Partially Typed Multiparty Sessions

Franco Barbanera ${ }^{1}$, Mariangiola Dezani ${ }^{2}$

${ }^{1}$ University of Catania
${ }^{2}$ University of Torino
ICE - June 19, 2023, Lisbon

OVERVIEW

－Choreographies and MPSTs：a type assignment approach；
－Lock－freedom：egualitarism is not for system components；
－ICE＇23：A MPST type assignment for classist Lock－freedom．

OVERVIEW

- Choreographies and MPSTs: a type assignment approach; - Lock-freedom: egualitarism is not for system components; - ICE'23: A MPST type assignment for classist Lock-freedom.

OVERVIEW

- Choreographies and MPSTs: a type assignment approach;
- Lock-freedom: egualitarism is not for system components; - ICE'23: A MPST type assignment for classist Lock-freedom.

OVERVIEW

- Choreographies and MPSTs: a type assignment approach;
- Lock-freedom: egualitarism is not for system components;
- ICE'23: A MPST type assignment for classist Lock-freedom.

MPTS

MPTS

MultiParty Session Types (MPST):
a body of coreographic formalisms

MPTS

MultiParty Session Types (MPST):
 a body of coreographic formalisms

where
two distinct but related views of a concurrent systems do coexist:

MPTS

MultiParty Session Types (MPST):
a body of coreographic formalisms
where
two distinct but related views of a concurrent systems do coexist:
global view: overall behaviour of the system formalised using the notion of Global Type

MPTS

MultiParty Session Types (MPST):
a body of coreographic formalisms
where
two distinct but related views of a concurrent systems do coexist:
global view: overall behaviour of the system formalised using the notion of Global Type
local view: behaviours of the single components in suitable process algebras

MPST approaches

> Top-dowin MPST: communication protocols are explicity described as global types and, subsequently, by projecting them, local types are obtained for implementation.

MPST approaches

Top-down MPST: communication protocols are explicity described as global types and, subsequently, by projecting them, local types are obtained for implementation.

MPST approaches

Top-down MPST: communication protocols are explicity described as global types and, subsequently, by projecting them, local types are obtained for implementation.

MPST approaches

Top-down MPST: communication protocols are explicity described as global types and, subsequently, by projecting them, local types are obtained for implementation.

Systems obtained by projecting (well-formed) global types enjoy good communication properties

MPST approaches

Bottom-up MPST: no projection is used and local behaviours are checked against global types by means of a type assignment system.

MPST approaches

Bottom-up MPST: no projection is used and local behaviours are checked against global types by means of a type assignment system.

MPST approaches

Bottom-up MPST: no projection is used and local behaviours are checked against global types by means of a type assignment system.

MPST approaches

Bottom-up MPST: no projection is used and local behaviours are checked against global types by means of a type assignment system.

Systems typable with (well-formed) global types enjoy good communication properties

A "bottom-up" MPST

A "bottom-up" MPST

Calculus of Sessions and its type system
[B.,Dezani et al.FACS'22]

A "bottom-up" MPST

Calculus of Sessions and its type system
[B.,Dezani et al.FACS'22]
Processes

$$
P::={ }^{\text {coind }} \mathbf{0}\left|\mathrm{p}!\left\{\lambda_{i} . P_{i}\right\}_{i \in I}\right| \mathrm{p} ?\left\{\lambda_{i} . P_{i}\right\}_{i \in I}
$$

A "bottom-up" MPST

Calculus of Sessions and its type system
[B.,Dezani et al.FACS'22]
Processes

$$
P::={ }^{\text {coind }} \mathbf{0}\left|\mathrm{p}!\left\{\lambda_{i} . P_{i}\right\}_{i \in I}\right| \mathrm{p} ?\left\{\lambda_{i} . P_{i}\right\}_{i \in I}
$$

Multiparty Sessions

$$
\mathbb{M}=\mathrm{p}_{1}\left[P_{1}\right]\|\cdots\| \mathrm{p}_{n}\left[P_{n}\right]
$$

A "bottom-up" MPST

Calculus of Sessions and its type system
[B.,Dezani et al.FACS'22]

