Asynchronous Session-Based Concurrency

Jorge A. Pérez
(joint work with Bas van den Heuvel)

University of Groningen, The Netherlands

ICE 2024 - 17th Interaction and Concurrency Experience
June 21, 2024

UNIFYING
CeRRECTNESS FOR

Ce MMUNICATING
SeFTWARE

https://www.jperez.nl

This Talk Keywords (and Slogans)

» Process calculi
Miniature programming languages with communication and concurrency
Slogan: The m-calculus treats processes like the A-calculus treats functions

» Asynchronous communication
Process communication without assuming a global clock
An observer has no way of knowing if the message he has sent has been received

» Type systems
Slogan: Well-typed programs can't go wrong (Milner)

» Session types for correct communication between multiple partners
Slogan: What and when should be sent through a channel

» Deadlock-freedom
How to ensure that message-passing programs never “get stuck”?

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 2 /51

This Talk A Difference and A Tension

» The difference
Synchronous and asynchronous communication in process calculi:

w[z].P | 2(y).Q — P | Q{z/y} z[z].0| P |x(y).Q — P | Q{z/y}

Asynchronous communication is unconstrained: no output processes, but
collections of messages that can be consumed by a corresponding input.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 3/51

This Talk A Difference and A Tension

» The difference
Synchronous and asynchronous communication in process calculi:

zz].P | x(y).Q — P| Q{z/y} z[z].0| P|xz(y).Q — P | Q{z/y}

Asynchronous communication is unconstrained: no output processes, but
collections of messages that can be consumed by a corresponding input.

» Synchronous vs asynchronous matters when detecting deadlocks.
Two ‘synchronous’ deadlocked processes:

P = z[z]u(v). Py | u[w].z(y). P Q = z[z].ufw].Q1 | u(v).z(y).Q2

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 3/51

This Talk A Difference and A Tension

» The difference
Synchronous and asynchronous communication in process calculi:

z[z].P | x(y).Q — P Q{z/y} z[z].0[P|z(y).Q — P Q{z/y}
Asynchronous communication is unconstrained: no output processes, but
collections of messages that can be consumed by a corresponding input.

» The tension
Session types are all about constraining communications, with a good purpose:
enforcing useful communication structures that are key to correctness

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 3/51

This Talk Our Work

A typed approach to deadlock-free programs with asynchronous communication.

» Define a core language with concurrency, called LAST", with a simple type system;

» Compile LAST™ programs into specifications in APCP, a typed process calculus;
use this abstract level to enforce deadlock-freedom using advanced types;

» Transfer deadlock-freedom guarantees, based on strong connections between the
LAST” and its process interpretation in APCP.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 4 /51

This Talk Plan for Today

» Some context: asynchrony, sessions, progress/deadlock-freedom
» LAST™: A core language with functions and asynchronous concurrency
» The expressivity of LAST", by example
> A session type system for LAST™ (and its limitations)
» APCP: A typed m-calculus for deadlock-freedom in circular process networks
» Transference of deadlock-freedom from APCP to LAST"
Origin of the results
» Bas van den Heuvel's PhD thesis. Available online.
» Preliminary results on ICE'21, EXPRESS/S0OS'22, SCP'22, and Arxiv.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 5/51

https://doi.org/10.33612/diss.929078700
https://doi.org/10.4204/EPTCS.347.3
https://doi.org/10.4204/EPTCS.368.5
https://doi.org/10.1016/j.scico.2022.102840
https://arxiv.org/abs/2111.13091

Part |

Context

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 6 /51

Asynchrony in Concurrency ~ Honda and Tokoro (ECOOP'91)

An Object Calculus for Asynchronous Communication

Kohei Honda and Mario Tokoro*

Abstract

This paper presents a formal system based on the notion of objects and asynchronous com-
munication. Built on Milner’s work on 7-calculus, the communication primitive of the formal
system is purely based on asynchronous communication, which makes it unique among vari-
ous concurrency formalisms. Computationally this results in a consistent reduction of Milner’s
calculus, while retaining the same expressive power. Seen semantically asynchronous commu-
nication induces a surprisingly different framework where bisimulation is strictly more general
than its synchronous counterpart. This paper shows basic construction of the formal system
along with several illustrative examples.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 7 /51

Asynchrony in Concurrency Boudol (INRIA TR, 1992)

Asynchrony and the r-calculus

(Note)

Gérard Boudol
INRIA Sophia-Antipolis
06560-VALBONNE FRANCE
Abstract.

