
Proofs about Network Communication:
For Humans and Machines

Wolfgang Jeltsch Javier Díaz

Well-Typed
The Haskell Consultants

16th Interaction and Concurrency Experience

Lisbon, Portugal
19 June 2023

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 1 / 10



Introduction

Concurrent and distributed systems are often safety-critical
Machine-checked proofs can provide a high degree of assurance
Our research program:

▶ Targets verification of design refinements
▶ Centers on the Ouroboros blockchain consensus protocols
▶ Uses the Isabelle proof assistant

Previous achievement:
 A machine-checked correctness proof of broadcast via multicast

Issue with this proof:
 Relies on fundamental but unproved bisimilarity statements

Now we are delivering the missing proofs
And show you how to conduct such proofs so that they are:

▶ Concise
▶ Human-friendly
▶ Machine-checked

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 2 / 10



The Þ-calculus

A process calculus
Our language for describing concurrent and distributed systems

▶ Protocol specifications
▶ Protocol implementations
▶ Protocol environments

Developed by us as part of our research program
Key properties:

▶ General
▶ Minimal
▶ Suitable for machine-checked proofs

Similar to the asynchronous π-calculus
Additional features:

▶ Arbitrary data
▶ Computation
▶ Conditional execution

Embedded in Isabelle/HOL
W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 3 / 10



The Þ-calculus in detail

Processes:
0 does nothing

a ◁ x sends value x to channel a
a ▷ x . P x receives a value x from channel a, performs process P x

p ∥ q performs processes p and q in parallel
νa. P a introduces a local channel a, performs process P a

Constructs capture just the key features of process calculi
▶ Concurrency
▶ Communication

For other features we utilize the host language (Isabelle/HOL)
▶ Using higher-order abstract syntax (HOAS)

⋆ Name binding
⋆ Arbitrary data
⋆ Computation
⋆ Conditional execution

▶ Using coinduction
⋆ Repetition

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 4 / 10



Repetition

Proofs about coinductively defined processes tend to be low-level
Solution:

▶ Define just a single, general repetition construct via coinduction
▶ Show fundamental properties of this construct for later use in proofs

Repeated receive:
a ▷∞ x . P x repeatedly receives values x from channel a,

initiates the execution of P x for each received x
Definition:

a ▷∞ x . P x = a ▷ x . (P x ∥ a ▷∞ x . P x)

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 5 / 10



Repeated receive idempotency

Repeated receive is idempotent
▶ With respect to parallel composition
▶ Up to bisimilarity

Formally:

a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

This fact is used in our correctness proof of broadcast via multicast
Its proof exemplifies the proof style we advocate here

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 6 / 10



Background of the proof of repeated receive idempotency

Þ-calculus transition rules about ◁, ▷, and ∥:

a ◁ x a◁x−−−→ 0
(◁)

a ▷ x . P x a▷x−−−→ P x
(▷)

p a◁x−−−→ p′ q a▷x−−−→ q′

p ∥ q τ−→ p′ ∥ q′
(τ→) p a▷x−−−→ p′ q a◁x−−−→ q′

p ∥ q τ−→ p′ ∥ q′
(τ←)

p α−→ p′

p ∥ q α−→ p′ ∥ q
(∥1) q α−→ q′

p ∥ q α−→ p ∥ q′
(∥2)

Definition of repeated receive again:

a ▷∞ x . P x = a ▷ x . (P x ∥ a ▷∞ x . P x)

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 7 / 10



Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof coinduction
case (forward_simulation α s)
⟨. . .⟩

next
case (backward_simulation α s)
from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩
with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x

⟨proof⟩
then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x ∥ a ▷∞ x . P x

⟨proof⟩
then show ?case

⟨proof⟩
qed

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 8 / 10



Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof coinduction
case (forward_simulation α s)

⟨. . .⟩

next
case (backward_simulation α s)

from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩
with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x

⟨proof⟩
then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x ∥ a ▷∞ x . P x

⟨proof⟩
then show ?case

⟨proof⟩

qed

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 8 / 10



Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof coinduction
case (forward_simulation α s)
⟨. . .⟩

next
case (backward_simulation α s)

from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩
with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x