Processes

$$
P::={ }^{\text {coind }} \mathbf{0}\left|\mathrm{p}!\left\{\lambda_{i} . P_{i}\right\}_{i \in I}\right| \mathrm{p} ?\left\{\lambda_{i} . P_{i}\right\}_{i \in I}
$$

Multiparty Sessions

$$
\mathbb{M}=\mathrm{p}_{1}\left[P_{1}\right]\|\cdots\| \mathrm{p}_{n}\left[P_{n}\right]
$$

(synchronous) Operational Semantics

$$
\ell \in I \subseteq J
$$

$\mathrm{p}\left[\mathrm{q}!\left\{\lambda_{i} \cdot P_{i}\right\}_{i \in I}\right]\left\|\mathrm{q}\left[\mathrm{p} ?\left\{\lambda_{j} \cdot Q_{j}\right\}_{j \in J}\right]\right\| \mathbb{M} \xrightarrow{\mathrm{p} \lambda_{\ell} \mathrm{q}} \mathrm{p}\left[P_{\ell}\right]\left\|\mathrm{q}\left[Q_{\ell}\right]\right\| \mathbb{M}$

A session example: carol, sam and tom

A session example: carol, sam and tom

$\mathrm{c}[\mathrm{s}!\{$ ок.t? ок, ко\}] || s[c?\{ок.t!ок, ко.t! ко\}] || t[s?\{ок.с!ок, ко\}]

A session example: carol, sam and tom

A session example: carol, sam and tom

A session example: carol, sam and tom

c[s! \{ок.t?ок, ко\}] || s[c? $\{$ ок.t!ок, ко.t!ко\}] ||t[s?\{ок.с!ок, ко\}]

A session example: carol, sam and tom

Reduction example

$$
\text { c[s!\{ок.t?ок,ко\}] || s[c?\{ок.t!ок,ко.t!ко\}] || t[s?\{ок.с!ок,ко\}] }
$$

A session example: carol, sam and tom

Reduction example

```
c[s!{ок.t?ок,ко}] || s[c?{ок.t!ок,ко.t!ко}] | t[s?{ок.с!ок,ко}]
    COKS
    \downarrow
    c[t?Ок] | s[t!ок] | t[s?{ок.с!ок,ко}]
```


A session example: carol, sam and tom

Reduction example

```
c[s!{ок.t?ок,ко}] || s[c?{ок.t!ок,ко.t!ко}] | t[s?{ок.с!ок,ко}]
    coks
        \downarrow
    c[t?ок] | s[t!ок] | t[s?{ок.с!ок,ко}]
        sokt
        \downarrow
    c[t?OK] | s[0] | t[c!ок]
```


A session example: carol, sam and tom

Reduction example

```
c[s!{ок.t?ок,ко}] || s[c?{ок.t!ок,ко.t!ко}] | t[s?{ок.с!ок,ко}]
    COKS
        \downarrow
        c[t?ок] | s[t!ок] | t[s?{ок.с!ок,ко}]
        sokt
        \downarrow
        c[t?OK] | s[0] | t[c!OK]
            toкc
                \downarrow
                c[0] | s[0] | t[0]
```


A session example: carol, sam and tom

Reduction example

$$
\text { c[s!\{ок.t?ок,ко\}] || s[c?\{ок.t!ок,ко.t!ко\}] || t[s?\{ок.с!ок,ко\}] }
$$

A session example: carol, sam and tom

Reduction example

```
c[s!{ок.t?ок,ко}] || s[c?{ок.t!ок,ко.t!ко}] | t[s?{ок.с!ок,ко}]
    ckos
    c[0] || s[t!ко] || t[s?{ок.с!ок,ко}]
```


A session example: carol, sam and tom

Reduction example

```
c[s!{ок.t?ок,ко}] || s[c?{ок.t!ок,ко.t!ко}] | t[s?{ок.с!ок,ко}]
    cкол
            skot
            \downarrow
    c[0] | s[0] | t[0]
```


