
Asynchronous Session-Based Concurrency

Jorge A. Pérez
(joint work with Bas van den Heuvel)

University of Groningen, The Netherlands

ICE 2024 - 17th Interaction and Concurrency Experience
June 21, 2024

https://www.jperez.nl

This Talk Keywords (and Slogans)

I Process calculi
Miniature programming languages with communication and concurrency
Slogan: The π-calculus treats processes like the λ-calculus treats functions

I Asynchronous communication
Process communication without assuming a global clock
An observer has no way of knowing if the message he has sent has been received

I Type systems
Slogan: Well-typed programs can’t go wrong (Milner)

I Session types for correct communication between multiple partners
Slogan: What and when should be sent through a channel

I Deadlock-freedom
How to ensure that message-passing programs never “get stuck”?

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 2 / 51

This Talk A Difference and A Tension

I The difference
Synchronous and asynchronous communication in process calculi:

x[z].P | x(y).Q−→ P |Q{z/y} x[z].0 | P | x(y).Q−→ P |Q{z/y}

Asynchronous communication is unconstrained: no output processes, but
collections of messages that can be consumed by a corresponding input.

I The tension
Session types are all about constraining communications, with a good purpose:
enforcing useful communication structures that are key to correctness

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 3 / 51

This Talk A Difference and A Tension
I The difference

Synchronous and asynchronous communication in process calculi:

x[z].P | x(y).Q−→ P |Q{z/y} x[z].0 | P | x(y).Q−→ P |Q{z/y}

Asynchronous communication is unconstrained: no output processes, but
collections of messages that can be consumed by a corresponding input.

I Synchronous vs asynchronous matters when detecting deadlocks.
Two ‘synchronous’ deadlocked processes:

P = x[z].u(v).P1 | u[w].x(y).P2 Q = x[z].u[w].Q1 | u(v).x(y).Q2

I The tension
Session types are all about constraining communications, with a good purpose:
enforcing useful communication structures that are key to correctness

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 3 / 51

This Talk A Difference and A Tension

I The difference
Synchronous and asynchronous communication in process calculi:

x[z].P | x(y).Q−→ P |Q{z/y} x[z].0 | P | x(y).Q−→ P |Q{z/y}

Asynchronous communication is unconstrained: no output processes, but
collections of messages that can be consumed by a corresponding input.

I The tension
Session types are all about constraining communications, with a good purpose:
enforcing useful communication structures that are key to correctness

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 3 / 51

This Talk Our Work

A typed approach to deadlock-free programs with asynchronous communication.

I Define a core language with concurrency, called LASTn , with a simple type system;

I Compile LASTn programs into specifications in APCP, a typed process calculus;
use this abstract level to enforce deadlock-freedom using advanced types;

I Transfer deadlock-freedom guarantees, based on strong connections between the
LASTn and its process interpretation in APCP.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 4 / 51

This Talk Plan for Today

I Some context: asynchrony, sessions, progress/deadlock-freedom

I LASTn : A core language with functions and asynchronous concurrency

I The expressivity of LASTn , by example

I A session type system for LASTn (and its limitations)

I APCP: A typed π-calculus for deadlock-freedom in circular process networks

I Transference of deadlock-freedom from APCP to LASTn

Origin of the results

I Bas van den Heuvel’s PhD thesis. Available online.

I Preliminary results on ICE’21, EXPRESS/SOS’22, SCP’22, and Arxiv.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 5 / 51

https://doi.org/10.33612/diss.929078700
https://doi.org/10.4204/EPTCS.347.3
https://doi.org/10.4204/EPTCS.368.5
https://doi.org/10.1016/j.scico.2022.102840
https://arxiv.org/abs/2111.13091

Part I

Context

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 6 / 51

Asynchrony in Concurrency Honda and Tokoro (ECOOP’91)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 7 / 51

Asynchrony in Concurrency Boudol (INRIA TR, 1992)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 8 / 51

Asynchrony in Concurrency A Concurrent Discovery

I Asynchronous communication in the π-calculus discovered at the same time.

I Both proposals give encodings of the synchronous π-calculus.

I Boudol’s encoding follows a specific protocol based on fresh names:

Jx[z].P K = (νu)(x[u] | u(v).(v[z] | JP K))
Jx(y).QK = x(u).(νv)(u[v] | v(y).JQK))

I Honda and Tokoro’s encoding follows a different protocol:

Jx[z].P K = x(w).(w[z] | JP K)
Jx(y).QK = (νv)(x[v] | v(y).JQK)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 9 / 51

Asynchrony in Concurrency A Concurrent Discovery

I Asynchronous communication in the π-calculus discovered at the same time.

I Both proposals give encodings of the synchronous π-calculus.

