# Proofs about Network Communication: For Humans and Machines

#### Wolfgang Jeltsch Javier Díaz







16th Interaction and Concurrency Experience

Lisbon, Portugal 19 June 2023

A B A A B A

#### Introduction

- Concurrent and distributed systems are often safety-critical
- Machine-checked proofs can provide a high degree of assurance
- Our research program:
  - Targets verification of design refinements
  - Centers on the Ouroboros blockchain consensus protocols
  - Uses the Isabelle proof assistant
- Previous achievement:
  - A machine-checked correctness proof of broadcast via multicast
- Issue with this proof:
  - Relies on fundamental but unproved bisimilarity statements
- Now we are delivering the missing proofs
- And show you how to conduct such proofs so that they are:
  - Concise
  - Human-friendly
  - Machine-checked

# The Þ-calculus

- A process calculus
- Our language for describing concurrent and distributed systems
  - Protocol specifications
  - Protocol implementations
  - Protocol environments
- Developed by us as part of our research program
- Key properties:
  - General
  - Minimal
  - Suitable for machine-checked proofs
- Similar to the asynchronous  $\pi$ -calculus
- Additional features:
  - Arbitrary data
  - Computation
  - Conditional execution
- Embedded in Isabelle/HOL

# The P-calculus in detail

• Processes:

- 0 does nothing
- $a \triangleleft x$  sends value x to channel a
- $a \triangleright x$ . P x receives a value x from channel a, performs process P x
  - $p \parallel q$  performs processes p and q in parallel
  - $\nu a. P a$  introduces a local channel a, performs process P a
- Constructs capture just the key features of process calculi
  - Concurrency
  - Communication
- For other features we utilize the host language (Isabelle/HOL)
  - Using higher-order abstract syntax (HOAS)
    - ★ Name binding
    - ★ Arbitrary data
    - ★ Computation
    - ★ Conditional execution
  - Using coinduction
    - ★ Repetition

### Repetition

- Proofs about coinductively defined processes tend to be low-level
- Solution:
  - Define just a single, general repetition construct via coinduction
  - Show fundamental properties of this construct for later use in proofs
- Repeated receive:

 $a \triangleright^{\infty} x. Px$  repeatedly receives values x from channel a, initiates the execution of Px for each received x

Definition:

$$a \triangleright^{\infty} x. P x = a \triangleright x. (P x \parallel a \triangleright^{\infty} x. P x)$$

#### Repeated receive idempotency

- Repeated receive is idempotent
  - With respect to parallel composition
  - Up to bisimilarity
- Formally:

$$a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x$$

- This fact is used in our correctness proof of broadcast via multicast
- Its proof exemplifies the proof style we advocate here

#### Background of the proof of repeated receive idempotency

• P-calculus transition rules about  $\lhd$ ,  $\triangleright$ , and  $\parallel$ :

$$\frac{\overline{a \triangleleft x \xrightarrow{a \triangleleft x}} \mathbf{0}}{p \parallel q \xrightarrow{\tau} p' \parallel q'} (\triangleleft) \qquad \frac{\overline{a \triangleright x} \cdot P x \xrightarrow{a \triangleright x} P x}{a \triangleright x \cdot P x \xrightarrow{a \vdash x} P x} (\triangleright)$$

$$\frac{p \xrightarrow{a \triangleleft x}}{p \parallel q \xrightarrow{\tau} p' \parallel q'} (\tau_{\rightarrow}) \qquad \frac{p \xrightarrow{a \triangleleft x}}{p \parallel q \xrightarrow{\tau} p' \parallel q'} (\tau_{\leftarrow})$$

$$\frac{p \xrightarrow{\alpha} p'}{p \parallel q \xrightarrow{\alpha} p' \parallel q} (\parallel_{1}) \qquad \frac{q \xrightarrow{\alpha} q'}{p \parallel q \xrightarrow{\alpha} p \parallel q'} (\parallel_{2})$$

• Definition of repeated receive again:

$$a \triangleright^{\infty} x. P x = a \triangleright x. (P x \parallel a \triangleright^{\infty} x. P x)$$