We introduce an asynchronous version of Milner’s m-calculus, based on the idea that the messages
are elementary processes that can be sent without any sequencing constraint. We show that this
simple message passing discipline, together with the restriction construct making a name private
for an agent, is enough to encode the synchronous communication of the x-calculus.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 8 /51

Asynchrony in Concurrency A Concurrent Discovery

» Asynchronous communication in the m-calculus discovered at the same time.
» Both proposals give encodings of the synchronous m-calculus.

» Boudol's encoding follows a specific protocol based on fresh names:

[x[z]. Pl = (vu)(2[u] [u(v)-(v]z] [[PT))
[2(y). Q] = @(u).(vo)(ulv] [v(y).[Q]))

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 9 /51

Asynchrony in Concurrency A Concurrent Discovery

» Asynchronous communication in the m-calculus discovered at the same time.
» Both proposals give encodings of the synchronous m-calculus.

» Boudol's encoding follows a specific protocol based on fresh names:

[x[z]. Pl = (vu)(2[u] [u(v)-(v]z] [[PT))
[2(y). Q] = @(u).(vo)(ulv] [v(y).[Q]))

» Honda and Tokoro's encoding follows a different protocol:

[x[z].P] = w(w).(wlz] | [P])
[2(y). Q] = (vo)(z[v] [v(y).[Q])

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 9 /51

Asynchrony in Concurrency Progress in Sessions (FMOODS'07)

Asynchronous Session Types and Progress for
Object Oriented Languages™

Mario Coppo', Mariangiola Dezani-Ciancaglini', and Nobuko Yoshida®

Abstract. A session type is an abstraction of a sequence of heterogeneous val-
ues sent over one channel between two communicating processes. Session types
have been introduced to guarantee consistency of the exchanged data and, more
recently, progress of the session, i.e. the property that once a communication
has been established, well-formed programs will never starve at communication
points. A relevant feature which influences progress is whether the communica-
tion is synchronous or asynchronous. In this paper, we first formulate a typed
asynchronous multi-threaded object-oriented language with thread spawning, it-
erative and higher order sessions. Then we study its progress through a new effect
system. As far as we know, ours is the first session type system which assures
progress in asynchronous communication.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 10 / 51

Asynchrony in Concurrency ~ LAST (JFP'10)

Linear type theory for asynchronous
session types

SIMON J. GAY
VASCO T. VASCONCELOS

Session types support a type-theoretic formulation of structured patterns of communication,
s0 that the communication behaviour of agents in a distributed system can be verified by
static typechecking. Applications include network protocols, business processes and operating
system services. In this paper we define a multithreaded functional language with session types,
which unifies, simplifies and extends previous work. There are four main contributions. First is
an operational semantics with buffered channels, instead of the synchronous communication
of previous work. Second, we prove that the session type of a channel gives an upper bound
on the necessary size of the buffer. Third, session types are manipulated by means of the
standard structures of a linear type theory, rather than by means of new forms of typing
judgement. Fourth, a notion of subtyping, including the standard subtyping relation for
session types (imported into the functional setting), and a novel form of subtyping between
standard and linear function types, which allows the typechecker to handle linear types
conveniently. Our new approach significantly simplifies session types in the functional setting,
clarifies their essential features and provides a secure foundation for language developments
such as polymorphism and object-orientation.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 11 /51

Part 1l

Our Proposal: LAST”

érez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 12 / 51

LAST" Key ldeas

» A call-by-name variant of LAST (Linear Asynchronous Session Types) by Gay and
Vasconcelos (JFP, 2010)

» Explicit substitutions neatly “delay” substitutions within a term (runtime syntax)
» Explicit closing of sessions with dedicated garbage collection of buffers
» Sequential terms can communicate when organized within configurations

» Types ensure protocol fidelity and communication safety but not deadlock-freedom

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 13 / 51

https://doi.org/10.1017/S0956796809990268

LAST" Syntax

The syntax of terms (M, N) combines standard functional constructs (call-by-name)
with primitives for communication and concurrency:

M,N = x variable
() unit value
Ax. M abstraction
M N application
(M, N) construct pair
let (xz,y) = M in N deconstruct pair
M{N/z| explicit substitution

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 14 / 51

LAST" Syntax

The syntax of terms (M, N) combines standard functional constructs (call-by-name)
with primitives for communication and concurrency:

M,N = x new create new channel
() spawn M; N spawn M in parallel to N
Ax. M send M N send M along N
M N recv M receive along M
(M, N) select{ M select label ¢ along M
let (x,y) = M in N case M of {i : M };,c; offer labels in I along M
M{N/z] close M; N close M

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 14 / 51

LAST" Running Example: A Bookshop Scenario

A three-party protocol: a mother interacting with a bookshop to buy a book for her son.