I Boudol’s encoding follows a specific protocol based on fresh names:

Jx[z].P K = (νu)(x[u] | u(v).(v[z] | JP K))
Jx(y).QK = x(u).(νv)(u[v] | v(y).JQK))

I Honda and Tokoro’s encoding follows a different protocol:

Jx[z].P K = x(w).(w[z] | JP K)
Jx(y).QK = (νv)(x[v] | v(y).JQK)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 9 / 51

Asynchrony in Concurrency Progress in Sessions (FMOODS’07)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 10 / 51

Asynchrony in Concurrency LAST (JFP’10)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 11 / 51

Part II

Our Proposal: LASTn

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 12 / 51

LASTn Key Ideas

I A call-by-name variant of LAST (Linear Asynchronous Session Types) by Gay and
Vasconcelos (JFP, 2010)

I Explicit substitutions neatly “delay” substitutions within a term (runtime syntax)

I Explicit closing of sessions with dedicated garbage collection of buffers

I Sequential terms can communicate when organized within configurations

I Types ensure protocol fidelity and communication safety but not deadlock-freedom

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 13 / 51

https://doi.org/10.1017/S0956796809990268

LASTn Syntax

The syntax of terms (M,N) combines standard functional constructs (call-by-name)
with primitives for communication and concurrency:

M,N ::= x variable

| new create new channel

| () unit value

| λx.M abstraction

| M N application

| (M,N) construct pair

| let (x, y) = M inN deconstruct pair

| M⦃N/x⦄ explicit substitution

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 14 / 51

LASTn Syntax

The syntax of terms (M,N) combines standard functional constructs (call-by-name)
with primitives for communication and concurrency:

M,N ::= x | new create new channel

| () | spawnM ;N spawn M in parallel to N

| λx.M | sendM N send M along N

| M N | recvM receive along M

| (M,N) | select `M select label ` along M

| let (x, y) = M inN | caseM of {i : M}i∈I offer labels in I along M

| M⦃N/x⦄ | closeM ;N close M

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 14 / 51

LASTn Running Example: A Bookshop Scenario

A three-party protocol: a mother interacting with a bookshop to buy a book for her son.

I The shop receives a booktitle and then offers a choice between buying the book or
freely accessing its blurb.

I If the client decides to buy, the shop receives credit card information and sends the
book to the client. Otherwise, if the blurb is requested, the shop sends its text.

I The son delegates his session to her mother, who will complete the purchase.

Two sessions: one connects the son with the shop, another the mother with her son.
Using a different term per participant, we have the configuration:

Sys , � let (s, s′) = new in spawn Shops;
let (m,m′) = new in spawnMotherm;

Sons′,m′

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 15 / 51

LASTn Running Example: A Bookshop Scenario

A three-party protocol: a mother interacting with a bookshop to buy a book for her son.

I The shop receives a booktitle and then offers a choice between buying the book or
freely accessing its blurb.

I If the client decides to buy, the shop receives credit card information and sends the
book to the client. Otherwise, if the blurb is requested, the shop sends its text.

I The son delegates his session to her mother, who will complete the purchase.

Two sessions: one connects the son with the shop, another the mother with her son.
Using a different term per participant, we have the configuration:

Sys , � let (s, s′) = new in spawn Shops;
let (m,m′) = new in spawnMotherm;

Sons′,m′

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 15 / 51

LASTn Running Example: A Bookshop Scenario
The code for the son, which returns the result:

Sons′,m′ , let s′1 = send “Dune” s′ in
let s′2 = select buy s′1 in
letm′1 = send s′2m

′ in

let (book,m′2) = recvm′1 in
closem′2; book

The code for the mother:

Motherm , let (x,m1) = recvm in

letx1 = send visax in
let (book, x2) = recvx1 in
letm2 = send bookm1 in

closem2; closex2; ()

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 16 / 51

LASTn Running Example: A Bookshop Scenario
The code for the son, which returns the result:

Sons′,m′ , let s′1 = send “Dune” s′ in
let s′2 = select buy s′1 in
letm′1 = send s′2m

′ in

let (book,m′2) = recvm′1 in
closem′2; book

The code for the mother:

Motherm , let (x,m1) = recvm in

letx1 = send visax in
let (book, x2) = recvx1 in
letm2 = send bookm1 in

closem2; closex2; ()

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 16 / 51

LASTn Running Example: A Bookshop Scenario
The code for the shop:

Shops , let (title, s1) = recv s in
case s1 of {buy : λs2.let (card, s3) = recv s2 in

let s4 = send book(title) s3 in
close s4; (),

blurb : λs2.let s3 = send blurb(title) s2 in
close s3; ()}

Again, the code for the son:

Sons′,m′ , let s′1 = send “Dune” s′ in
let s′2 = select buy s′1 in
letm′1 = send s′2m

′ in

let (book,m′2) = recvm′1 in
closem′2; book

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 17 / 51

LASTn Semantics: Key Ideas

How to give semantics to our language? Our design is in two levels:

I Term reduction, noted −→M, handles functional operations.

I Communicating terms are organized in configurations, equipped with a dedicated
reduction relation, noted −→C.

I Hence, parallel threads and asynchronous (i.e., buffered) communication are
handled at the level of configurations.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 18 / 51

LASTn Semantics: Key Ideas
I Configurations (C,D,E) defined using terms, markers (φ) and messages (m,n):

φ ::= � | ♦
m,n ::= M | `

C,D,E ::= φM | C ‖ D | (νx[~m〉y)C | C⦃M/x⦄

I Reduction uses contexts for terms (R), threads (F), and configurations (G):

R ::= [·] |R M | sendM R | recvR | let (x, y) = R inM

| select `R | caseR of {i : M}i∈I | closeR;M |R⦃M/x⦄

F ::= φR

G ::= [·] | G ‖ C | (νx[~m〉y)G | G⦃M/x⦄

LASTn Semantics: Key Ideas

Rules for term reduction (−→M) and structural congruence for terms (≡M):

[red-lam]