**lemma** repeated\_receive\_idempotency: **shows**  $a \triangleright^{\infty} x. Px \parallel a \triangleright^{\infty} x. Px \sim a \triangleright^{\infty} x. Px$ 

く 目 ト く ヨ ト く ヨ ト

```
lemma repeated_receive_idempotency:

shows a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x

proof coinduction

case (forward_simulation \alpha s)
```

next

```
case (backward_simulation \alpha s)
```

#### qed

くぼう くさう くさう しき

```
lemma repeated_receive_idempotency:

shows a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x

proof coinduction

case (forward_simulation \alpha s)

\langle \dots \rangle

next

case (backward simulation \alpha s)
```

#### qed

くぼう くさう くさう しき

```
lemma repeated_receive_idempotency:

shows a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x

proof coinduction

case (forward_simulation \alpha s)

\langle \dots \rangle

next

case (backward_simulation \alpha s)

from (a \triangleright^{\infty} x. P x \xrightarrow{\alpha} s)

obtain x where \alpha = a \triangleright x and s = P x \parallel a \triangleright^{\infty} x. P x

\langle \text{proof} \rangle
```

#### qed

```
lemma repeated receive idempotency:
  shows a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x
proof coinduction
  case (forward_simulation \alpha s)
  \langle \ldots \rangle
next
  case (backward simulation \alpha s)
  from (a \triangleright^{\infty} x, P x \xrightarrow{\alpha} s)
  obtain x where \alpha = a \triangleright x and s = P x \parallel a \triangleright^{\infty} x. P x
     (proof)
  with (a \triangleright^{\infty} x. Px \xrightarrow{\alpha} s) have a \triangleright^{\infty} x. Px \xrightarrow{a \triangleright x} Px \parallel a \triangleright^{\infty} x. Px
     (proof)
```

#### qed

- (個) - (日) - (日) - (日)

```
lemma repeated receive idempotency:
  shows a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x
proof coinduction
  case (forward_simulation \alpha s)
   \langle \ldots \rangle
next
  case (backward simulation \alpha s)
  from (a \triangleright^{\infty} x, P x \xrightarrow{\alpha} s)
  obtain x where \alpha = a \triangleright x and s = P x \parallel a \triangleright^{\infty} x. P x
      (proof)
  with (a \triangleright^{\infty} x. Px \xrightarrow{\alpha} s) have a \triangleright^{\infty} x. Px \xrightarrow{a \triangleright x} Px \parallel a \triangleright^{\infty} x. Px
      (proof)
  then have a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \xrightarrow{a \triangleright x} (P x \parallel a \triangleright^{\infty} x. P x) \parallel a \triangleright^{\infty} x. P x
      (proof)
```

qed

```
lemma repeated receive idempotency:
  shows a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x
proof coinduction
  case (forward_simulation \alpha s)
   \langle \ldots \rangle
next
  case (backward simulation \alpha s)
  from (a \triangleright^{\infty} x, P x \xrightarrow{\alpha} s)
  obtain x where \alpha = a \triangleright x and s = P x \parallel a \triangleright^{\infty} x. P x
      (proof)
  with (a \triangleright^{\infty} x. Px \xrightarrow{\alpha} s) have a \triangleright^{\infty} x. Px \xrightarrow{a \triangleright x} Px \parallel a \triangleright^{\infty} x. Px
      (proof)
  then have a \triangleright^{\infty} x. Px \parallel a \triangleright^{\infty} x. Px \xrightarrow{a \triangleright x} Px \parallel (a \triangleright^{\infty} x. Px \parallel a \triangleright^{\infty} x. Px)
      (proof)
```

qed

```
lemma repeated receive idempotency:
  shows a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x
proof coinduction
  case (forward_simulation \alpha s)
   \langle \ldots \rangle
next
  case (backward simulation \alpha s)
  from (a \triangleright^{\infty} x, P x \xrightarrow{\alpha} s)
  obtain x where \alpha = a \triangleright x and s = P x \parallel a \triangleright^{\infty} x. P x
      (proof)
  with (a \triangleright^{\infty} x. Px \xrightarrow{\alpha} s) have a \triangleright^{\infty} x. Px \xrightarrow{a \triangleright x} Px \parallel a \triangleright^{\infty} x. Px
      (proof)
  then have a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \xrightarrow{a \triangleright x} (P x \parallel a \triangleright^{\infty} x. P x) \parallel a \triangleright^{\infty} x. P x
      (proof)
```

