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[B.,Dezani et al.FACS’22]

Processes

P ::=coind 0 | p!{λi .Pi}i∈I | p?{λi .Pi}i∈I

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

ℓ ∈ I ⊆ J

p[q!{λi .Pi}i∈I ] ∥ q[p?{λj .Qj}j∈J ] ∥ M pλℓq−−−→ p[Pℓ] ∥ q[Qℓ] ∥ M
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What do we get by typing?

Definition (p-Lock)

M′ is a p-lock if the participant p is willing to progress in M′ but
cannot do that in any continuation of M′.
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What do we get by typing?

Definition (Lock-freedom)

M is lock-free if, for each participant p,
M −→∗ M′ implies M′ is not a p-lock
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What do we get by typing?

Theorem (B.,Dezani et al.FACS’22)

If M is typable with a well-formed (bounded) global type,
then M is lock-free.
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Do we actually care about s and c?
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Typing non egalitarian systems

We are interested in b’s lock-freedom, not s’s and c’s

ICE’23: A type system such that if

G ⊢{s,c} M

then lock-freedom ensured only for participants other than s and c.
For our example this is possible for

G = b → s:{add.G, buy}
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Typing non egalitarian systems

[End] ========= [End]
End ⊢∅ p[0]

Gi ⊢Pi
p[Pi ] ∥ q[Qi ] ∥ M

(prt(Gi ) ∪ Pi ) \ {p, q} = prt(M) ∀i ∈ I
=================================

G = p → q : {λi .Gi}i∈I

G is bounded
P =

⋃
i∈IPi

I ⊆ JG ⊢P p[q!{λi .Pi}i∈I ] ∥ q[p?{λj .Qj}j∈J ] ∥ M

[Weak]
G ⊢P1 M1

============== P2 = prt(M2) ̸= ∅
G ⊢P1∪P2 M1 ∥ M2
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Typing non egalitarian systems

Theorem (Classist lock-freedom)

If G ⊢P M then M is p-lock free only if p ̸∈ P
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Typing non egalitarian systems

D = D

========= [End]
End ⊢∅ b[0]

======================== [weak]
End ⊢{s,c} b[0] ∥ s[c!ship] ∥ c[C ]

=======================================
G ⊢{s,c} b[B] ∥ s[b?{add.S , pay.c!ship}] ∥ c[s?ship.C ]

where G = b → s:{add.G, buy}

B = s!{add.B, pay}
S = b?{add.S , buy.c!ship}
C = s?ship.C

Hence the Buyer-Seller-Carrier system is b-lock free
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