(λx.M) N −→M M⦃N/x⦄

[red-pair]

let (x, y) = (M1,M2) inN −→M N⦃M1/x,M2/y⦄

[red-name-sub]

x⦃M/x⦄−→M M

[red-lift]

M −→M N

R[M]−→M R[N]

[sc-sub-ext]

x /∈ fv(R)

(R[M])⦃N/x⦄ ≡M R [M⦃N/x⦄]

[red-lift-sc]

M ≡M M
′ M ′ −→M N

′ N ′ ≡M N
M −→M N

LASTn Semantics: Key Ideas

Some rules for configuration reduction (−→C) use special thread contexts, denoted F̂ ,
which do not affect variables bound by explicit substitutions:

[red-new]

F [new]−→C (νx[ε〉y)(F [(x, y)])

[red-send]

(νx[~m〉y)(F̂ [sendM x] ‖ C)−→C (νx[M, ~m〉y)(F̂ [x] ‖ C)

[red-recv]

(νx[~m,M〉y)(F̂ [recv y] ‖ C)−→C (νx[~m〉y)(F̂ [(M, y)] ‖ C)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 21 / 51

LASTn Semantics: Key Ideas

We also use rules that enforce garbage-collection of closed sessions:

[red-close]

(νx[~m〉y)(F [closex;M] ‖ C)−→C (ν�[~m〉y)(F [M] ‖ C)

[red-res-nil]

(ν�[ε〉�)C −→C C

[red-par-nil]

C ‖ ♦ ()−→C C

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 22 / 51

LASTn A Simple Example

(
λx.x (λy.y)

) (
(λw.w) (λz.z)

)
−→M

(
x (λy.y)

)
⦃

(
(λw.w) (λz.z)

)
/x⦄

≡M (x⦃
(
(λw.w) (λz.z)

)
/x⦄) (λy.y)

−→M

(
(λw.w) (λz.z)

)
(λy.y)

−→M (w⦃(λz.z)/w⦄) (λy.y)

−→M (λz.z) (λy.y)

−→M z⦃(λy.y)/z⦄

−→M λy.y

Note: β-reduction induces explicit substitutions, which are “pushed inside” contexts.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 23 / 51

LASTn The Bookshop Scenario, Revisited

The entire system:

Sys , � let (s, s′) = new in spawn Shops;
let (m,m′) = new in spawnMotherm;

Sons′,m′

The code for the shop:

Shops , let (title, s1) = recv s in
case s1 of {buy : λs2.let (card, s3) = recv s2 in

let s4 = send book(title) s3 in
close s4; (),

blurb : λs2.let s3 = send blurb(title) s2 in
close s3; ()}

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 24 / 51

LASTn Type System

Types include functional types (T , U) and session types for communication (S):

T , U ::= T × U pair S ::= !T.S send

| T (U function | ?T.S receive

| 1 unit | ⊕{i : T}i∈I select

| S session | &{i : T}i∈I branch

| end

Aligned with our semantics, ‘�’ to denotes the session type for already closed endpoints.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 25 / 51

LASTn Type System

Given a session type S, its dual type S characterizes compatible behaviors.
In defining duality, only the continuations of send and receive types are dualized.

!T.S = ?T.S ?T.S = !T.S

⊕{i : Si}i∈I = &{i : Si}i∈I &{i : Si}i∈I = ⊕{i : Si}i∈I end = end

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 26 / 51

LASTn Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.

I Judgments for terms:
Γ `M M : T

where the typing context Γ is a list of variable-type assignments x : T .

I Judgments for buffered channels:

Γ `B [~m〉 : S ′ > S

where S denotes a sequence of sends and selections corresponding to the values
and labels in ~m, after which the type continues as S ′.

I Judgments for configurations:
Γ `φC C : T

where φ says whether C contains the main thread (φ = �) or child threads (φ = ♦).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 27 / 51

LASTn Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.

I Judgments for terms:
Γ `M M : T

where the typing context Γ is a list of variable-type assignments x : T .

I Judgments for buffered channels:

Γ `B [~m〉 : S ′ > S

where S denotes a sequence of sends and selections corresponding to the values
and labels in ~m, after which the type continues as S ′.

I Judgments for configurations:
Γ `φC C : T

where φ says whether C contains the main thread (φ = �) or child threads (φ = ♦).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 27 / 51

LASTn Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.

I Judgments for terms:
Γ `M M : T

where the typing context Γ is a list of variable-type assignments x : T .

I Judgments for buffered channels:

Γ `B [~m〉 : S ′ > S

where S denotes a sequence of sends and selections corresponding to the values
and labels in ~m, after which the type continues as S ′.

I Judgments for configurations:
Γ `φC C : T

where φ says whether C contains the main thread (φ = �) or child threads (φ = ♦).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 27 / 51

LASTn Selected Typing Rules

[typ-abs]

Γ, x : T `M M : U

Γ `M λx.M : T (U

[typ-unit]

∅ `M () : 1

[typ-sub]

Γ, x : T `M M : U ∆ `M N : T

Γ,∆ `M M⦃N/x⦄ : U

[typ-spawn]

Γ `M M : 1 ∆ `M N : T
Γ,∆ `M spawnM ;N : T

[typ-buf]

∅ `B [ε〉 : S ′ > S ′

[typ-buf-send]

Γ `M M : T ∆ `B [~m〉 : S ′ > S

Γ,∆ `B [~m,M〉 : S ′ > !T.S

[typ-buf-sel]

Γ `B [~m〉 : S ′ > Sj j ∈ I
Γ `B [~m, j〉 : S ′ > ⊕{i : Si}i∈I

[typ-buf-end-L]

∅ `B [ε〉 : end > �

[typ-buf-end-R]

∅ `B [ε〉 : � > end
Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 28 / 51

LASTn Guarantees Derived From Typing

Theorem (Type Preservation for LASTn)
Given Γ `φC C : T , if C ≡C D or C −→C D, then Γ `φC D : T .