» The shop receives a booktitle and then offers a choice between buying the book or
freely accessing its blurb.

» If the client decides to buy, the shop receives credit card information and sends the
book to the client. Otherwise, if the blurb is requested, the shop sends its text.

» The son delegates his session to her mother, who will complete the purchase.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 15 / 51

LAST" Running Example: A Bookshop Scenario

A three-party protocol: a mother interacting with a bookshop to buy a book for her son.

» The shop receives a booktitle and then offers a choice between buying the book or
freely accessing its blurb.

» If the client decides to buy, the shop receives credit card information and sends the
book to the client. Otherwise, if the blurb is requested, the shop sends its text.

» The son delegates his session to her mother, who will complete the purchase.

Two sessions: one connects the son with the shop, another the mother with her son.
Using a different term per participant, we have the configuration:

Sys = & let (s, s') = new in spawn Shop,;
let (m, m') = new in spawn Mother,,;
Sons’,m’

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 15 / 51

LAST" Running Example: A Bookshop Scenario

The code for the son, which returns the result:

A " ” .
Sony ;v = let s] = send “Dune” s’ in
let s, = select buy s} in
let m} = send s, m'in
let (book, mj) = recvm/ in
close m/y; book

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 16 / 51

LAST" Running Example: A Bookshop Scenario

The code for the son, which returns the result:

A " ” .
Sony ;v = let s] = send “Dune” s’ in
let s, = select buy s} in
let m} = send s, m'in
let (book, mj) = recvm/ in
close m/y; book

The code for the mother:

Mother,, = let (z,m,) = recvm in
letz; = sendvisaz in
let (book,z5) = recvz in
let my = send bookm; in
close my; close ;)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 16 / 51

LAST" Running Example: A Bookshop Scenario
The code for the shop:

Shop, = let (title, s;) = recvs in
case s1 of {buy : Ass.let (card, s3) = recv sy in
let s, = send book(title) s3 in
close sy; (),
blurb : Asy.let s3 = send blurb(title) so in
closess; ()}

Again, the code for the son:
Song £ let s’ = send “Dune” s in
let s), = select buy s} in
let m} = send s, m'in
let (book, m}) = recvm/ in

close mj; book

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions

17 / 51

LAST" Semantics: Key Ideas

How to give semantics to our language? Our design is in two levels:

» Term reduction, noted —y, handles functional operations.

» Communicating terms are organized in configurations, equipped with a dedicated
reduction relation, noted —¢.

» Hence, parallel threads and asynchronous (i.e., buffered) communication are
handled at the level of configurations.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 18 / 51

LAST" Semantics: Key Ideas
» Configurations (C, D, E) defined using terms, markers (¢) and messages (m,n):

pu=0el0
m,n = M | 14
C,D,E :=¢M|C || D|(vali)y)C | C{M/x]
» Reduction uses contexts for terms (R), threads (F), and configurations (G):
R:=[]|R M|send M R |recvR | let (z,y) = Rin M
| select{R|caseRof {i: M}ics | closeR; M | R{M/z]

Fu=0¢0R

(TG 11 C | (walii)y)G | GIM /=)

LAST" Semantics: Key Ideas

Rules for term reduction (—y) and structural congruence for terms (=y):

[RED-LAM] [RED-PAIR]
(Az.M) N —y M{N/z] let (z,y) = (M, M2) in N —y N{My/x, Ma/y |}
[RED-LIFT] [sc-suB-EXT]
[RED-NAME-SUB] M —y N x ¢ fV(R)
e [M/zl) —m M RIM] —u R[N] (RIMDAN/z] =x R [M{N/x}]]

[RED-LIFT-5C]
M =y M’ M —sy N’ N =y N
M —y N

LAST" Semantics: Key Ideas

Some rules for configuration reduction (—¢) use special thread contexts, denoted ﬁ
which do not affect variables bound by explicit substitutions:

[RED-NEW]

Fnew] —¢ (vzle)y)(Fl(z,y)])

[RED-SEND]

(va[it)y)(Flsend M a] || C) —c (valM, i)y)(Flz] | C)

[RED-RECV]

~

(va[iii, M)y)(Flrecvy] || C) —¢ (valm)y)(FI(M.y)] || C)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 21 /51

