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communication protocols are explicity
described as global types and, subsequently, by projecting them,
local types are obtained for implementation.
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enjoy good communication properties
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system.

no projection is used and local behaviours
are checked against global types by means of a type assignment
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Calculus of Sessions and its type system

[B.,Dezani et al.FACS’22]
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A “bottom-up” MPST

Calculus of Sessions and its type system
[B.,Dezani et al.FACS’22]

Processes
P =4 0 | pl{X;.P;}ics | PH{NiPi}ics
Multiparty Sessions
M = pa[P1] || -+ [| Pn[Pn]

(synchronous) Operational Semantics

telCJ

plal{\i-Pitier] | alp?{X-Qljes] | M === p[Pd] || al @] || M
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What do we get by typing?

Definition (p-Lock)
M’ is a p-lock if the participant p is willing to progress in M’ but
cannot do that in any continuation of M.
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o
What do we get by typing?

Definition (Lock-freedom)

M is lock-free if, for each participant p,

M —* M implies M is not a p-lock
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What do we get by typing?

Theorem (B.,Dezani et al.FACS’22)

If M is typable with a well-formed (bounded) global type,
then M is lock-free.
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P> Article 1 All system components must be developed equal in

dignity and rights. They are endowed with communication
of cooperation.

>

capabilities and should interact towards one another in a spirit

Article 2 Any system component is entitled to all the good
communication properties like lock freedom, without

distinction of any kind, such as programming paradigm,
language or interaction model.
» Article 3 [...]
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Non egalitarian systems

Any client-server setting is biased:

The customer is always right.

— Harny Gordon Selfpidge —

AZ QUOTES
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A non egalitarian system

A buyer can keep on apping goods - sold by a seller - in his
shopping cart an unbounded number of times, until he decides to
BUY the shopping cart’s content. In the latter case, the seller
informs the carrier for the suipment.
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Do we actually care about s and c?

17/23



We are interested in b’'s lock-freedom, not s's and c's

A type system such that if

Gha M
For our example this is possible for

then lock-freedom ensured only for participants other than s and c.

G =b — s:{app. G, BUY}
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Typing non egalitarian systems
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Theorem (Classist lock-freedom)
IF G Fp M then

M /s p-lock free only if p & P
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S [End}
End b[O]
D =

[WEAK]
D End F( ¢y b[0] || s[c!smp] || c[C]
G sy b[B] || s[b?{apD.S, pav.clsmp}] || c[s?suip.C]

where G = b — s:{app. G, BUY}

B = s!{app.B, pav}
S =b?{app.S, BUY.ClsHIP}
C = s?sup.C

Hence the Buyer-Seller-Carrier system is b-lock free
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