
Partially Typed Multiparty Sessions

Franco Barbanera1, Mariangiola Dezani 2

1 University of Catania
2 University of Torino

ICE - June 19, 2023, Lisbon

1/23

OVERVIEW

▶ Choreographies and MPSTs: a type assignment approach;

▶ Lock-freedom: egualitarism is not for system components;

▶ ICE’23: A MPST type assignment for classist Lock-freedom.

2/23

OVERVIEW

▶ Choreographies and MPSTs: a type assignment approach;

▶ Lock-freedom: egualitarism is not for system components;

▶ ICE’23: A MPST type assignment for classist Lock-freedom.

2/23

OVERVIEW

▶ Choreographies and MPSTs: a type assignment approach;

▶ Lock-freedom: egualitarism is not for system components;

▶ ICE’23: A MPST type assignment for classist Lock-freedom.

2/23

OVERVIEW

▶ Choreographies and MPSTs: a type assignment approach;

▶ Lock-freedom: egualitarism is not for system components;

▶ ICE’23: A MPST type assignment for classist Lock-freedom.

2/23

MPTS

3/23

MPTS

MultiParty Session Types (MPST):

a body of coreographic formalisms

3/23

MPTS

MultiParty Session Types (MPST):

a body of coreographic formalisms

where

two distinct but related views of a concurrent systems do coexist:

3/23

MPTS

MultiParty Session Types (MPST):

a body of coreographic formalisms

where

two distinct but related views of a concurrent systems do coexist:

global view: overall behaviour of the system formalised using
the notion of Global Type

3/23

MPTS

MultiParty Session Types (MPST):

a body of coreographic formalisms

where

two distinct but related views of a concurrent systems do coexist:

global view: overall behaviour of the system formalised using
the notion of Global Type

local view: behaviours of the single components in
suitable process algebras

3/23

MPST approaches

Top-down MPST: communication protocols are explicity
described as global types and, subsequently, by projecting them,
local types are obtained for implementation.

4/23

MPST approaches

Top-down MPST: communication protocols are explicity
described as global types and, subsequently, by projecting them,
local types are obtained for implementation.

4/23

MPST approaches

Top-down MPST: communication protocols are explicity
described as global types and, subsequently, by projecting them,
local types are obtained for implementation.

4/23

MPST approaches

Top-down MPST: communication protocols are explicity
described as global types and, subsequently, by projecting them,
local types are obtained for implementation.

Systems obtained by projecting (well-formed) global types

enjoy good communication properties

4/23

MPST approaches

Bottom-up MPST: no projection is used and local behaviours
are checked against global types by means of a type assignment
system.

5/23

MPST approaches

Bottom-up MPST: no projection is used and local behaviours
are checked against global types by means of a type assignment
system.

5/23

MPST approaches

Bottom-up MPST: no projection is used and local behaviours
are checked against global types by means of a type assignment
system.

5/23

MPST approaches

Bottom-up MPST: no projection is used and local behaviours
are checked against global types by means of a type assignment
system.

Systems typable with (well-formed) global types enjoy

good communication properties

5/23

A “bottom-up” MPST

6/23

A “bottom-up” MPST

Calculus of Sessions and its type system

[B.,Dezani et al.FACS’22]

6/23

A “bottom-up” MPST

Calculus of Sessions and its type system

[B.,Dezani et al.FACS’22]

Processes

P ::=coind 0 | p!{λi .Pi}i∈I | p?{λi .Pi}i∈I

6/23

A “bottom-up” MPST

Calculus of Sessions and its type system

[B.,Dezani et al.FACS’22]

Processes

P ::=coind 0 | p!{λi .Pi}i∈I | p?{λi .Pi}i∈I

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

6/23

A “bottom-up” MPST

Calculus of Sessions and its type system

[B.,Dezani et al.FACS’22]

Processes

P ::=coind 0 | p!{λi .Pi}i∈I | p?{λi .Pi}i∈I

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

ℓ ∈ I ⊆ J

p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M pλℓq−−−→ p[Pℓ] ∥ q[Qℓ] ∥ M

6/23

A session example: carol, sam and tom

c[s!{ok.t?ok, ko}] ∥ s[c?{ok.t!ok, ko.t!ko}] ∥ t[s?{ok.c!ok, ko}]