We have protocol fidelity and communication safety, but not deadlock-freedom.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 29 / 51

LASTn Typing Does Not Exclude Deadlocks
I The term Ma,b: it sends on a, receives on b, and then closes both sessions

Ma,b := let a1 = send () a in
let (v, b1) = recv b in
close a1; close b1; v

I The configuration C uses two instances of M−,− in different threads:

C := � let (x, x′) = new in

let (y, y′) = new in

spawnMx,y;My′,x′

I We would like the two threads to communicate. However, they get stuck:

Mx,y −→M

(
let (v, y1) = recv y in . . .

)
⦃send ()x/x1⦄ =: M ′

x,y 6−→M

My′,x′ −→M

(
let (v′, x′1) = recvx′ in . . .

)
⦃send () y′/y′1⦄ =: M ′

y′,x′ 6−→M

C −→9
C (νs[ε〉s′)(νt[ε〉t′)

(
♦M ′

x,t⦃s/x⦄ ‖ �M ′
y′,s′⦃t

′/y′⦄
)
6−→C

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 30 / 51

LASTn Typing Does Not Exclude Deadlocks
I The term Ma,b: it sends on a, receives on b, and then closes both sessions

Ma,b := let a1 = send () a in
let (v, b1) = recv b in
close a1; close b1; v

I The configuration C uses two instances of M−,− in different threads:

C := � let (x, x′) = new in

let (y, y′) = new in

spawnMx,y;My′,x′

I We would like the two threads to communicate. However, they get stuck:

Mx,y −→M

(
let (v, y1) = recv y in . . .

)
⦃send ()x/x1⦄ =: M ′

x,y 6−→M

My′,x′ −→M

(
let (v′, x′1) = recvx′ in . . .

)
⦃send () y′/y′1⦄ =: M ′

y′,x′ 6−→M

C −→9
C (νs[ε〉s′)(νt[ε〉t′)

(
♦M ′

x,t⦃s/x⦄ ‖ �M ′
y′,s′⦃t

′/y′⦄
)
6−→C

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 30 / 51

LASTn Typing Does Not Exclude Deadlocks

Clearly, there are deadlock-free alternatives to Ma,b. For instance:

Na,b := let a1 = send () a in
close a1;

let (v, b1) = recv b in
close b1; v

We would like a general technique that excludes deadlocked configurations such as C.
We could either

1. Strengthen the type system of LASTn so as to exclude deadlocks

2. Transfer the deadlock-freedom guarantee from an external type system

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 31 / 51

Part III

APCP

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 32 / 51

APCP Asynchronous Priority-based Classical Processes

I APCP: a session type system for asynchronous π-calculus processes.

I Key features: cyclic process networks and recursion.

I Extends the Curry-Howard correspondences between linear logic and session types.

I Priorities on types are used to rule out circular dependencies in processes
(Kobayashi, 2006; Padovani, 2014; Dardha and Gay, 2018).

I Key properties: session fidelity, communication safety, and deadlock-freedom.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 33 / 51

APCP Syntax

Process syntax:

P,Q ::= x[a, b] send | x(y, z);P receive

| x[b] / ` selection | x(z) . {i : P}i∈I branch

| (νxy)P restriction | P |Q parallel

| 0 inaction | [x↔ y] forwarder

| µX(z̃);P recursive definition | X〈z̃〉 recursive call

Derivable constructs We use the following syntactic sugar:

x[y] · P := (νya)(νzb)(x[a, b] | P{z/x}) x / ` · P := (νzb)(x[b] / ` | P{z/x})
x(y);P := x(y, z);P{z/x} x . {i : Pi}i∈I := x(z) . {i : Pi{z/x}}i∈I

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 34 / 51

APCP Syntax

Process syntax:

P,Q ::= x[a, b] send | x(y, z);P receive

| x[b] / ` selection | x(z) . {i : P}i∈I branch

| (νxy)P restriction | P |Q parallel

| 0 inaction | [x↔ y] forwarder

| µX(z̃);P recursive definition | X〈z̃〉 recursive call

Derivable constructs We use the following syntactic sugar:

x[y] · P := (νya)(νzb)(x[a, b] | P{z/x}) x / ` · P := (νzb)(x[b] / ` | P{z/x})
x(y);P := x(y, z);P{z/x} x . {i : Pi}i∈I := x(z) . {i : Pi{z/x}}i∈I

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 34 / 51

APCP Reduction Semantics

[red-send-recv]

(νxy)(x[a, b] | y(z, y′);Q)−→Q{a/z, b/y′}

[red-sel-bra]

j ∈ I
(νxy)(x[b] / j | y(y′) . {i : Qi}i∈I)−→Qj{b/y′}

[red-fwd]

y 6= z

(νxy)([x↔ z] | P)−→ P{z/y}

[red-cong]

P ≡ P ′ P ′ −→Q′ Q′ ≡ Q
P −→Q

[red-res]

P −→Q

(νxy)P −→ (νxy)Q

[red-par]

P −→Q

P |R−→Q |R
Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 35 / 51

APCP Reduction Semantics

Consider process P (with the sugared syntax):

P = (νzu)((νxy)(x[v1] · x[v2] · 0 | z[v3] · y(w1); y(w2);Q
′) | u(w3);R

′)

where Q′ , Q{y/y′′} and R′ , R{u/u′}.