LAST" Semantics: Key Ideas

We also use rules that enforce garbage-collection of closed sessions:

[RED-CLOSE]

(va[m)y)(Flelose z; M] || C) —c (vO[m)y)(FIM] || C)

[RED-RES-NIL] [RED-PAR-NIL]

(vO[e)O)C —c C Cllo() —cC

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 22 /51

LAST" A Simple Example

(Az.z (\yy)) (Awaw) (Az.2)) —w (2 Ayy) [(Aw.w) (Az.2)) /z])
(Az

Note: [-reduction induces explicit substitutions, which are “pushed inside” contexts.

roningen, NL)

=u (¢ ((Mw.w) Z))/x]}) (Ay-y)
—>M(/\ww (A\z z) (A\y.y)

—mw (w{(Az.2)/wl}) (Ay-y)

— (Az2.2) (A\y.y)

—m 2{[(Ayy)/z]

—n AY.Y

Deadlock-free Asynchronous Functional Sessions

23 /51

LAST" The Bookshop Scenario, Revisited

The entire system:

Sys = & let (s, s') = new in spawn Shop,;
let (m, m') = new in spawn Mother,,;
Sonsr,m/

The code for the shop:

Shop, £ let (title,s,) = recvsin
case s1 of {buy : Ass.let (card, s3) = recv sy in
let s, = send book(title) s3 in
close sy; (),
blurb : Asy.let s3 = send blurb(title) so in
closess; ()}

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 24 /51

LAST" Type System

Types include functional types (7', /) and session types for communication (5):

T,U =T xU pair S =1!T.5 send
| T"—o U function \ 7.5 receive
| 1 unit D{i:Thier select
| S session | &{i:T},c; branch

‘ end

Aligned with our semantics, ‘[I’ to denotes the session type for already closed endpoints.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 25 /51

LAST" Type System

Given a session type S, its dual type S characterizes compatible behaviors.
In defining duality, only the continuations of send and receive types are dualized.

IT.S =7?T.5 °T.S=T.S
EB{Z . Si}ie] = &{[: g,},g[&{L . Si}ie] = EB{Z : E}ie] ﬁ =end

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions

26 / 51

LAST" Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.

» Judgments for terms:
ey M T

where the typing context [is a list of variable-type assignments x : 7.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 27 /51

LAST" Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.

» Judgments for terms:
ey M T

where the typing context [is a list of variable-type assignments x : 7.
» Judgments for buffered channels:

FI_B[m>S/>S

where S denotes a sequence of sends and selections corresponding to the values
and labels in 7, after which the type continues as 5.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 27 /51

LAST" Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.
» Judgments for terms:
ey M T
where the typing context [is a list of variable-type assignments x : 7.

» Judgments for buffered channels:
r I_B [777L> . S/ > 9

where S denotes a sequence of sends and selections corresponding to the values
and labels in m, after which the type continues as 5’.
» Judgments for configurations:
rebc:r
where ¢ says whether C' contains the main thread (¢ = #) or child threads (¢ = ¢).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 27 /51

LAST" Selected Typing Rules

[TYP-ABS] [TyP-sUB]
Dyx:TEyM:U [TYP-UNIT] e:TkFyM:U AbFyN:T
kg e M :T—U DFw():1 Ay M{N/x]} : U
[TYP-sPAWN]
'y M1 Ay N:T [TYP-BUF]
I'A by spawn M; N = T Dbgle): S > 9
[TYP-BUF-SEND] [TYP-BUF-SEL]
I A Fg [, MY : "> 175 T kg [, 5) 0 5" > i : Sifier
[TYP-BUF-END-L] [TYP-BUF-END-R]
Otg[e) :end > O 0 tg [e) : O > end
)

Pérez (Groningen, NL Deadlock-free Asynchronous Functional Sessions 28 /51

LAST" Guarantees Derived From Typing

Theorem (Type Preservation for LAST")
Given ' FS C =T, ifC=¢D orC —s¢D, thenT F5 D : T

We have protocol fidelity and communication safety, but not deadlock-freedom.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions

29 / 51

LAST" Typing Does Not Exclude Deadlocks

» The term M, ;: it sends on a, receives on b, and then closes both sessions

M,y :=1leta; = send()ain
let (v,b;) = recvbin
closeaq;closeby;v

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 30 /51

LAST" Typing Does Not Exclude Deadlocks
» The term M, ;: it sends on a, receives on b, and then closes both sessions
M,y :=1leta; = send()ain
let (v,b;) = recvbin
closeaq;closeby;v