Type system for the session calculus

Type system for the session calculus

Global Types

$$
\mathrm{G}::==^{\text {coind }} \text { End } \mid \mathrm{p} \rightarrow \mathrm{q}:\left\{\lambda_{i} \cdot \mathrm{G}_{i}\right\}_{i \in I}
$$

Type system for the session calculus

Global Types

$$
\mathrm{G}::==^{\text {coind }} \text { End } \mid \mathrm{p} \rightarrow \mathrm{q}:\left\{\lambda_{i} \cdot \mathrm{G}_{i}\right\}_{i \in I}
$$

A global type for the example

$$
\mathrm{c} \rightarrow \mathrm{~s}:\{\text { ок.s } \rightarrow \mathrm{t}: \text { ок.t } \rightarrow \text { c : ок, ko.s } \rightarrow \mathrm{t}: \mathrm{ko}\}
$$

Type system for the session calculus

Global Types

$$
\mathrm{G}::==^{\text {coind }} \text { End } \mid \mathrm{p} \rightarrow \mathrm{q}:\left\{\lambda_{i} \cdot \mathrm{G}_{i}\right\}_{i \in I}
$$

Typing Rules

Type system for the session calculus

Global Types

$$
\mathrm{G}::==^{\text {coind }} \text { End } \mid \mathrm{p} \rightarrow \mathrm{q}:\left\{\lambda_{i} \cdot \mathrm{G}_{i}\right\}_{i \in I}
$$

Typing Rules

End $\vdash \mathrm{p}[0]$

Type system for the session calculus

Global Types

$$
\mathrm{G}::==^{\text {coind }} \text { End } \mid \mathrm{p} \rightarrow \mathrm{q}:\left\{\lambda_{i} \cdot \mathrm{G}_{i}\right\}_{i \in I}
$$

Typing Rules

End $\vdash \mathrm{p}[0]$
$\xlongequal[{\mathrm{p} \rightarrow \mathrm{q}:\left\{\lambda_{i} \cdot \mathrm{G}_{i}\right\}_{i \in I} \vdash \mathrm{p}\left[\mathrm{q}!\left\{\lambda_{i} \cdot P_{i}\right\}_{i \in I}\right]\left\|\mathrm{q}\left[\mathrm{p} ?\left\{\lambda_{j} \cdot Q_{j}\right\}_{j \in J}\right]\right\| \mathbb{M}}]{\mathrm{G}_{i} \vdash \mathrm{p}\left[P_{i}\right]\left\|\mathrm{q}\left[Q_{i}\right]\right\| \mathbb{M} \quad \operatorname{prt}\left(\mathrm{G}_{i}\right) \backslash\{\mathrm{p}, \mathrm{q}\}=\operatorname{prt}(\mathbb{M}) \quad \forall i \in I} \subseteq J$

Type system for the session calculus

Example of type derivation

$$
\text { End } \vdash \mathrm{c}[\mathbf{0}]\|\mathrm{s}[\mathbf{0}]\| \mathrm{t}[\mathbf{0}]
$$

Type system for the session calculus

Example of type derivation

$$
\xlongequal[{\mathrm{t} \rightarrow \text { c: OK } \vdash \mathrm{c}[\mathrm{t} \text { ? OK }]\|\mathrm{s}[\mathbf{0}]\| \mathrm{t}[\mathrm{c} \text { ! } \mathrm{OK}}]]{\mathrm{End} \vdash \mathrm{c}[\mathbf{0}]\|\mathrm{s}[\mathbf{0}]\| \mathrm{t}[\mathbf{0}]}
$$

Type system for the session calculus

Example of type derivation

$$
\text { End } \vdash \mathrm{c}[\mathbf{0}]\|\mathrm{s}[\mathbf{0}]\| \mathrm{t}[\mathbf{0}]
$$

$$
\mathrm{t} \rightarrow \mathrm{c}: \text { Ок } \vdash \mathrm{c}[\mathrm{t} \text { ? Ок }]\|\mathrm{s}[\mathbf{0}]\| \mathrm{t}[\mathrm{c} \text { !Ок }]
$$