We have:

P −→ (νzu)((νxy)(x[v2] · 0 | z[v3] · y(w2);Q
′{v1/w1}) | u(w3);R

′)

P −→ (νxy)(x[v1] · x[v2] · 0 | y(w1); y(w2);Q
′) |R′{v3/w3}

Note: There is no reduction involving from P the send on x′, since x′ is connected to
the continuation name of the send on x and is thus not (yet) paired with a dual receive.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 36 / 51

APCP Reduction Semantics

Consider process P (with the sugared syntax):

P = (νzu)((νxy)(x[v1] · x[v2] · 0 | z[v3] · y(w1); y(w2);Q
′) | u(w3);R

′)

where Q′ , Q{y/y′′} and R′ , R{u/u′}.

We have:

P −→ (νzu)((νxy)(x[v2] · 0 | z[v3] · y(w2);Q
′{v1/w1}) | u(w3);R

′)

P −→ (νxy)(x[v1] · x[v2] · 0 | y(w1); y(w2);Q
′) |R′{v3/w3}

Note: There is no reduction involving from P the send on x′, since x′ is connected to
the continuation name of the send on x and is thus not (yet) paired with a dual receive.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 36 / 51

APCP Type System
APCP types processes by assigning binary session types to names.

I We write ◦, π, ρ, . . . to denote priorities.

I The ultimate priority ω is greater than all other priorities and cannot be increased.
That is, ∀◦ ∈ N. ω > ◦ and ∀◦ ∈ N. ω + ◦ = ω.

I Session types (linear logic propositions) include priorities:

A,B ::= A⊗◦ B | A &◦ B |⊕◦{i : A}i∈I |&◦{i : A}i∈I | • | µX.A |X

where • denotes the self-dual type for ‘end’.

I The dual of session type A, denoted A, is defined inductively as follows:

A⊗◦ B , A

&◦ B ⊕◦{i : Ai}i∈I , &◦{i : Ai}i∈I • , • µX.A , µX.A

A

&◦ B , A⊗◦ B &◦{i : Ai}i∈I , ⊕◦{i : Ai}i∈I X , X

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 37 / 51

APCP Type System

Prefixes with lower priority are not blocked by those with higher priority.

Essential laws:

1. Sends and selections with priority ◦ must have continuations/payloads with priority
strictly larger than ◦;

2. A prefix with priority ◦ must be prefixed only by receives and branches with priority
strictly smaller than ◦;

3. Dual prefixes leading to a synchronization must have equal priorities.

Judgments are of the form Ω ` P :: Γ, where:

I P is a process;

I Γ is a context that assigns types to channels (x : A);

I Ω is a context that assigns tuples of types to recursion variables (X : (A,B, . . .)).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 38 / 51

APCP Type System

Prefixes with lower priority are not blocked by those with higher priority.

Essential laws:

1. Sends and selections with priority ◦ must have continuations/payloads with priority
strictly larger than ◦;

2. A prefix with priority ◦ must be prefixed only by receives and branches with priority
strictly smaller than ◦;

3. Dual prefixes leading to a synchronization must have equal priorities.

Judgments are of the form Ω ` P :: Γ, where:

I P is a process;

I Γ is a context that assigns types to channels (x : A);

I Ω is a context that assigns tuples of types to recursion variables (X : (A,B, . . .)).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 38 / 51

APCP Typing Rules (Selected)

[typ-send]

◦ < pr(A), pr(B)

Ω ` x[y, z] :: x : A⊗◦ B, y : A, z : B

[typ-recv]

Ω ` P :: Γ, y : A, z : B ◦ < pr(Γ)

Ω ` x(y, z);P :: Γ, x : A

&◦ B

[typ-end]

Ω ` P :: Γ
Ω ` P :: Γ, x : •

[typ-par]

Ω ` P :: Γ Ω ` Q :: ∆

Ω ` P |Q :: Γ,∆

[typ-res]

Ω ` P :: Γ, x : A, y : A

Ω ` (νxy)P :: Γ

...

[typ-send?]

Ω ` P :: Γ, y : A, x : B ◦ < pr(A), pr(B)

Ω ` x[y] · P :: Γ, x : A⊗◦ B

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 39 / 51

APCP Properties Derived From Typing

In APCP, type preservation corresponds to the elimination of (top-level) applications of
Rule [type-res].

Theorem (Subject Reduction, Simplified)
If Ω ` P :: Γ and P −→Q, then there exists Γ′ such that Ω ` Q :: Γ′.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 40 / 51

APCP Properties Derived From Typing

I A process is deadlocked if it is not the inactive process and cannot reduce.

I Following Dardha and Gay, we target the elimination of [type-res].

I In APCP, Rule [type-res] is key in our sugared notation to bind asynchronous
sends/selections and their continuations.
These occurrences of [type-res] cannot be eliminated via reduction.

To formulate deadlock-freedom, we use two auxiliary notions:

I The active names of P , denoted an(P):
the set of (free) names that are used for non-blocked communications (send,
receive, selection, branch)

I Evaluation contexts, denoted E .