» The configuration C uses two instances of M_ _ in different threads:

C:=+¢let(x,2’) =newin
let (y,vy') = newin
spawn M, ,; My .
» We would like the two threads to communicate. However, they get stuck:
M, , —w (let (v,y1) =recvyin...){send () z/z:1]} = M, #—u
My o —y (let (V' 7)) = recva’in...){send () y'/y;]} = My 0 7=

C —e (wsle)s) (wt[e)t) (o My {s/x] | ¢ My, oAt /y') 7=

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 30 /51

LAST" Typing Does Not Exclude Deadlocks

Clearly, there are deadlock-free alternatives to M, ;. For instance:

Nup:=1leta; = send()ain
closeay;
let (v,b;) = recvbin
closeby;v

We would like a general technique that excludes deadlocked configurations such as C'.
We could either

1. Strengthen the type system of LAST" so as to exclude deadlocks

2. Transfer the deadlock-freedom guarantee from an external type system

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 31/51

Part |11

APCP

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 32/51

APCP Asynchronous Priority-based Classical Processes

APCP: a session type system for asynchronous m-calculus processes.
Key features: cyclic process networks and recursion.

Extends the Curry-Howard correspondences between linear logic and session types.

vvyyy

Priorities on types are used to rule out circular dependencies in processes
(Kobayashi, 2006; Padovani, 2014; Dardha and Gay, 2018).

» Key properties: session fidelity, communication safety, and deadlock-freedom.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 33 /51

APCP Syntax

Process syntax:

P,Q = z[a,b] send
| zb] < selection
| (vay)P restriction
| o inaction
|

z(y, z); P receive
z(z)>{i: Plies branch
PlQ parallel
[z <> 9] forwarder
X (%) recursive call

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions

APCP Syntax

Process syntax:

= z[a,] send z(y, z); P receive
| x[b] < selection z(z)>{i: Plies branch
| (vay restriction PlQ parallel
| o inaction [z <> y] forwarder
| uX(2); P recursive definition X (%) recursive call

Derivable constructs We use the following syntactic sugar:

Zly| - P := (vya)(vzdb)(z|a,b] | P{z/x}) Tl P = (vzb)(z[b <l | P{z/x})
2(y); P = a(y, 2); P{z/x} z>{i: Plier = x(2) > {i: P{z/x}}ies

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 34 /51

APCP Reduction Semantics

[RED-SEND-RECV]

(vay)(zla, b] |y(2,9); Q) — Q{a/z,b/y'}

[RED-SEL-BRA] ie ;
(way) (@[] <7 | y(y') > {i: Qitier) — Q;{b/y'}

[RED-FWD] [RED-CONG]
yFz P="r P — Q) Q =
(vay)([z < 2] | P) — P{z/y} P—Q
[RED-RES] [RED-PAR]
P—Q P—Q
(vay)P — (vay)Q PIR—Q|R
Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions

35 /51

APCP Reduction Semantics

Consider process P (with the sugared syntax):
P = (vzu)((vay)(@[vd] - Tlva] - 0 Z[vs] - y(w1); y(w2); @) [w(ws); R')

where Q' 2 Q{y/y"} and R' = R{u/u'}.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 36 /51

APCP Reduction Semantics

Consider process P (with the sugared syntax):

P = (vzu)((vay)(@[ol] - Tloo] - 0| Z[vs] - y(w1); y(w2); Q') | u(ws); R')
where Q' 2 Q{y/y"} and R' = R{u/u'}.
We have:

P — (vzu)(

(vay)(Tlvg] - 0| Z[us] - y(ws); Q{vr/wi}) [u(ws); B
P — (vay)(z(o] -

T[vy] - O y(wl);y(wg);Q’) | R/{Us/ws}

Note: There is no reduction involving from P the send on 2/, since z’ is connected to
the continuation name of the send on z and is thus not (yet) paired with a dual receive.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 36 /51

APCP Type System
APCP types processes by assigning binary session types to names.
» We write o, 7, p, ... to denote priorities.

» The ultimate priority w is greater than all other priorities and cannot be increased.
That is, Vo e N. w > o and Vo € N. w + 0o = w.

» Session types (linear logic propositions) include priorities:
A B:=AR° B|AR° B|@°{i: Abicr | &°{i: Abicr | @ | uX.A| X

where e denotes the self-dual type for ‘end’.

