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Introduction

Concurrent and distributed systems are often safety-critical
Machine-checked proofs can provide a high degree of assurance
Our research program:

▶ Targets verification of design refinements
▶ Centers on the Ouroboros blockchain consensus protocols
▶ Uses the Isabelle proof assistant

Previous achievement:
 A machine-checked correctness proof of broadcast via multicast

Issue with this proof:
 Relies on fundamental but unproved bisimilarity statements

Now we are delivering the missing proofs
And show you how to conduct such proofs so that they are:

▶ Concise
▶ Human-friendly
▶ Machine-checked
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The Þ-calculus

A process calculus
Our language for describing concurrent and distributed systems

▶ Protocol specifications
▶ Protocol implementations
▶ Protocol environments

Developed by us as part of our research program
Key properties:

▶ General
▶ Minimal
▶ Suitable for machine-checked proofs

Similar to the asynchronous π-calculus
Additional features:

▶ Arbitrary data
▶ Computation
▶ Conditional execution

Embedded in Isabelle/HOL
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The Þ-calculus in detail

Processes:
0 does nothing

a ◁ x sends value x to channel a
a ▷ x . P x receives a value x from channel a, performs process P x

p ∥ q performs processes p and q in parallel
νa. P a introduces a local channel a, performs process P a

Constructs capture just the key features of process calculi
▶ Concurrency
▶ Communication

For other features we utilize the host language (Isabelle/HOL)
▶ Using higher-order abstract syntax (HOAS)

⋆ Name binding
⋆ Arbitrary data
⋆ Computation
⋆ Conditional execution

▶ Using coinduction
⋆ Repetition
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Repetition

Proofs about coinductively defined processes tend to be low-level
Solution:

▶ Define just a single, general repetition construct via coinduction
▶ Show fundamental properties of this construct for later use in proofs

Repeated receive:
a ▷∞ x . P x repeatedly receives values x from channel a,

initiates the execution of P x for each received x
Definition:

a ▷∞ x . P x = a ▷ x . (P x ∥ a ▷∞ x . P x)
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Repeated receive idempotency

Repeated receive is idempotent
▶ With respect to parallel composition
▶ Up to bisimilarity

Formally:

a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

This fact is used in our correctness proof of broadcast via multicast
Its proof exemplifies the proof style we advocate here
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Background of the proof of repeated receive idempotency

Þ-calculus transition rules about ◁, ▷, and ∥:

a ◁ x a◁x−−−→ 0
(◁)

a ▷ x . P x a▷x−−−→ P x
(▷)

p a◁x−−−→ p′ q a▷x−−−→ q′

p ∥ q τ−→ p′ ∥ q′
(τ→) p a▷x−−−→ p′ q a◁x−−−→ q′

p ∥ q τ−→ p′ ∥ q′
(τ←)

p α−→ p′

p ∥ q α−→ p′ ∥ q
(∥1) q α−→ q′

p ∥ q α−→ p ∥ q′
(∥2)

Definition of repeated receive again:

a ▷∞ x . P x = a ▷ x . (P x ∥ a ▷∞ x . P x)
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Proving repeated receive idempotency

lemma repeated_receive_idempotency:
shows a ▷∞ x . P x ∥ a ▷∞ x . P x ∼ a ▷∞ x . P x

proof coinduction
case (forward_simulation α s)
⟨. . .⟩

next
case (backward_simulation α s)
from ‹a ▷∞ x . P x α−→ s›
obtain x where α = a ▷ x and s = P x ∥ a ▷∞ x . P x

⟨proof⟩
with ‹a ▷∞ x . P x α−→ s› have a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x

⟨proof⟩
then have a ▷∞ x . P x ∥ a ▷∞ x . P x a▷x−−−→ P x ∥ a ▷∞ x . P x ∥ a ▷∞ x . P x

⟨proof⟩
then show ?case

⟨proof⟩
qed
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Tools for bisimulation proofs for humans and machines

The Isabelle/Isar proof language
▶ Closer to usual mathematics than proof terms and tactics scripts
▶ Still precise and amenable to machine-checking

A formalized algebra of “up to” methods
▶ Concise bisimulation proofs that are machine-checked
▶ Simple construction of custom “up to” methods

Isabelle’s coinduction proof method
▶ Structured coinductive proofs
▶ Integration of “up to” methods via custom coinduction rules

Higher-order abstract syntax
▶ Less dealing with boring technicalities in proofs
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Follow the development

� https://github.com/input-output-hk/equivalence-reasoner
� https://github.com/input-output-hk/transition-systems
� https://github.com/input-output-hk/thorn-calculus
� https://github.com/input-output-hk/network-equivalences
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