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 41 / 51

APCP Properties Derived From Typing

I A process is deadlocked if it is not the inactive process and cannot reduce.

I Following Dardha and Gay, we target the elimination of [type-res].

I In APCP, Rule [type-res] is key in our sugared notation to bind asynchronous
sends/selections and their continuations.
These occurrences of [type-res] cannot be eliminated via reduction.

To formulate deadlock-freedom, we use two auxiliary notions:

I The active names of P , denoted an(P):
the set of (free) names that are used for non-blocked communications (send,
receive, selection, branch)

I Evaluation contexts, denoted E .

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 41 / 51

APCP Properties Derived From Typing

Definition (Live Process)
A process P is live, denoted live(P), if

1. there are names x, y and process P ′ such that P ≡ (νxy)P ′ with x, y ∈ an(P ′), or

2. there are names x, y, z and process P ′ such that P ≡ E
[
(νyz)([x↔ y] | P ′)

]
and

z 6= x (i.e., the forwarder is independent).

Lemma
If ∅ ` P :: ∅ and P is not live, then P must be 0.

Theorem (Progress)
If ∅ ` P :: Γ and live(P), then there is a process Q such that P −→Q.

Theorem (Deadlock-freedom)
If ∅ ` P :: ∅, then either P ≡ 0 or P −→Q for some Q.

Translating LASTn into APCP Key Ideas

To translate LASTn into APCP, we follow Milner’s translation of the lazy λ-calculus.

I In LASTn , variables are (i) placeholders for future substitutions and (ii) access
points to buffered channels.

I Accordingly, we translate variables as APCP endpoints that (i) enable the translation
of explicit substitutions and (ii) enable interaction with the translation of buffers

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 43 / 51

Translating LASTn into APCP Key Ideas

Given a configuration C, we define an APCP process JCKz, where z is a fresh name.
We also define translations of types and buffers.

We establish correctness for our translation following Gorla’s correctness criteria:

Completeness Given Γ `φC C : T , if C −→C D, then JCKz −→∗ JDKz.

Soundness Given Γ `φC C : T , if JCKz −→∗ Q, then there exists D such that C −→∗CD
and Q−→∗ JDKz.

Soundness is critical to transfer deadlock-freedom from APCP to LASTn

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 44 / 51

Translating LASTn into APCP Key Ideas

Given a configuration C, we define an APCP process JCKz, where z is a fresh name.
We also define translations of types and buffers.

We establish correctness for our translation following Gorla’s correctness criteria:

Completeness Given Γ `φC C : T , if C −→C D, then JCKz −→∗ JDKz.

Soundness Given Γ `φC C : T , if JCKz −→∗ Q, then there exists D such that C −→∗CD
and Q−→∗ JDKz.

Soundness is critical to transfer deadlock-freedom from APCP to LASTn

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 44 / 51

Translating LASTn into APCP Translating Types
Our typed translation takes a typed term Γ `M M : T and returns a typed process

∗̀ JMKz :: LΓM, z : JT K.

where ∗̀ means typability in APCP ignoring priority checks.

Translation of types:

LT M , • ⊗ JT K (if T 6= �)

JT × UK , LT M⊗ LUM JT (UK , LT M

&

JUK J1K , •
J!T.SK , • ⊗ LT M

&

LSM J⊕{i : Si}i∈IK , • ⊗&{i : LSiM}i∈I JendK , • ⊗ •
J?T.SK , LT M⊗ LSM J&{i : Si}i∈IK , ⊕{i : LSiM}i∈I J�K , L�M , •

Intuitively, session types such as ‘• ⊗ . . .’ codify the enabling of an interaction (with an
explicit substitution or with a buffer). A kind of “announcement” for interacting parties.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 45 / 51

Translating LASTn into APCP Translating Terms (Selection)

Below, we write ‘ ’ to denote a fresh name of type • .
When sending names denoted ‘ ’, we omit binders ‘(ν)’.

[typ-var] JxKz , x[, z]

[typ-abs] Jλx.MKz , z(x, a); JMKa receive x, then run body

[typ-app] JM NKz , (νab)(νcd)(JMKa run abstraction

| b[c, z] trigger function body

| d(, e); JNKe) parameter as future substitution

[typ-sub] JM⦃N/x⦄Kz , (νxa)(JMKz run body

a(, b); JNKb) block until body is variable

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 46 / 51

Translating LASTn into APCP Translating Terms (Selection)

[typ-new] JnewKz , (νab)(a[, z] activate buffer

| b(, c); (νdx)(νey)(block until activated

J[ε〉Kd〉e prepare buffer

| J(x, y)Kc)) return pair of endpoints

[typ-send] JsendM NKz , (νab)(νcd)(a(, e); JMKe block payload until received

| JNKc run channel term to activate buffer

| d(, f); (νgh)(wait for buffer to activate

f [b, g] send to buffer

| h[, z])) prepare returned endpoint variable

[typ-recv] JrecvMKz , (νab)(JMKa run channel term to activate buffer

| b(c, d); receive from buffer

(νef)(z[c, e] | f(, g); d[, g])) returned pair

Translating LASTn into APCP Deadlock-Free LASTn

I Well-typed APCP processes typable under the empty context are deadlock-free.

I We transfer this result to LASTn configurations using the operational correctness
of our translation (completeness and soundness properties).