» The dual of session type A, denoted A, is defined inductively as follows:

I3
=

>
AN

AR°BE2AN B @fi: Atier 2&{i: Ai}ier 20 uX.
B &°{i: A}ier = @°{i: Aibier

<l
II>
e

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 37 /51

APCP Type System

Prefixes with lower priority are not blocked by those with higher priority.

Essential laws:

1. Sends and selections with priority o must have continuations/payloads with priority
strictly larger than o;

2. A prefix with priority o must be prefixed only by receives and branches with priority
strictly smaller than o;

3. Dual prefixes leading to a synchronization must have equal priorities.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 38 /51

APCP Type System

Prefixes with lower priority are not blocked by those with higher priority.

Essential laws:

1. Sends and selections with priority o must have continuations/payloads with priority
strictly larger than o;

2. A prefix with priority o must be prefixed only by receives and branches with priority
strictly smaller than o;

3. Dual prefixes leading to a synchronization must have equal priorities.
Judgments are of the form Q= P :: T", where:
» P is a process;

» I is a context that assigns types to channels (z : A);
> () is a context that assigns tuples of types to recursion variables (X : (A, B,...)).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 38 /51

APCP Typing Rules (Selected)

[TYP-SEND] [TYP-RECV]

o < pr(A), pr(B) QFP:T,y:Az:B o < pr(l)
QFafy,z]m2: A®°B,y: A 2: B QF x(y,2); P =T,z : A®° B
[TYP-END] [TYP-PAR] [TYP-RES] B

QFP-T QFP:T QFQ A QFP:Tx:Ay: A
QFP:T,x:e QFP|Q:T,A QF (vay)P :: T

[TYP-SEND%]
QFP:T,y:Ax:B o < pr(A),pr(B)
QFzZly]-P=T,2: A®° B

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 39 /51

APCP Properties Derived From Typing

In APCP, type preservation corresponds to the elimination of (top-level) applications of
Rule [TYPE-RES].

Theorem (Subject Reduction, Simplified)
IfFfQF P ::T and P — (@, then there exists I'" such that Q + Q :: T,

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 40 /51

APCP Properties Derived From Typing

» A process is deadlocked if it is not the inactive process and cannot reduce.
» Following Dardha and Gay, we target the elimination of [TYPE-RES].

» In APCP, Rule [TYPE-RES] is key in our sugared notation to bind asynchronous
sends/selections and their continuations.
These occurrences of [TYPE-RES| cannot be eliminated via reduction.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 41 /51

APCP Properties Derived From Typing

» A process is deadlocked if it is not the inactive process and cannot reduce.
» Following Dardha and Gay, we target the elimination of [TYPE-RES].

» In APCP, Rule [TYPE-RES] is key in our sugared notation to bind asynchronous
sends/selections and their continuations.
These occurrences of [TYPE-RES| cannot be eliminated via reduction.

To formulate deadlock-freedom, we use two auxiliary notions:

» The active names of P, denoted an(P):
the set of (free) names that are used for non-blocked communications (send,
receive, selection, branch)

» Evaluation contexts, denoted £.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions

41 /51

APCP Properties Derived From Typing

Definition (Live Process)
A process P is live, denoted live(P), if
1. there are names x,y and process P’ such that P = (vazy)P’ with z,y € an(P’), or

2. there are names z,y, z and process P’ such that P = & |(vyz)([z > y| | P')| and
z # x (i.e., the forwarder is independent).

Lemma
IfQF P:: 0 and P is not live, then P must be 0.

Theorem (Progress)
If) P :: T and live(P), then there is a process () such that P — Q).

Theorem (Deadlock-freedom)
IfO+ P :: 0, then either P =0 or P — Q) for some Q).

Translating LAST" into APCP Key Ideas

To translate LAST" into APCP, we follow Milner's translation of the lazy A-calculus.
» In LAST", variables are (i) placeholders for future substitutions and (ii) access
points to buffered channels.

» Accordingly, we translate variables as APCP endpoints that (i) enable the translation
of explicit substitutions and (ii) enable interaction with the translation of buffers

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 43 /51

Translating LAST" into APCP Key Ideas

Given a configuration C, we define an APCP process [C]z, where z is a fresh name.
We also define translations of types and buffers.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 44 / 51

Translating LAST" into APCP Key Ideas

Given a configuration C, we define an APCP process [C]z, where z is a fresh name.
We also define translations of types and buffers.

We establish correctness for our translation following Gorla's correctness criteria:
Completeness Given I' ¢ C': T', if C —s¢ D, then [C]z —* [D]=.
Soundness Given I' H5 C': T', if [C]z —* Q, then there exists D such that C' —% D
and Q —* [D]z.