7/23

A session example: carol, sam and tom

c[s!{ok.t?ok, ko}] ∥ s[c?{ok.t!ok, ko.t!ko}] ∥ t[s?{ok.c!ok, ko}]

7/23

A session example: carol, sam and tom

c[s!{ok.t?ok, ko}] ∥ s[c?{ok.t!ok, ko.t!ko}] ∥ t[s?{ok.c!ok, ko}]

7/23

A session example: carol, sam and tom

c[s!{ok.t?ok, ko}] ∥ s[c?{ok.t!ok, ko.t!ko}] ∥ t[s?{ok.c!ok, ko}]

7/23

A session example: carol, sam and tom

c[s!{ok.t?ok, ko}] ∥ s[c?{ok.t!ok, ko.t!ko}] ∥ t[s?{ok.c!ok, ko}]

7/23

A session example: carol, sam and tom

Reduction example

c[s!{ok.t?ok,ko}] ∥ s[c?{ok.t!ok,ko.t!ko}] ∥ t[s?{ok.c!ok,ko}]

8/23

A session example: carol, sam and tom

Reduction example

c[s!{ok.t?ok,ko}] ∥ s[c?{ok.t!ok,ko.t!ko}] ∥ t[s?{ok.c!ok,ko}]
|

coks
↓

c[t?ok] ∥ s[t!ok] ∥ t[s?{ok.c!ok,ko}]

8/23

A session example: carol, sam and tom

Reduction example

c[s!{ok.t?ok,ko}] ∥ s[c?{ok.t!ok,ko.t!ko}] ∥ t[s?{ok.c!ok,ko}]
|

coks
↓

c[t?ok] ∥ s[t!ok] ∥ t[s?{ok.c!ok,ko}]
|

sokt
↓

c[t?ok] ∥ s[0] ∥ t[c!ok]

8/23

A session example: carol, sam and tom

Reduction example

c[s!{ok.t?ok,ko}] ∥ s[c?{ok.t!ok,ko.t!ko}] ∥ t[s?{ok.c!ok,ko}]
|

coks
↓

c[t?ok] ∥ s[t!ok] ∥ t[s?{ok.c!ok,ko}]
|

sokt
↓

c[t?ok] ∥ s[0] ∥ t[c!ok]
|

tokc
↓

c[0] ∥ s[0] ∥ t[0]

8/23

A session example: carol, sam and tom

Reduction example

c[s!{ok.t?ok,ko}] ∥ s[c?{ok.t!ok,ko.t!ko}] ∥ t[s?{ok.c!ok,ko}]

8/23

A session example: carol, sam and tom

Reduction example

c[s!{ok.t?ok,ko}] ∥ s[c?{ok.t!ok,ko.t!ko}] ∥ t[s?{ok.c!ok,ko}]
|

ckos
↓

c[0] ∥ s[t!ko] ∥ t[s?{ok.c!ok,ko}]

8/23

A session example: carol, sam and tom

Reduction example

c[s!{ok.t?ok,ko}] ∥ s[c?{ok.t!ok,ko.t!ko}] ∥ t[s?{ok.c!ok,ko}]
|

ckos
↓

c[0] ∥ s[t!ko] ∥ t[s?{ok.c!ok,ko}]
|

skot
↓

c[0] ∥ s[0] ∥ t[0]

8/23

Type system for the session calculus

9/23

Type system for the session calculus

Global Types

G ::=coind End | p → q : {λi .Gi}i∈I

9/23

Type system for the session calculus

Global Types

G ::=coind End | p → q : {λi .Gi}i∈I

A global type for the example

c → s : {ok.s → t : ok.t → c : ok, ko.s → t : ko}

9/23

Type system for the session calculus

Global Types

G ::=coind End | p → q : {λi .Gi}i∈I

Typing Rules

9/23

Type system for the session calculus

Global Types

G ::=coind End | p → q : {λi .Gi}i∈I

Typing Rules

========
End ⊢ p[0]

9/23

Type system for the session calculus

Global Types

G ::=coind End | p → q : {λi .Gi}i∈I

Typing Rules

========
End ⊢ p[0]

Gi ⊢ p[Pi] ∥ q[Qi] ∥ M prt(Gi) \ {p, q} = prt(M) ∀i ∈ I
== I ⊆ J
p → q : {λi .Gi}i∈I ⊢ p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M

