Partially Typed Multiparty Sessions

Franco Barbanera®, Mariangiola Dezani 2

1 University of Catania
2 University of Torino

ICE - June 19, 2023, Lisbon

1/23

» Choreographies and MPSTs: a type assignment approach;

» Lock-freedom: egualitarism is not for system components;

A MPST type assignment for classist Lock-freedom.

«O> «Fr «=>»

« =

DA

2/23

» Choreographies and MPSTs: a type assignment approach;

» Lock-freedom: egualitarism is not for system components;

A MPST type assignment for classist Lock-freedom.

40> «Fr» « >

«E

>

DA

2/23

OVERVIEW

» Choreographies and MPSTs: a type assignment approach;

» Lock-freedom: egualitarism is not for system components;

2/23

OVERVIEW

» Choreographies and MPSTs: a type assignment approach;

» Lock-freedom: egualitarism is not for system components;

> |CE'23: A MPST type assignment for classist Lock-freedom.

2/23

(O T«

Da

3/23

MultiParty Session Types (MPST):

a body of coreographic formalisms

40> «Fr» « >

«E

>

DA

3/23

MPTS

MultiParty Session Types (MPST):

a body of coreographic formalisms

where
two distinct but related views of a concurrent systems do coexist:

3/23

MPTS

MultiParty Session Types (MPST):

a body of coreographic formalisms

where
two distinct but related views of a concurrent systems do coexist:

global view: overall behaviour of the system formalised using
the notion of Global Type

3/23

MPTS

MultiParty Session Types (MPST):

a body of coreographic formalisms

where
two distinct but related views of a concurrent systems do coexist:

global view: overall behaviour of the system formalised using
the notion of Global Type

local view: behaviours of the single components in
suitable process algebras

3/23

communication protocols are explicity
described as global types and, subsequently, by projecting them,
local types are obtained for implementation.

«Or «Fr o«

Ha e
4/23

MPST approaches

Top-down MPST:

[+]

4/23

MPST approaches

Top-down MPST: communication protocols are explicity
described as global types and, subsequently, by projecting them,
local types are obtained for implementation.

]

—

4/23

MPST approaches

Top-down MPST: communication protocols are explicity
described as global types and, subsequently, by projecting them,
local types are obtained for implementation.

]

Systems obtained by projecting (well-formed) global types
enjoy good communication properties

4/23

system.

no projection is used and local behaviours
are checked against global types by means of a type assignment

«Or «Fr o«

it
it
v

DA
5/23

O
MPST aPProacheS
Bottom-up MPST:

DHa

5/23

MPST approaches

Bottom-up MPST: no projection is used and local behaviours
are checked against global types by means of a type assignment
system.

5/23

MPST approaches

Bottom-up MPST: no projection is used and local behaviours
are checked against global types by means of a type assignment
system.

Systems typable with (well-formed) global types enjoy
good communication properties

5/23

<o

(B o«

Da

6/23

Calculus of Sessions and its type system

[B.,Dezani et al.FACS’22]

40> «F»r <

Er <

>

nae
6/23

A “bottom-up” MPST

Calculus of Sessions and its type system
[B.,Dezani et al.FACS’22]

Processes

P :=coind 0 | plN;.Pi}icr | p?{N-Pi}ies

6/23

A “bottom-up” MPST

Calculus of Sessions and its type system
[B.,Dezani et al.FACS’22]

Processes
P :::coind 0 | p!{)\;.P,'},'el | p?{)\,'.P;},'E/
Multiparty Sessions

M = Pl[Pl] H H pn[Pn]

6/23

A “bottom-up” MPST

Calculus of Sessions and its type system
[B.,Dezani et al.FACS’22]

Processes
P =4 0 | pl{X;.P;}ics | PH{NiPi}ics
Multiparty Sessions
M = pa[P1] || -+ [| Pn[Pn]

(synchronous) Operational Semantics

telCJ

plal{\i-Pitier] | alp?{X-Qljes] | M === p[Pd] || al @] || M

6/23

ok

ok

ko

ko

c[s}

t? e

! :

H N t[s?4

SR

DHa

7/23

A session example: carol, sam and tom

ko

ko

c[s{ox.t?ox, xo}] ||

7/23

A session example: carol, sam and tom

ko

ko

|| s[c?{oxk.tlox, ko.tlko}] ||

7/23

A session example: carol, sam and tom

ko

ko

|| t[s?{ok.clok, ko}]

7/23

A session example: carol, sam and tom

ko

ko

c[sl{ox.t?ox, ko}] || s[c?{oxk.tlok, ko.tlko}] || t[s?{ox.clok, ko}]

7/23

A session example: carol, sam and tom

Reduction example

c[sl{ok.t?ox,x0}] || s[c?{oxk.tlok,ko.tlko}] || t[s?{ok.clok,k0}]