Soundness is critical to transfer deadlock-freedom from APCP to LAST"

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 44 / 51

Translating LAST"” into APCP Translating Types
Our typed translation takes a typed term I" Fy M : 7" and returns a typed process

F [M]z (D), z: [T].

where F* means typability in APCP ignoring priority checks.

Translation of types:

(T) 2 ex[T] (if T #0)

[T > U] £ (T) ® (U) [T — U] = (1) & [U] [1] =
[7.5] £ 0@ (T) B (S) [@{i: Sihicr] 2 e@&{i: (S)}ier [end] 2o e
[77.5] £ (T) ® (S) [&{i = Sitier] 2 @iz (S}iex [O] = () =

Intuitively, session types such as ‘e @ ..." codify the enabling of an interaction (with an

explicit substitution or with a buffer). A kind of “announcement” for interacting parties.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 45 / 51

Translating LAST" into APCP Translating Terms (Selection)

Below, we write ‘_' to denote a fresh name of type e.
When sending names denoted ‘', we omit binders ‘(v__)".

[TYP-VAR] [[:IZ‘]]Z = SC[,, Z]

[TYP-ABS] [Ae.M]z £ z(z,a); [M]a receive x, then run body

[TYP-APP] [M N]z %= (vab)(ved)([M]a run abstraction
| blc, 2] trigger function body
| d(_, e); [N]e) parameter as future substitution

[YP-sUB] [M{N/x]}]z & (vza)([M]=z run body
a(_,b); [N]b) block until body is variable

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 46 / 51

Translating LAST" into APCP Translating Terms (Selection)

[TyP-NEW] [new]z £ (vab)(al_, 2] activate buffer
| b(_, ¢); (vdx)(vey)(block until activated

[[e)]d)e prepare buffer

| [(x,y)]c)) return pair of endpoints

rvpsexo] [send M Nz = (vab)(ved)(a(_, e); [M]e block payload until received
| [N]e run channel term to activate buffer

| d(, f); (vgh)(wait for buffer to activate

f1b, g] send to buffer

| h[-, 2])) prepare returned endpoint variable

[TYP-RECV] [recv M]z = (vab)([M]a run channel term to activate buffer
| b(c, d); receive from buffer

(wef)(zle,el | £ 9); dl-.) returned pair

Translating LAST" into APCP Deadlock-Free LAST"

» Well-typed APCP processes typable under the empty context are deadlock-free.
» We transfer this result to LAST" configurations using the operational correctness
of our translation (completeness and soundness properties).
Each deadlock-free configuration in LAST"™ thus obtained satisfies two requirements:
> It is typable) =& C': 1, i.e., it needs no resources and has no external behavior.

» The typed translation of the configuration satisfies priority requirements in APCP.

Theorem (Deadlock-freedom for LAST")
Given) FE C : 1, ifH [C]z :: T for some T, then C' = & () or C —¢ D for some D.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 48 / 51

Part |V

Conclusion

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 49 /51

Conclusion

Summary:
» Two typed models of asynchronous message-passing concurrency: LAST" and APCP

Models in between synchronous and untyped asynchronous communication.

The design of LAST" builds upon the best features of APCP

Our approach leverages already developed machinery (for APCP) and keeps the
formulation of LAST™ within familiar territory

| 4
» Defined at different levels of abstraction, and connected via a correct translation
»
>

Future work:
» Priority inference for APCP, adapting Kobayashi's work
» Recursive types in LAST"
» Behavioral theory for LAST" (by leveraging APCP)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 50 / 51

Conclusion Shameless Plug

» Foundational Course at ESSLLI 2024 (Leuven,
Belgium), July 29 - August 2.

» Dan Frumin and yt. ESSLLI A
Propositions as Sessions: Logical 2024 Iil

Foundations of Concurrent Computation.
» Registration still possible!