$\mathrm{s} \rightarrow \mathrm{t}$:ок. $\mathrm{t} \rightarrow \mathrm{c}$:ок $\vdash \mathrm{c}[\mathrm{t}$? Оке $] \| \mathrm{s}[\mathrm{t}$!ок] $\| \mathrm{t}[\mathrm{s}$? \{ок.с!ок, ко $\}]$

Type system for the session calculus

Example of type derivation

$\xlongequal{\frac{\text { End } \vdash \mathrm{c}[\mathbf{0}]\|\mathrm{s}[\mathbf{0}]\| \mathrm{t}[\mathbf{0}]}{\mathrm{t} \rightarrow \mathrm{c}: o \mathrm{ok} \vdash \mathrm{c}[\mathrm{t} \text { ?ok] \|s[0]\|t[c!ok]}}} \quad \xlongequal{\text { End } \vdash \mathrm{c}[\mathbf{0}]\|\mathrm{s}[\mathbf{0}]\| \mathrm{t}[\mathbf{0}]}$

Type system for the session calculus

Example of type derivation

| $\mathrm{t} \rightarrow \mathrm{c}: \mathrm{ok} \vdash \mathrm{c}[\mathrm{t}$? ok$]\\|\mathrm{s}[0]\\| \mathrm{t}[\mathrm{c}$! k$]$ | End $\vdash \mathrm{c}[0]\\|\mathrm{s}[0]\\| \mathrm{t}[0]$ | |
|---|---|---|---|---|---|---|
| $s \rightarrow$ t:ok.t \rightarrow c:ok $\vdash \mathrm{c}[\mathrm{t}$? ok] \|| s[t!ok] || t[s? \{ok.c!ok,ko\}] | $\mathrm{s} \rightarrow \mathrm{t}: \mathrm{ko} \vdash \mathrm{c}[\mathbf{0}] \\| \mathrm{s}[\mathrm{t}$! ko$] \\| \mathrm{t}[\mathrm{s}$? \{ok.c!ok,ko\}] |

What do we get by typing?

Definition (p -Lock)

\mathbb{M}^{\prime} is a p-lock if the participant p is willing to progress in \mathbb{M}^{\prime} but cannot do that in any continuation of \mathbb{M}^{\prime}.

What do we get by typing?

Definition (Lock-freedom)
\mathbb{M} is lock-free if, for each participant p, $\mathbb{M} \rightarrow^{*} \mathbb{M}^{\prime}$ implies \mathbb{M}^{\prime} is not a p-lock

What do we get by typing?

Theorem (B.,Dezani et al.FACS'22)
If \mathbb{M} is typable with a well-formed (bounded) global type, then \mathbb{M} is lock-free.

Universal Declaration of system-Components' Rights

> - Article 1 All system components must be developed equal in dignity and rights. They are endowed with communication capabilities and should interact towards one another in a spirit of cooperation
> \rightarrow Article 2 Any system component is entitled to all the good communication properties like lock freedom, without distinction of any kind, such as programming paradigm, language or interaction model.
> - Article 3 [...]

Universal Declaration of system-Components' Rights

- Article 1 All system components must be developed equal in dignity and rights. They are endowed with communication capabilities and should interact towards one another in a spirit of cooperation.
- Article 2 Any system component is entitled to all the good communication properties like lock freedom, without distinction of any kind, such as programming paradigm, language or interaction model
- Article 3 [...]

Universal Declaration of system-Components' Rights

- Article 1 All system components must be developed equal in dignity and rights. They are endowed with communication capabilities and should interact towards one another in a spirit of cooperation.
- Article 2 Any system component is entitled to all the good communication properties like lock freedom, without distinction of any kind, such as programming paradigm, language or interaction model.
- Article 3 [...]

Universal Declaration of system-Components' Rights

- Article 1 All system components must be developed equal in dignity and rights. They are endowed with communication capabilities and should interact towards one another in a spirit of cooperation.
- Article 2 Any system component is entitled to all the good communication properties like lock freedom, without distinction of any kind, such as programming paradigm, language or interaction model.
- Article 3 [...]