8/23

A session example: carol, sam and tom

Reduction example

c[sH{ox.t?ox,k0}] || s[c?{oxk.tlok,ko.tlko}] || t[s?{ok.clok,ko}]

COKS

0

c[t?ox] || s[tlok] || t[s?{ox.clok,k0}]

8/23

A session example: carol, sam and tom

Reduction example

c[sH{ox.t?ox,k0}] || s[c?{oxk.tlok,ko.tlko}] || t[s?{ok.clok,ko}]

COKS

0

c[t?ox] || s[tlok] || t[s?{ox.clok,k0}]
sokt

!

c[t?ox] || s[0] || t[c'ok]

8/23

A session example: carol, sam and tom

Reduction example

c[sH{ox.t?ox,k0}] || s[c?{oxk.tlok,ko.tlko}] || t[s?{ok.clok,ko}]

COKS

i
c[t?oxk] || s[t!ox] |||t[s?{()K.C!()K,K0}]
sokt
1
c[t?ox] || s[0] || t[c!ok]

tokc

0
c[0] || s[0] || t[0]

8/23

A session example: carol, sam and tom

Reduction example

c[sl{ok.t?ox,x0}] || s[c?{oxk.tlok,ko.tlko}] || t[s?{ok.clok,k0}]

8/23

A session example: carol, sam and tom

Reduction example

c[sH{ox.t?ox,k0}] || s[c?{oxk.tlok,ko.tlko}] || t[s?{ok.clok,ko}]

CKOS

0

c[0] || s[t!xo] || t[s?{ox.clok,ko}]

8/23

A session example: carol, sam and tom

Reduction example

c[sH{ox.t?ox,k0}] || s[c?{oxk.tlok,ko.tlko}] || t[s?{ok.clok,ko}]

CKOS

0

c[0] || s[t!xo] || t[s?{ox.clok,ko}]

SKOt

!
c[0] || s[0] || t[0]

8/23

[m]

>

&

Da

9/23

Type system for the session calculus

Global Types

G ::=c0ind Eng | p—a:{\.Gi}lies

9/23

Type system for the session calculus

Global Types

G ::=c0ind Eng | p—a:{\.Gi}lies

A global type for the example

c—s:{okss —t:okt—c:ok kos—t:ko}

9/23

Type system for the session calculus

Global Types

G ::=c0ind Eng | p—a:{\.Gi}lies

Typing Rules

9/23

Type system for the session calculus

Global Types

G ::=c0ind Eng | p—a:{\.Gi}lies
Typing Rules

End I p[0]

9/23

Type system for the session calculus

Global Types
G ::=c0ind Eng | p—a:{\.Gi}lies

Typing Rules

End I p[0]

G Fp[Pi] [l alQ] [M prt(Gi) \ {p,q} = prt(M) Vi€l [
P— q: {Ai.Gi}ier F pla{Ni-Pitiel] | alp?{N;-Qj}jes] | M

9/23

Type system for the session calculus

Example of type derivation

Endt c[0] || s[0] || t[O]

10/23

Type system for the session calculus

Example of type derivation

End + c[0] || s[0] || t[O]

t — ciox = c[t?ox] || s[0] || t[clok]

10/23

Type system for the session calculus

Example of type derivation

End + c[0] || s[0] || t[O]

t — ciox = c[t?ox] || s[0] || t[clok]

s — tiok.t — ciok - c[t?ok] || s[tlok] || t[s?{ox.clok,ko}]

10/23

Type system for the session calculus

Example of type derivation

End + c[0] || s[0] || t[0]

t — ciok b c[t?ok] || s[0] || t[clok] End - c[0] || s[0] || t[0]

s — tiok.t — c:ok k= c[t?ok] || s[tlok] || t[s?{ok.clok,ko}] s — t:ko = ¢[0] || s[t!ko] || t[s?{ok.clok,ko}]

10/23

Type system for the session calculus

Example of type derivation

End + c[0] || s[0] || t[0]

t — ciok F cft?ok] || s[0] || t[clok] End F c[0] || s[0] || t[0]

s — tiok.t — c:ok b c[t?ok] || s[tlok] || t[s?{ok.clok,ko}] s — t:ko = ¢[0] || s[tlko] || t[s?{ok.clok,ko}]

¢ — s: {ok.s — pt:ok.t = c: ok, ko.s = t: ko} F c[s!{ok.t?ok,ko}] || s[c?{ok.tlok,ko.tlko}] || t[s?{ok.clok,ko}]

10/23

What do we get by typing?

Definition (p-Lock)
M’ is a p-lock if the participant p is willing to progress in M’ but
cannot do that in any continuation of M.

"j, | N !'mu

IR

11/23

o
What do we get by typing?