⟨proof⟩
then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x ∥ a ▷∞ x . P x

⟨proof⟩
then show ?case

⟨proof⟩

qed

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 8 / 10



Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof coinduction
case (forward_simulation α s)
⟨. . .⟩

next
case (backward_simulation α s)
from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩

with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x
⟨proof⟩

then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x ∥ a ▷∞ x . P x
⟨proof⟩

then show ?case
⟨proof⟩

qed

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 8 / 10



Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof coinduction
case (forward_simulation α s)
⟨. . .⟩

next
case (backward_simulation α s)
from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩
with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x

⟨proof⟩

then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x ∥ a ▷∞ x . P x
⟨proof⟩

then show ?case
⟨proof⟩

qed

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 8 / 10



Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof coinduction
case (forward_simulation α s)
⟨. . .⟩

next
case (backward_simulation α s)
from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩
with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x

⟨proof⟩
then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ (P x ∥ a ▷∞ x . P x) ∥ a ▷∞ x . P x

⟨proof⟩

then show ?case
⟨proof⟩

qed

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 8 / 10



Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof coinduction
case (forward_simulation α s)
⟨. . .⟩

next
case (backward_simulation α s)
from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩
with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x

⟨proof⟩
then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ P x ∥ (a ▷∞ x . P x ∥ a ▷∞ x . P x)

⟨proof⟩

then show ?case
⟨proof⟩

qed

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 8 / 10



Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof coinduction
case (forward_simulation α s)
⟨. . .⟩

next
case (backward_simulation α s)
from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩
with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x

⟨proof⟩
then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ (P x ∥ a ▷∞ x . P x) ∥ a ▷∞ x . P x

⟨proof⟩

then show ?case
⟨proof⟩

qed

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 8 / 10



Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof (coinduction rule: up_to_rule [where F = [∼] ⌢ M])
case (forward_simulation α s)
⟨. . .⟩

next
case (backward_simulation α s)
from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩
with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x

⟨proof⟩
then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ (P x ∥ a ▷∞ x . P x) ∥ a ▷∞ x . P x

⟨proof⟩

then show ?case
⟨proof⟩

qed

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 8 / 10



Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof (coinduction rule: up_to_rule [where F = [∼] ⌢ M])
case (forward_simulation α s)
⟨. . .⟩

next
case (backward_simulation α s)
from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩
with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x

⟨proof⟩
then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ (P x ∥ a ▷∞ x . P x) ∥ a ▷∞ x . P x

⟨proof⟩

then show ?case
⟨proof⟩

qed respectful

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 8 / 10



Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof (coinduction rule: up_to_rule [where F = [∼] ⌢ M])
case (forward_simulation α s)
⟨. . .⟩

next
case (backward_simulation α s)
from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩
with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x

⟨proof⟩
then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ (P x ∥ a ▷∞ x . P x) ∥ a ▷∞ x . P x

⟨proof⟩
then show ?case

⟨proof⟩
qed respectful

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 8 / 10



Tools for bisimulation proofs for humans and machines

The Isabelle/Isar proof language
▶ Closer to usual mathematics than proof terms and tactics scripts
▶ Still precise and amenable to machine-checking

A formalized algebra of “up to” methods
▶ Concise bisimulation proofs that are machine-checked
▶ Simple construction of custom “up to” methods

Isabelle’s coinduction proof method
▶ Structured coinductive proofs
▶ Integration of “up to” methods via custom coinduction rules

Higher-order abstract syntax
▶ Less dealing with boring technicalities in proofs

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 9 / 10



Follow the development

� https://github.com/input-output-hk/equivalence-reasoner
� https://github.com/input-output-hk/transition-systems
� https://github.com/input-output-hk/thorn-calculus
� https://github.com/input-output-hk/network-equivalences

W. Jeltsch, J. Díaz (Input Output) Proofs about Network Communication ICE 2023 10 / 10

https://github.com/input-output-hk/equivalence-reasoner
https://github.com/input-output-hk/transition-systems
https://github.com/input-output-hk/thorn-calculus
https://github.com/input-output-hk/network-equivalences