Each deadlock-free configuration in LASTn thus obtained satisfies two requirements:

I It is typable ∅ `�
C C : 1, i.e., it needs no resources and has no external behavior.

I The typed translation of the configuration satisfies priority requirements in APCP.

Theorem (Deadlock-freedom for LASTn)
Given ∅ `�

C C : 1, if ` JCKz :: Γ for some Γ, then C ≡ � () or C −→C D for some D.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 48 / 51

Part IV

Conclusion

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 49 / 51

Conclusion

Summary:

I Two typed models of asynchronous message-passing concurrency: LASTn and APCP

I Models in between synchronous and untyped asynchronous communication.

I Defined at different levels of abstraction, and connected via a correct translation

I The design of LASTn builds upon the best features of APCP

I Our approach leverages already developed machinery (for APCP) and keeps the
formulation of LASTn within familiar territory

Future work:

I Priority inference for APCP, adapting Kobayashi’s work

I Recursive types in LASTn

I Behavioral theory for LASTn (by leveraging APCP)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 50 / 51

Conclusion Shameless Plug

I Foundational Course at ESSLLI 2024 (Leuven,
Belgium), July 29 - August 2.

I Dan Frumin and yt.
Propositions as Sessions: Logical
Foundations of Concurrent Computation.

I Registration still possible!

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 51 / 51

Asynchronous Session-Based Concurrency

Jorge A. Pérez
(joint work with Bas van den Heuvel)

University of Groningen, The Netherlands

ICE 2024 - 17th Interaction and Concurrency Experience
June 21, 2024

https://www.jperez.nl

Part VI

Extras

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 2 / 12

Extras LASTn

Additional rules for configuration reduction (−→C):

[red-select]

(νx[~m〉y)(F [select ` x] ‖ C)−→C (νx[`, ~m〉y)(F [x] ‖ C)

[red-case]

j ∈ I
(νx[~m, j〉y)(F [case y of {i : Mi}i∈I] ‖ C)−→C (νx[~m〉y)(F [Mj y] ‖ C)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 3 / 12

Extras LASTn

Additional rules for configuration reduction (−→C):

[red-spawn]

F̂ [spawnM ;N]−→C F̂ [N] ‖ ♦M

[red-lift-C]

C −→C C
′

G[C]−→C G[C ′]

[red-lift-M]

M −→M M
′

F [M]−→C F [M ′]

[red-conf-lift-sc]

C ≡C C
′ C ′ −→C D

′ D′ ≡C D
C −→C D

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 4 / 12

Extras Typing Rules (1/4)

[typ-var]

x : T `M x : T

[typ-abs]

Γ, x : T `M M : U

Γ `M λx.M : T (U

[typ-app]

Γ `M M : T (U ∆ `M N : T
Γ,∆ `M M N : U

[typ-pair]

Γ `M M : T ∆ `M N : U

Γ,∆ `M (M,N) : T × U

[typ-split]

Γ `M M : T × T ′ ∆, x : T , y : T ′ `M N : U

Γ,∆ `M let (x, y) = M inN : U

[typ-unit]

∅ `M () : 1

[typ-sub]

Γ, x : T `M M : U ∆ `M N : T

Γ,∆ `M M⦃N/x⦄ : U

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 5 / 12

Extras Typing Rules (2/4)

[typ-new]

∅ `M new : S × S

[typ-send]

Γ `M M : T ∆ `M N : !T.S
Γ,∆ `M sendM N : S

[typ-sel]

Γ `M M : ⊕{i : Si}i∈I j ∈ I
Γ `M select j M : Sj

[typ-recv]

Γ `M M : ?T.S
Γ `M recvM : T × S

[typ-case]

Γ `M M : &{i : Si}i∈I ∀i ∈ I. ∆ `M Ni : Si(U

Γ,∆ `M caseM of {i : Ni}i∈I : U

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 6 / 12

Extras Typing Rules (3/4)

[typ-close]

Γ `M M : end ∆ `M N : T
Γ,∆ `M closeM ;N : T

[typ-spawn]

Γ `M M : 1 ∆ `M N : T
Γ,∆ `M spawnM ;N : T

We need rules for buffers and “half-closed” sessions:

[typ-buf]

∅ `B [ε〉 : S ′ > S ′

[typ-buf-send]

Γ `M M : T ∆ `B [~m〉 : S ′ > S

Γ,∆ `B [~m,M〉 : S ′ > !T.S

[typ-buf-sel]

Γ `B [~m〉 : S ′ > Sj j ∈ I
Γ `B [~m, j〉 : S ′ > ⊕{i : Si}i∈I

[typ-buf-end-L]

∅ `B [ε〉 : end > �

[typ-buf-end-R]

∅ `B [ε〉 : � > end

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 7 / 12

Extras Typing Rules (4/4)

Below, T̂ denotes a non-session type:

[typ-main]

Γ `M M : T̂

Γ `�
C �M : T̂

[typ-par]

Γ `φ1C C : T1 ∆ `φ2C D : T2

Γ,∆ `φ1+φ2C C ‖ D : T1 + T2

[typ-child]

Γ `M M : 1

Γ `♦
C ♦M : 1

[typ-res]

Γ `B [~m〉 : S ′ > S ∆, x : S ′ `φC C : T Γ′, y : S = Γ,∆

Γ′ `φC (νx[~m〉y)C : T

[typ-conf-sub]