Definition (Lock-freedom)

M is lock-free if, for each participant p,

M —* M implies M is not a p-lock

shaftersinck rom - I3EIRASIS

What do we get by typing?

Theorem (B.,Dezani et al.FACS’22)

If M is typable with a well-formed (bounded) global type,
then M is lock-free.

13/23

P> Article 1 All system components must be developed equal in

dignity and rights. They are endowed with communication
of cooperation.

>

capabilities and should interact towards one another in a spirit

Article 2 Any system component is entitled to all the good
communication properties like lock freedom, without

distinction of any kind, such as programming paradigm,
language or interaction model.
» Article 3 [...]

40> «F»r <

DA

14/23

Universal Declaration of system-Components’ Rights

» Article 1 All system components must be developed equal in
dignity and rights. They are endowed with communication
capabilities and should interact towards one another in a spirit
of cooperation.

14/23

Universal Declaration of system-Components’ Rights

» Article 1 All system components must be developed equal in
dignity and rights. They are endowed with communication
capabilities and should interact towards one another in a spirit
of cooperation.

> Article 2 Any system component is entitled to all the good
communication properties like lock freedom, without
distinction of any kind, such as programming paradigm,
language or interaction model.

14/23

Universal Declaration of system-Components’ Rights

» Article 1 All system components must be developed equal in
dignity and rights. They are endowed with communication
capabilities and should interact towards one another in a spirit
of cooperation.

> Article 2 Any system component is entitled to all the good
communication properties like lock freedom, without
distinction of any kind, such as programming paradigm,
language or interaction model.

> Article 3 [..]

14/23

Universal Declaration of system-Components’ Rights

> Article 1 All system components milst/ Be/ 4éiloped/equal/in
gy /A0 d)/ Fights//ITREY are endowed with communication

capabilities and should interact towards one another in a spirit
of cooperation.

> Article 2 Any system component is entitled to all the good
communication properties like lock freedom, without
distinction of any kind, such as programming paradigm,
language or interaction model.

> Article 3 [..]

15/23

Universal Declaration of system-Components’ Rights

> Article 1 All system components milst/ Be/ 4éiloped/equal/in
gy /A0 d)/ Fights//ITREY are endowed with communication

capabilities and should interact towards one another in a spirit
of cooperation.

> Article 2 Any system component is entitled to Al /& good
LOMYRURICAY O/ BOBeTYIES MK NOEK fHasdo/ Wity no

distinction of any kind, such as programming paradigm,
language or interaction model.

> Article 3 [..]

15/23

Universal Declaration of system-Components’ Rights

> Article 1 All system components milst/ Be/ 4éiloped/equal/in
gy /A0 d)/ Fights//ITREY are endowed with communication

capabilities and should interact towards one another in a spirit
of cooperation.

> Article 2 Any system component is entitled to Al /& good
LOMYRURICAY O/ BOBeTYIES MK NOEK fHasdo/ Wity no

distinction of any kind, such as programming paradigm,
language or interaction model.

> Article 3 [..]

15/23

<

o

>

(B o«

Da

16/23

Any client-server setting is biased:

40> «F»r <

> <

DA

16/23

Non egalitarian systems

Any client-server setting is biased:

The customer is always right.

— Harny Gordon Selfpidge —

AZ QUOTES

16/23

A non egalitarian system

A buyer can keep on apping goods - sold by a seller - in his
shopping cart an unbounded number of times, until he decides to
BUY the shopping cart’s content. In the latter case, the seller
informs the carrier for the suipment.

17/23

A non egalitarian system

A buyer can keep on apping goods - sold by a seller - in his
shopping cart an unbounded number of times, until he decides to
BUY the shopping cart’s content. In the latter case, the seller
informs the carrier for the suipment.

M = b[B] || s[S] || <[€]

where

B = s!{app.B, BUY}

S = b?{app.S, BUY.Clsup}
C = s?sup.C

17/23

A non egalitarian system

A buyer can keep on apping goods - sold by a seller - in his
shopping cart an unbounded number of times, until he decides to
BUY the shopping cart’s content. In the latter case, the seller
informs the carrier for the suipment.

M = b[B] | s[S] || ¢[C]
where
B = s!{abp.B, BUY}
S = b?{app.S, BUY.Clsup}
C = s?surp.C
Not typable. In fact it is not c-lock free

M —* b[0] || s[0] || <[C]

17/23

A non egalitarian system

A buyer can keep on apping goods - sold by a seller - in his
shopping cart an unbounded number of times, until he decides to
BUY the shopping cart’s content. In the latter case, the seller
informs the carrier for the suipment.

M = b[B] | s[S] || ¢[C]
where
B = s!{abp.B, BUY}
S = b?{app.S, BUY.Clsup}
C = s?surp.C
Not typable. In fact it is not c-lock free
M —* b[0] || s[0] || <[C]

Do we actually care about s and c?