9/23

Type system for the session calculus

Example of type derivation

End⊢ c[0] ∥ s[0] ∥ t[0]

10/23

Type system for the session calculus

Example of type derivation

End ⊢ c[0] ∥ s[0] ∥ t[0]
=========================
t → c:ok ⊢ c[t?ok] ∥ s[0] ∥ t[c!ok]

10/23

Type system for the session calculus

Example of type derivation

End ⊢ c[0] ∥ s[0] ∥ t[0]
=========================
t → c:ok ⊢ c[t?ok] ∥ s[0] ∥ t[c!ok]

==
s → t:ok.t → c:ok ⊢ c[t?ok] ∥ s[t!ok] ∥ t[s?{ok.c!ok,ko}]

10/23

Type system for the session calculus

Example of type derivation

End ⊢ c[0] ∥ s[0] ∥ t[0]

=============================

t → c:ok ⊢ c[t?ok] ∥ s[0] ∥ t[c!ok]

==

s → t:ok.t → c:ok ⊢ c[t?ok] ∥ s[t!ok] ∥ t[s?{ok.c!ok,ko}]

End ⊢ c[0] ∥ s[0] ∥ t[0]

======================================

s → t:ko ⊢ c[0] ∥ s[t!ko] ∥ t[s?{ok.c!ok,ko}]

10/23

Type system for the session calculus

Example of type derivation

End ⊢ c[0] ∥ s[0] ∥ t[0]

=============================

t → c:ok ⊢ c[t?ok] ∥ s[0] ∥ t[c!ok]

==

s → t:ok.t → c:ok ⊢ c[t?ok] ∥ s[t!ok] ∥ t[s?{ok.c!ok,ko}]

End ⊢ c[0] ∥ s[0] ∥ t[0]

======================================

s → t:ko ⊢ c[0] ∥ s[t!ko] ∥ t[s?{ok.c!ok,ko}]
==

c → s : {ok.s → pt : ok.t → c : ok, ko.s → t : ko} ⊢ c[s!{ok.t?ok,ko}] ∥ s[c?{ok.t!ok,ko.t!ko}] ∥ t[s?{ok.c!ok,ko}]

10/23

What do we get by typing?

Definition (p-Lock)

M′ is a p-lock if the participant p is willing to progress in M′ but
cannot do that in any continuation of M′.

11/23

What do we get by typing?

Definition (Lock-freedom)

M is lock-free if, for each participant p,
M −→∗ M′ implies M′ is not a p-lock

12/23

What do we get by typing?

Theorem (B.,Dezani et al.FACS’22)

If M is typable with a well-formed (bounded) global type,
then M is lock-free.

13/23

Universal Declaration of system-Components’ Rights

▶ Article 1 All system components must be developed equal in
dignity and rights. They are endowed with communication
capabilities and should interact towards one another in a spirit
of cooperation.

▶ Article 2 Any system component is entitled to all the good
communication properties like lock freedom, without
distinction of any kind, such as programming paradigm,
language or interaction model.

▶ Article 3 [...]

14/23

Universal Declaration of system-Components’ Rights

▶ Article 1 All system components must be developed equal in
dignity and rights. They are endowed with communication
capabilities and should interact towards one another in a spirit
of cooperation.

▶ Article 2 Any system component is entitled to all the good
communication properties like lock freedom, without
distinction of any kind, such as programming paradigm,
language or interaction model.

▶ Article 3 [...]

14/23

Universal Declaration of system-Components’ Rights

▶ Article 1 All system components must be developed equal in
dignity and rights. They are endowed with communication
capabilities and should interact towards one another in a spirit
of cooperation.

▶ Article 2 Any system component is entitled to all the good
communication properties like lock freedom, without
distinction of any kind, such as programming paradigm,
language or interaction model.

▶ Article 3 [...]

14/23

Universal Declaration of system-Components’ Rights

▶ Article 1 All system components must be developed equal in
dignity and rights. They are endowed with communication
capabilities and should interact towards one another in a spirit
of cooperation.

▶ Article 2 Any system component is entitled to all the good
communication properties like lock freedom, without
distinction of any kind, such as programming paradigm,
language or interaction model.

▶ Article 3 [...]

14/23

Universal Declaration of system-Components’ Rights

▶ Article 1 All system components //////must///be/////////////developed///////equal///in
////////dignity/////and/////////rights.///////They are endowed with communication
capabilities and should interact towards one another in a spirit
of cooperation.