Universal Declaration of system-Components' Rights

 capabilities and should interact towards one another in a spirit of cooperation.

- Article 2 Any system component is entitled to all the good communication properties like lock freedom, without distinction of any kind, such as programming paradigm, language or interaction model.
- Article 3 [...]

Universal Declaration of system-Components' Rights

 capabilities and should interact towards one another in a spirit of cooperation.

- Article 2 Any system component is entitled to $A 1 / 4 h t / d \phi \phi d d$
 distinction of any kind, such as programming paradigm, language or interaction model.
- Article 3 [...]

Universal Declaration of system-Components' Rights

 capabilities and should interact towards one another in a spirit of cooperation.

- Article 2 Any system component is entitled to $A 1 / 4 h t / d \phi \phi d d$
 distinction of any kind, such as programming paradigm, language or interaction model.
- Article 3 [...]

Non egalitarian systems

Non egalitarian systems

Any client-server setting is biased:

Non egalitarian systems

Any client-server setting is biased:

A non egalitarian system

A buyer can keep on adding goods - sold by a seller - in his shopping cart an unbounded number of times, until he decides to buy the shopping cart's content. In the latter case, the seller informs the carrier for the shipment.

A non egalitarian system

A buyer can keep on adding goods - sold by a seller - in his shopping cart an unbounded number of times, until he decides to buy the shopping cart's content. In the latter case, the seller informs the carrier for the shipment.

$$
\mathbb{M}=\mathrm{b}[B]\|\mathrm{s}[S]\| \mathrm{c}[C]
$$

where
$B=\mathrm{s}!\{\operatorname{ADD} . B, \mathrm{BUY}\}$
$S=\mathrm{b} ?\{$ add. S, buy.c!ship $\}$
$C=s ?$ ship. C

A non egalitarian system

A buyer can keep on adding goods - sold by a seller - in his shopping cart an unbounded number of times, until he decides to buy the shopping cart's content. In the latter case, the seller informs the carrier for the shipment.

$$
\mathbb{M}=\mathrm{b}[B]\|\mathrm{s}[S]\| \mathrm{c}[C]
$$

where
$B=\mathrm{s}!\{\operatorname{ADD} . B, \mathrm{BUY}\}$
$S=\mathrm{b} ?\{$ add. S, BUY.c!ship $\}$
$C=s ?$ ship. C
Not typable. In fact it is not c-lock free

$$
\mathbb{M} \rightarrow^{*} \mathrm{~b}[\mathbf{0}]\|\mathrm{s}[\mathbf{0}]\| \mathrm{c}[C]
$$

A non egalitarian system

A buyer can keep on adding goods - sold by a seller - in his shopping cart an unbounded number of times, until he decides to buy the shopping cart's content. In the latter case, the seller informs the carrier for the shipment.

$$
\mathbb{M}=\mathrm{b}[B]\|\mathrm{s}[S]\| \mathrm{c}[C]
$$

where
$B=\mathrm{s}!\{\operatorname{ADD} . B, \mathrm{BUY}\}$
$S=\mathrm{b} ?\{$ add. S, BUY.c!ship $\}$
$C=\mathrm{s}$?ship. C
Not typable. In fact it is not c-lock free

$$
\mathbb{M} \rightarrow^{*} \mathrm{~b}[\mathbf{0}]\|\mathrm{s}[\mathbf{0}]\| \mathrm{c}[C]
$$

Do we actually care about s and c?

Typing non egalitarian systems

We are interested in b's lock-freedom, not s's and c's

ICE'23: A type system such that if

then lock-freedom ensured only for participants other than s and c . For our example this is possible for

Typing non egalitarian systems

We are interested in b's lock-freedom, not s's and c's

ICE'23: A type system such that if

$$
\mathrm{G} \vdash_{\{s, c\}} \mathbb{M}
$$

then lock-freedom ensured only for participants other than s and c . For our example this is possible for

$$
\mathrm{G}=\mathrm{b} \rightarrow \mathrm{~s}:\{\mathrm{ADD} . \mathrm{G}, \mathrm{BUY}\}
$$