qed

```
lemma repeated receive idempotency:
  shows a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x
proof (coinduction rule: up_to_rule [where \mathcal{F} = [\sim] \frown \mathcal{M}])
  case (forward simulation \alpha s)
   \langle \ldots \rangle
next
  case (backward simulation \alpha s)
  from (a \triangleright^{\infty} x, P x \xrightarrow{\alpha} s)
  obtain x where \alpha = a \triangleright x and s = P x \parallel a \triangleright^{\infty} x. P x
      (proof)
  with (a \triangleright^{\infty} x. Px \xrightarrow{\alpha} s) have a \triangleright^{\infty} x. Px \xrightarrow{a \triangleright x} Px \parallel a \triangleright^{\infty} x. Px
      (proof)
  then have a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \xrightarrow{a \triangleright x} (P x \parallel a \triangleright^{\infty} x. P x) \parallel a \triangleright^{\infty} x. P x
      (proof)
```

qed

```
lemma repeated receive idempotency:
  shows a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x
proof (coinduction rule: up_to_rule [where \mathcal{F} = [\sim] \frown \mathcal{M}])
  case (forward simulation \alpha s)
   \langle \ldots \rangle
next
  case (backward simulation \alpha s)
  from (a \triangleright^{\infty} x, P x \xrightarrow{\alpha} s)
  obtain x where \alpha = a \triangleright x and s = P x \parallel a \triangleright^{\infty} x. P x
      (proof)
  with (a \triangleright^{\infty} x. Px \xrightarrow{\alpha} s) have a \triangleright^{\infty} x. Px \xrightarrow{a \triangleright x} Px \parallel a \triangleright^{\infty} x. Px
      (proof)
  then have a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \xrightarrow{a \triangleright x} (P x \parallel a \triangleright^{\infty} x. P x) \parallel a \triangleright^{\infty} x. P x
      (proof)
```

**ged** respectful

```
lemma repeated receive idempotency:
  shows a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \sim a \triangleright^{\infty} x. P x
proof (coinduction rule: up_to_rule [where \mathcal{F} = [\sim] \frown \mathcal{M}])
  case (forward simulation \alpha s)
  \langle \ldots \rangle
next
  case (backward simulation \alpha s)
  from (a \triangleright^{\infty} x, P x \xrightarrow{\alpha} s)
  obtain x where \alpha = a \triangleright x and s = P x \parallel a \triangleright^{\infty} x. P x
     (proof)
  with (a \triangleright^{\infty} x. Px \xrightarrow{\alpha} s) have a \triangleright^{\infty} x. Px \xrightarrow{a \triangleright x} Px \parallel a \triangleright^{\infty} x. Px
     (proof)
  then have a \triangleright^{\infty} x. P x \parallel a \triangleright^{\infty} x. P x \xrightarrow{a \triangleright x} (P x \parallel a \triangleright^{\infty} x. P x) \parallel a \triangleright^{\infty} x. P x
     (proof)
  then show ?case
     (proof)
qed respectful
                                                                                              (ロ)
```

# Tools for bisimulation proofs for humans and machines

- The Isabelle/Isar proof language
  - Closer to usual mathematics than proof terms and tactics scripts
  - Still precise and amenable to machine-checking
- A formalized algebra of "up to" methods
  - Concise bisimulation proofs that are machine-checked
  - Simple construction of custom "up to" methods
- Isabelle's coinduction proof method
  - Structured coinductive proofs
  - Integration of "up to" methods via custom coinduction rules
- Higher-order abstract syntax
  - Less dealing with boring technicalities in proofs

- https://github.com/input-output-hk/equivalence-reasoner
- https://github.com/input-output-hk/transition-systems
- https://github.com/input-output-hk/thorn-calculus
- o https://github.com/input-output-hk/network-equivalences