{a_1, \cdots, a_m\} \rangle$ $\langle E \mid \{a_1, \cdots, a_m, b_1, \cdots, b_n\} \rangle$

u_i 's $\notin \{a_1, \cdots, a_m\} \cup \{b_1, \cdots, b_n\}$

M. Barkallah – J.-M. Jacquet

$u_i \text{'s} \notin \{a_1, \cdots, a_m\} \cup \{b_1, \cdots, b_n\}$ $\langle ([tell(a)]; [tell(b)]; AB) \mid \emptyset \rangle$

$u_i' \mathsf{s} \notin \{a_1, \cdots, a_m\} \cup \{b_1, \cdots, b_n\}$ $\langle ([tell(a)]; [tell(b)]; AB) | \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E | \{a, b\} \rangle$

$$u_{i}'s \notin \{a_{1}, \cdots, a_{m}\} \cup \{b_{1}, \cdots, b_{n}\}$$

$$\langle ([tell(a)]; [tell(b)]; AB) | \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E | \{a, b\} \rangle$$

$$C \downarrow$$

$$\langle C([tell(a)]; [tell(b)]; AB) | \emptyset \rangle$$

$$u_{i}'s \notin \{a_{1}, \cdots, a_{m}\} \cup \{b_{1}, \cdots, b_{n}\}$$

$$\langle ([tell(a)]; [tell(b)]; AB) | \emptyset \rangle \longrightarrow \cdots \longrightarrow \langle E | \{a, b\} \rangle$$

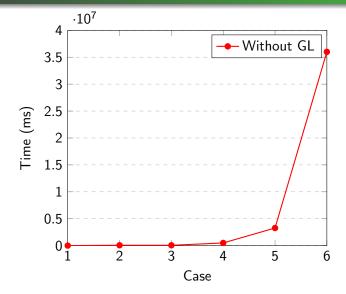
$$C \downarrow$$

$$\langle C([tell(a)]; [tell(b)]; AB) | \emptyset \rangle$$

$$\longrightarrow \langle AB | \{a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}\} \rangle \not \longrightarrow$$

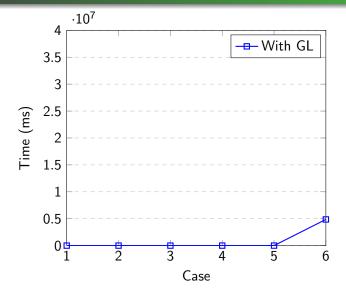
御 と く き と く き と

Performance



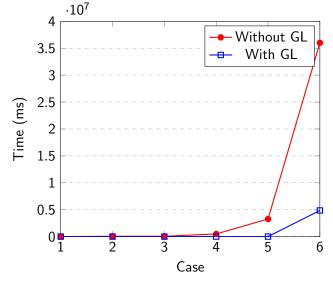
Without GL: The graph shows the time values without GL for different cases.

Performance



With GL: The graph displays the time values with GL for different cases. Guarded Lists in Bach

Performance



Comparison: The graph compares the time values with and without GL for different cases. M. Barkallah - J.-M. Jacquet Guarded Lists in Bach

• Introduce a new construct called guarded list

• Establish an increase in expressiveness

- Propose a theory of refinement
- Show an increase in performance

- Introduce a new construct called guarded list
- Establish an increase in expressiveness
- Propose a theory of refinement
- Show an increase in performance

M. Barkallah – J.-M. Jacquet

- Introduce a new construct called guarded list
- Establish an increase in expressiveness
- Propose a theory of refinement
- Show an increase in performance

- Introduce a new construct called guarded list
- Establish an increase in expressiveness
- Propose a theory of refinement
- Show an increase in performance

M. Barkallah – J.-M. Jacque

Guarded Lists in Bach

ヘロア 人間 アメヨア 人口 ア