Γ, x : T `φC C : U ∆ `M M : T

Γ,∆ `φC C⦃M/x⦄ : U

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 8 / 12

Extras Example of Typing

We illustrate the typing of half-closed sessions on the configuration

� book(“Dune”) ‖ (νy[ε〉�)♦ close y

We write B (book) to denote a primitive non-linear type that can be
weakened/contracted at will and is self-dual. We have:

∅ `M book(“Dune”) : B
[t-main]

∅ `�
C � book(“Dune”) : B

[t-var]
y : end `M y : end

[t-unit]
∅ `M () : 1

[t-close]
y : end `M close y; () : 1

[t-child]
y : end `♦

C ♦ close y; () : 1
[t-bl]

∅ `B [ε〉 : end > �
[t-res]

∅ `♦
C (νy[ε〉�)♦ close y; () : 1

[t-par]
∅ `�

C � book(“Dune”) ‖ (νy[ε〉�)♦ close y; () : B

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 9 / 12

Extras The Booking Scenario
Consider the system where all session interactions have taken place, and all three
threads are ready to close their sessions:

Sys−→∗C (νy[ε〉y′)
(
(νz′[ε〉z)

(
� close z′; book(“Dune”) ‖ ♦ close z; close y′

)
‖ ♦ close y

)
−→C � book(“Dune”) ‖ (νy[ε〉y′)

(
(ν�[ε〉z)♦ close z; close y′ ‖ ♦ close y

)
≡C � book(“Dune”) ‖ (νy[ε〉y′)

(
(νz[ε〉�)♦ close z; close y′ ‖ ♦ close y

)
−→C � book(“Dune”) ‖ (νy[ε〉y′)

(
(ν�[ε〉�)♦ close y′ ‖ ♦ close y

)
−→C � book(“Dune”) ‖ (νy[ε〉y′)

(
♦ close y′ ‖ ♦ close y

)
≡C � book(“Dune”) ‖ (νy′[ε〉y)

(
♦ close y′ ‖ ♦ close y

)
−→C � book(“Dune”) ‖ ♦ () ‖ (ν�[ε〉y)♦ close y
−→C � book(“Dune”) ‖ (ν�[ε〉y)♦ close y
≡C � book(“Dune”) ‖ (νy[ε〉�)♦ close y (∗)
−→C � book(“Dune”) ‖ (ν�[ε〉�)♦()−→C � book(“Dune”) ‖ ♦()−→C � book(“Dune”)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 10 / 12

Extras Typing in APCP, by Example

We give the typing of the two consecutive sends on x (omitting the context Ω):

◦ < pr(A1), π
[typ-send]

` x[v1, a] :: x : A1 ⊗◦ A2 ⊗π B,
v1 : A1, a : A2 ⊗π B

π < pr(A2), pr(B)
[typ-send]

` x′[v2, b] :: x′ : A2 ⊗π B,
v2 : A2, b : B

[typ-par]

` x[v1, a] | x′[v2, b] :: v1 : A1, v2 : A2, b : B, x : A1 ⊗◦ A2 ⊗π B,
a : A2 ⊗π B, x′ : A2 ⊗π B

[typ-res]

` (νax′)(x[v1, a] | x′[v2, b]) :: v1 : A1, v2 : A2, b : B, x : A1 ⊗◦ A2 ⊗π B

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 11 / 12

Extras Typing in APCP, by Example

Let us type the consecutive inputs on y, i.e., the subprocess y(w1, y
′); y′(w2, y

′′);Q.

Because x and y are dual names in P , the type of y should be dual to the type of x:

` Q :: Γ, w1 : A1, w2 : A2, y
′′ : B π < pr(Γ, w1 : A1)

[typ-recv]

` y′(w2, y
′′);Q :: Γ, w1 : A1, y

′ : A2

&π B ◦ < pr(Γ)
[typ-recv]

` y(w1, y
′); y′(w2, y

′′);Q :: Γ, y : A1

&◦ A2

&π B

These two derivations tell us that

◦ < π < pr(A1), pr(A2), pr(B), pr(Γ)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 12 / 12

	This Talk
	Keywords (and Slogans)
	A Difference and A Tension
	Our Work
	Plan for Today

	Context
	Asynchrony in Concurrency
	Honda and Tokoro (ECOOP'91)
	Boudol (INRIA TR, 1992)
	A Concurrent Discovery
	Progress in Sessions (FMOODS'07)
	LAST (JFP'10)

	Our Proposal: LASTn
	LASTn
	Key Ideas
	Syntax
	Running Example: A Bookshop Scenario
	Semantics: Key Ideas
	A Simple Example
	The Bookshop Scenario, Revisited
	Type System
	Typing Judgments
	Selected Typing Rules
	Guarantees Derived From Typing
	Typing Does Not Exclude Deadlocks

	APCP
	APCP
	Asynchronous Priority-based Classical Processes
	Syntax
	Reduction Semantics
	Type System
	Typing Rules (Selected)
	Properties Derived From Typing

	Translating LASTn into APCP
	Key Ideas
	Translating Types
	Translating Terms (Selection)
	Deadlock-Free LASTn

	Conclusion
	Conclusion
	Shameless Plug

	Appendix
	Extras
	Extras
	LASTn
	Typing Rules (1/4)
	Typing Rules (2/4)
	Typing Rules (3/4)
	Typing Rules (4/4)
	Example of Typing
	The Booking Scenario
	Typing in APCP, by Example