Typing non egalitarian systems

We are interested in b's lock-freedom, not s's and c's

ICE'23: A type system such that if

$$
\mathrm{G} \vdash_{\{\mathrm{s}, \mathrm{c}\}} \mathbb{M}
$$

then lock-freedom ensured only for participants other than s and c. For our example this is possible for

$$
\mathrm{G}=\mathrm{b} \rightarrow \mathrm{~s}:\{\mathrm{ADD} . \mathrm{G}, \mathrm{BUY}\}
$$

Typing non egalitarian systems

Typing non egalitarian systems

$$
[\text { End }] \overline{\text { End } \vdash_{\emptyset} \mathrm{p}[\mathbf{0}]}[\text { End }]
$$

Typing non egalitarian systems

$$
\begin{gathered}
{[\text { End }] \stackrel{\overline{\text { End } \vdash_{\emptyset} \mathrm{p}[\mathbf{0}]}[\text { End }]}{ }} \\
\begin{array}{c}
\mathrm{G}_{i} \vdash_{\mathcal{P}_{i}} \mathrm{p}\left[P_{i}\right]\left\|\mathrm{q}\left[Q_{i}\right]\right\| \mathbb{M} \\
\left(\operatorname{prt}\left(\mathrm{G}_{i}\right) \cup \mathcal{P}_{i}\right) \backslash\{\mathrm{p}, \mathrm{q}\}=\operatorname{prt}(\mathbb{M}) \quad \forall i \in I
\end{array} \\
\underset{\mathrm{G} \vdash_{\mathcal{P}} \mathrm{p}\left[\mathrm{q}!\left\{\lambda_{i} \cdot P_{i}\right\}_{i \in I}\right]\left\|\mathrm{q}\left[\mathrm{p} ?\left\{\lambda_{j} \cdot Q_{j}\right\}_{j \in J}\right]\right\| \mathbb{M}}{\mathrm{G}=\mathrm{p} \rightarrow \mathrm{q}:\left\{\lambda_{i} \cdot \mathrm{G}_{i}\right\}_{i \in I}} \\
\mathrm{G} \text { is bounded } \\
\mathcal{P}=\bigcup_{i \in I} \mathcal{P}_{i} \\
I \subseteq J
\end{gathered}
$$

Typing non egalitarian systems

$$
\begin{aligned}
& {[\text { End }] \overline{\overline{\text { End } \vdash_{\emptyset} \mathrm{p}[\mathbf{0}]}}[\text { End }]} \\
& \mathrm{G}_{i} \vdash_{\mathcal{P}_{i}} \mathrm{p}\left[P_{i}\right]\left\|\mathrm{q}\left[Q_{i}\right]\right\| \mathbb{M} \\
& \xlongequal{\left(\operatorname{prt}\left(\mathrm{G}_{i}\right) \cup \mathcal{P}_{i}\right) \backslash\{\mathrm{p}, \mathrm{q}\}=\operatorname{prt}(\mathbb{M}) \quad \forall i \in I} \underset{\mathrm{G} \vdash_{\mathcal{P}} \mathrm{p}\left[\mathrm{q}!\left\{\lambda_{i} \cdot P_{i}\right\}_{i \in I}\right]\left\|\mathrm{q}\left[\mathrm{p} ?\left\{\lambda_{j} \cdot Q_{j}\right\}_{j \in J}\right]\right\| \mathbb{M}}{ } \quad \begin{array}{l}
\mathrm{G}=\mathrm{p} \rightarrow \mathrm{q}:\left\{\lambda_{i} \cdot \mathrm{G}_{i}\right\}_{i \in I} \\
\mathrm{G} \text { is bounded } \\
\mathcal{P}=\bigcup_{i \in I} \mathcal{P}_{i}
\end{array} \\
& \text { [WEAK] } \frac{\mathrm{G} \vdash_{\mathcal{P}_{1}} \mathbb{M}_{1}}{\overline{\mathrm{G} \vdash_{\mathcal{P}_{1} \cup \mathcal{P}_{2}} \mathbb{M}_{1} \| \mathbb{M}_{2}}} \mathcal{P}_{2}=\operatorname{prt}\left(\mathbb{M}_{2}\right) \neq \emptyset
\end{aligned}
$$