▶ Article 2 Any system component is entitled to all the good
communication properties like lock freedom, without
distinction of any kind, such as programming paradigm,
language or interaction model.

▶ Article 3 [...]

15/23

Universal Declaration of system-Components’ Rights

▶ Article 1 All system components //////must///be/////////////developed///////equal///in
////////dignity/////and/////////rights.///////They are endowed with communication
capabilities and should interact towards one another in a spirit
of cooperation.

▶ Article 2 Any system component is entitled to ///all/////the//////good
//////////////////communication/////////////properties/////like/////lock////////////freedom,//////////without no
distinction of any kind, such as programming paradigm,
language or interaction model.

▶ Article 3 [...]

15/23

Universal Declaration of system-Components’ Rights

▶ Article 1 All system components //////must///be/////////////developed///////equal///in
////////dignity/////and/////////rights.///////They are endowed with communication
capabilities and should interact towards one another in a spirit
of cooperation.

▶ Article 2 Any system component is entitled to ///all/////the//////good
//////////////////communication/////////////properties/////like/////lock////////////freedom,//////////without no
distinction of any kind, such as programming paradigm,
language or interaction model.

▶ Article 3 [...]

15/23

Non egalitarian systems

16/23

Non egalitarian systems

Any client-server setting is biased:

16/23

Non egalitarian systems

Any client-server setting is biased:

16/23

A non egalitarian system

A buyer can keep on adding goods - sold by a seller - in his
shopping cart an unbounded number of times, until he decides to
buy the shopping cart’s content. In the latter case, the seller
informs the carrier for the shipment.

17/23

A non egalitarian system

A buyer can keep on adding goods - sold by a seller - in his
shopping cart an unbounded number of times, until he decides to
buy the shopping cart’s content. In the latter case, the seller
informs the carrier for the shipment.

M = b[B] ∥ s[S] ∥ c[C]

where
B = s!{add.B, buy}
S = b?{add.S , buy.c!ship}
C = s?ship.C

17/23

A non egalitarian system

A buyer can keep on adding goods - sold by a seller - in his
shopping cart an unbounded number of times, until he decides to
buy the shopping cart’s content. In the latter case, the seller
informs the carrier for the shipment.

M = b[B] ∥ s[S] ∥ c[C]

where
B = s!{add.B, buy}
S = b?{add.S , buy.c!ship}
C = s?ship.C

Not typable. In fact it is not c-lock free

M →∗ b[0] ∥ s[0] ∥ c[C]

17/23

A non egalitarian system

A buyer can keep on adding goods - sold by a seller - in his
shopping cart an unbounded number of times, until he decides to
buy the shopping cart’s content. In the latter case, the seller
informs the carrier for the shipment.

M = b[B] ∥ s[S] ∥ c[C]

where
B = s!{add.B, buy}
S = b?{add.S , buy.c!ship}
C = s?ship.C

Not typable. In fact it is not c-lock free

M →∗ b[0] ∥ s[0] ∥ c[C]

Do we actually care about s and c?

17/23

Typing non egalitarian systems

We are interested in b’s lock-freedom, not s’s and c’s

ICE’23: A type system such that if

G ⊢{s,c} M

then lock-freedom ensured only for participants other than s and c.
For our example this is possible for

G = b → s:{add.G, buy}

18/23

Typing non egalitarian systems

We are interested in b’s lock-freedom, not s’s and c’s

ICE’23: A type system such that if

G ⊢{s,c} M

then lock-freedom ensured only for participants other than s and c.
For our example this is possible for

G = b → s:{add.G, buy}

18/23

Typing non egalitarian systems

We are interested in b’s lock-freedom, not s’s and c’s

ICE’23: A type system such that if

G ⊢{s,c} M

then lock-freedom ensured only for participants other than s and c.
For our example this is possible for

G = b → s:{add.G, buy}

18/23

Typing non egalitarian systems

[End] ========= [End]
End ⊢∅ p[0]

Gi ⊢Pi
p[Pi] ∥ q[Qi] ∥ M

(prt(Gi) ∪ Pi) \ {p, q} = prt(M) ∀i ∈ I
=================================

G = p → q : {λi .Gi}i∈I

G is bounded
P =

⋃
i∈IPi

I ⊆ JG ⊢P p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M

[Weak]
G ⊢P1 M1

============== P2 = prt(M2) ̸= ∅
G ⊢P1∪P2 M1 ∥ M2

19/23

Typing non egalitarian systems

[End] ========= [End]
End ⊢∅ p[0]