17/23

We are interested in b’'s lock-freedom, not s's and c's

A type system such that if

Gha M
For our example this is possible for

then lock-freedom ensured only for participants other than s and c.

G =b — s:{app. G, BUY}

40> «Fr» « >

«E

>

DA

18/23

Typing non egalitarian systems

We are interested in b’'s lock-freedom, not s's and c's

ICE'23: A type system such that if

Ghise M

then lock-freedom ensured only for participants other than s and c.

18/23

Typing non egalitarian systems

We are interested in b’'s lock-freedom, not s's and c's

ICE'23: A type system such that if

Ghise M

then lock-freedom ensured only for participants other than s and c.
For our example this is possible for

G =b — s:{app. G, BUY}

18/23

[End]

[End]
End by p[0]

Git=p; p[Pi] [l q[@] | M

(prt(G)) UPi) \ {p.q} = prt(M) Viel

G Fp pla!{Ai-Pi}ier] | alp?{A;-Qj}jeJ] [| M

G=p—q: {)\I-Gr}f—,l
G is bounded

P =Ue/Pi
[WEAK]

1CJ
GF/P1 My

F’P1U’P2 My H M,

Pr = pl’t([/ﬁ[z) + 1]

«O> «Fr «=>»

[End]

[End]
End kg p[0]

Gi bp, p[Pi] || a[@] || M
(prt(Gi) UPi) \ {p,q} = prt(M)

\/| <
VI

el

G Fp pla{Ai-Pitiei] || alp?{N;-Qj}jes] | M

G=p—q: {/\r-G/]{’F,I
G is bounded

P =Uic/Pi
[WEAK]

1CJ
GF/P1 My

F7771LJ172 FVHI “ N/1{2

Po = prt(Ma) # 0

40> «Fr» « >

«E

>

DA

19/23

Typing non egalitarian systems

[End] m [End]

G Fp, p[P]] || al@] | M) .
. =P =79 AGiyi
(prt(G;) U P’) \ {pa Q} — prt(M) viel G is 1Eoun‘jied “
G Fp plal{A-Pitiei] 1 alp?{N-QJjes] M |2 e

19/23

Typing non egalitarian systems

[End] m [End]

Gi Fp, [P || al@] | M) .
. =P =79 AGiyi
(prt(G;) U P’) \ {pa Q} — prt(M) viel G is 1Eoun‘jied “
G Fp plal{A-Pitiei] 1 alp?{N-QJjes] M |2 e

GFp, My
[WEAK] P> = prt(Ms) #£ 0
G Fpup, My || My

19/23

Theorem (Classist lock-freedom)
IF G Fp M then

M /s p-lock free only if p & P

40> «Fr» « >

« =

3

DA

20/23

S [End}
End b[O]
D =

[WEAK]
D End F(¢y b[0] || s[c!smp] || c[C]
G sy b[B] || s[b?{apD.S, pav.clsmp}] || c[s?suip.C]

where G = b — s:{app. G, BUY}

B = s!{app.B, pav}
S =b?{app.S, BUY.ClsHIP}
C = s?sup.C

Hence the Buyer-Seller-Carrier system is b-lock free

«O>» «<Fr «E» «

it
.
[

DA
21/23

Typing non egalitarian systems

=————— [End]
End |—@ b[O]

[WE
End F oy b[0] || s[c!smr] || c[C]
G s, b[B] || s[b?{apD.S, pav.clsmp}] || c[s?surp.C]

D = D AK]

where G = b — s:{abp. G, BUY}

B = s!{app.B, prav}
S = b?{app.S, BUY.Clsur}
C = s?sup.C

21/23

Typing non egalitarian systems

=————— [End]
End |—@ b[O]

[WE
End b5 oy b[0] || s[c!sure] || c[C]
G s, b[B] || s[b?{apD.S, pav.clsmp}] || c[s?surp.C]

D = D AK]

where G = b — s:{abp. G, BUY}

B = s!{app.B, prav}
S = b?{app.S, BUY.Clsur}
C = s?sup.C

Hence the Buyer-Seller-Carrier system is b-lock free

21/23

(O T«

Da

22/23

» Overshooting:

(O T«

Da

22/23

Ongoing work

» Overshooting: Well-formedness condition for global types does
actually ensure more than needed (strong p-lock freedom)

22/23

Ongoing work

» Overshooting: Well-formedness condition for global types does
actually ensure more than needed (strong p-lock freedom)

» Typing non egualitarian asynchronous systems.

22/23

Ongoing work

» Overshooting: Well-formedness condition for global types does
actually ensure more than needed (strong p-lock freedom)

» Typing non egualitarian asynchronous systems.

22/23

23/23