Typing non egalitarian systems

Theorem (Classist lock-freedom)
If $\mathrm{G} \vdash_{\mathcal{P}} \mathbb{M}$ then \mathbb{M} is p-lock free only if $\mathrm{p} \notin \mathcal{P}$

Typing non egalitarian systems

where $\mathrm{G}=\mathrm{b} \rightarrow \mathrm{s}:\{$ ADD. $\mathrm{G}, \mathrm{BUY}\}$
$B=\operatorname{s!}\{$ add. B, pay $\}$
$S=\mathrm{b} ?\{\operatorname{ADD} . S$, Buy.c!ship $\}$
$C=s ?$ shir. C
Hence the Buyer-Seller-Carrier system is b-lock free

Typing non egalitarian systems

$$
\begin{aligned}
& \mathcal{D}=\mathcal{D} \quad \underset{\text { End } \vdash_{\{s, c\}} \mathrm{b}[\mathbf{0}] \| \mathrm{s}[\mathrm{c}!\text { shir }] \| \mathrm{c}[C]}{\text { End } \vdash_{\emptyset} \mathrm{b}[\mathbf{0} \mid}[\text { weak }] \\
& \left.\mathrm{G} \vdash_{\{s, c\}} \mathrm{b}[B] \| \mathrm{s}[\mathrm{~b} \text { ? \{AdD. } S, \text { PAY.c!ship }\}\right] \| \mathrm{c}[\mathrm{~s} \text { ?ship. } C] \\
& \text { where } \mathrm{G}=\mathrm{b} \rightarrow \mathrm{~s}:\{\text { ADD. } \mathrm{G}, \mathrm{BUY}\} \\
& B=\mathrm{s}!\{\operatorname{Add} . B, \mathrm{PAY}\} \\
& S=\mathrm{b} ?\{\text { add. } S \text {, BUY.c! } \mathrm{ship}\} \\
& C=\mathrm{s} \text { ? ship. } C
\end{aligned}
$$

Hence the Buyer-Seller-Carrier system is b-lock free

Typing non egalitarian systems

$$
\begin{aligned}
& \mathcal{D}=\quad \mathcal{D} \quad \frac{\text { End } \vdash_{\emptyset} \mathrm{b}[\mathbf{0}]}{\overline{\operatorname{End} \vdash_{\{s, c\}} \mathrm{b}[\mathbf{0}] \| \mathrm{s}[\mathrm{c} \text { shir }] \| \mathrm{c}[C]}}[\text { weak }] \\
& \left.\mathrm{G} \vdash_{\{s, c\}} \mathrm{b}[B] \| \mathrm{s}[\mathrm{~b} \text { ? \{AdD. } S, \text { PAY.c!ship }\}\right] \| \mathrm{c}[\mathrm{~s} \text { ?ship. } C] \\
& \text { where } \mathrm{G}=\mathrm{b} \rightarrow \mathrm{~s}:\{\text { ADd. } \mathrm{G}, \mathrm{BUY}\} \\
& B=\mathrm{s}!\{\operatorname{Add} . B, \mathrm{PAY}\} \\
& S=\mathrm{b} ?\left\{\text { add. } S \text {, BUY.c! }{ }^{\text {ship }}\right\} \\
& C=\mathrm{s} \text { ?ship. } C
\end{aligned}
$$

Hence the Buyer-Seller-Carrier system is b-lock free

Ongoing work

Ongoing work

- Overshooting:

Ongoing work

- Overshooting: Well-formedness condition for global types does actually ensure more than needed (strong p-lock freedom)

Ongoing work

- Overshooting: Well-formedness condition for global types does actually ensure more than needed (strong p-lock freedom)
- Typing non egualitarian asynchronous systems.

Ongoing work

- Overshooting: Well-formedness condition for global types does actually ensure more than needed (strong p-lock freedom)
- Typing non egualitarian asynchronous systems.