Gi ⊢Pi
p[Pi] ∥ q[Qi] ∥ M

(prt(Gi) ∪ Pi) \ {p, q} = prt(M) ∀i ∈ I
=================================

G = p → q : {λi .Gi}i∈I

G is bounded
P =

⋃
i∈IPi

I ⊆ JG ⊢P p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M

[Weak]
G ⊢P1 M1

============== P2 = prt(M2) ̸= ∅
G ⊢P1∪P2 M1 ∥ M2

19/23

Typing non egalitarian systems

[End] ========= [End]
End ⊢∅ p[0]

Gi ⊢Pi
p[Pi] ∥ q[Qi] ∥ M

(prt(Gi) ∪ Pi) \ {p, q} = prt(M) ∀i ∈ I
=================================

G = p → q : {λi .Gi}i∈I

G is bounded
P =

⋃
i∈IPi

I ⊆ JG ⊢P p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M

[Weak]
G ⊢P1 M1

============== P2 = prt(M2) ̸= ∅
G ⊢P1∪P2 M1 ∥ M2

19/23

Typing non egalitarian systems

[End] ========= [End]
End ⊢∅ p[0]

Gi ⊢Pi
p[Pi] ∥ q[Qi] ∥ M

(prt(Gi) ∪ Pi) \ {p, q} = prt(M) ∀i ∈ I
=================================

G = p → q : {λi .Gi}i∈I

G is bounded
P =

⋃
i∈IPi

I ⊆ JG ⊢P p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M

[Weak]
G ⊢P1 M1

============== P2 = prt(M2) ̸= ∅
G ⊢P1∪P2 M1 ∥ M2

19/23

Typing non egalitarian systems

Theorem (Classist lock-freedom)

If G ⊢P M then M is p-lock free only if p ̸∈ P

20/23

Typing non egalitarian systems

D = D

========= [End]
End ⊢∅ b[0]

======================== [weak]
End ⊢{s,c} b[0] ∥ s[c!ship] ∥ c[C]

=======================================
G ⊢{s,c} b[B] ∥ s[b?{add.S , pay.c!ship}] ∥ c[s?ship.C]

where G = b → s:{add.G, buy}

B = s!{add.B, pay}
S = b?{add.S , buy.c!ship}
C = s?ship.C

Hence the Buyer-Seller-Carrier system is b-lock free

21/23

Typing non egalitarian systems

D = D

========= [End]
End ⊢∅ b[0]

======================== [weak]
End ⊢{s,c} b[0] ∥ s[c!ship] ∥ c[C]

=======================================
G ⊢{s,c} b[B] ∥ s[b?{add.S , pay.c!ship}] ∥ c[s?ship.C]

where G = b → s:{add.G, buy}

B = s!{add.B, pay}
S = b?{add.S , buy.c!ship}
C = s?ship.C

Hence the Buyer-Seller-Carrier system is b-lock free

21/23

Typing non egalitarian systems

D = D

========= [End]
End ⊢∅ b[0]

======================== [weak]
End ⊢{s,c} b[0] ∥ s[c!ship] ∥ c[C]

=======================================
G ⊢{s,c} b[B] ∥ s[b?{add.S , pay.c!ship}] ∥ c[s?ship.C]

where G = b → s:{add.G, buy}

B = s!{add.B, pay}
S = b?{add.S , buy.c!ship}
C = s?ship.C

Hence the Buyer-Seller-Carrier system is b-lock free

21/23

Ongoing work

22/23

Ongoing work

▶ Overshooting:

22/23

Ongoing work

▶ Overshooting: Well-formedness condition for global types does
actually ensure more than needed (strong p-lock freedom)

22/23

Ongoing work

▶ Overshooting: Well-formedness condition for global types does
actually ensure more than needed (strong p-lock freedom)

▶ Typing non egualitarian asynchronous systems.

22/23

Ongoing work

▶ Overshooting: Well-formedness condition for global types does
actually ensure more than needed (strong p-lock freedom)

▶ Typing non egualitarian asynchronous systems.

22/23

23/23