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 51 /51

Asynchronous Session-Based Concurrency

Jorge A. Pérez
(joint work with Bas van den Heuvel)

University of Groningen, The Netherlands

ICE 2024 - 17th Interaction and Concurrency Experience
June 21, 2024

UNIFYING
CeRRECTNESS FOR

Ce MMUNICATING
SeFTWARE

https://www.jperez.nl

Part VI

Extras

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 2/12

Extras LAST"

Additional rules for configuration reduction (—¢):

[RED-SELECT]

(vx[m)y)(Flselect Lx] || C) —¢ (vxl[l,m)y)(Flz] || C)

[RED-CASE]

jel

(v, j)y)(Fleaseyof {i - Mitiei] || C) —c (valm)y)(FIM; y] || C)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions

3/12

Extras LAST"

Additional rules for configuration reduction (—¢):

[RED-LIFT-C]

[RED-SPAWN] C — "
Flspawn M; N| —s¢ F[N] || o M g[C] —¢ G[C"]
[RED-LIFT-M] [RED-CONF-LIFT-5C]
MﬂmM, CEC C/ O/—)0D/ D/ ECD
F[M] —¢ F[M'] C—cD

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions

4/12

Extras Typing Rules (1/4)

[TYP-ABS] [TYP-APP]
[TYP-VAR] Da:ThHyM:U I'by M :T —U AbFyN:T
v:Thryx: T 'y e M :T —U Ay M N U
[TYP-PAIR] [TYP-spLIT]
'y M T AbyN:U ey M T x T ANz:T,y: T FyN:U
ARy (M,N) T x U ARy let (z,y) = Min N : U
[TYP-sUB]
[TYP-UNIT] e :ThHyM:U Ay N:T
Dby (): 1 Ay M{N/z]} : U

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 5/12

Extras Typing Rules (2/4)

[TYP-SEND]
[rye-NEw] by M:T AbyN:IT.S
) Fynew: S x S I'Abysend M N : S
[TYP-SEL] [TYP-RECV]
Iy M &{i:Si}tier jel I'by M :7T.S
['Fy select j M : 5 ['FyrecvM : T xS

[TYP-CASE]
I'Abycase Mof {i: N;}ier: U

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 6 /12

Extras Typing Rules (3/4)

[TYP-CLOSE] [TYP-sPAWN]
"y M : end AFyN:T 'k M1 AFyN:T
I'"Abyclose M;N : T ['AFyspawn M; N : T

We need rules for buffers and “half-closed” sessions:

[TYP-BUF-SEND]

[ryp-pur] Dby M:T Abgm): 5 >89
OFgle): S > 9 T,A Fg [, MY : S > 1T.8
[TYP-BUF-SEL]
T I—B [m) 29 > Sj] el [TYP-BUF-END-L] [TYP-BUF-END-R]
[[m,g) 0 S > @{i:Sitier) bgle) :end >0 (kg [e) : 0> end

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 7/12

Extras Typing Rules (4/4)

Below, 7' denotes a non-session type:

[TYP-MAIN] [TYP-PAR]
N é1 b0 [TYP-CHILD]
'y M T I'Eet O T Arg® DT, Dy M1
I oM :T CARST C|\ DTy + Ty IHS oM : 1
[TYP-RES]

Pheg[m): S >8 Az:5HC:T T,y:S=TA
IS (va[m)y)C T

[TYP-CONF-SUB]
De:THSC:U AbyM:T
AR C{M/z]) - U

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions

8/ 12

Extras Example of Typing

We illustrate the typing of half-closed sessions on the configuration

¢ book(“Dune”) || (vy[e)0)o closey

We write B (book) to denote a primitive non-linear type that can be
weakened /contracted at will and is self-dual. We have:

y:end by y:end [r-var] e o)
[T-cLOSE]
y:end by closey;(): 1

[T-cHILD] [T-BL]
() by book(“Dune”) : B [: y:end FS o closey; () : 1 O Fg[e) :end >0 : ,
T-MAIN T-RES

) ¢ ¢ book(“Dune”’) : B D¢ (vyle)D)o closey; () : 1 []

T-PAR

) & ¢ book(“Dune”) || (vyle)O)o closey; () : B

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 9/12

Extras The Booking Scenario
Consider the system where all session interactions have taken place, and all three
threads are ready to close their sessions:
Sys —¢& (vyle)y') ((v2'[e)z) (¢ close z’; book(“Dune”) || ¢ close z;closey’) || ¢ closey)
—¢ ¢ book(“Dune”) || (vyle)y') ((vOle)z)o close z;closey’ || ¢ closey)
=c ¢ book(“Dune”) || (vyle)y) ((vz[e)0)o close z;closey’ || ¢ closey)

) | (wyle)y’) ((“Dle)D)0 closey | o closes)
—¢ ¢ book(“Dune”) || (vyle)y') (0 closey’ || o closey)
=c ¢ book(“Dune”) || (vy'[e)y) (0 closey || ¢ closey)
—¢ ¢ book(“Dune”) || o () || (vO[e)y)o closey
—¢ ¢ book("Dune”) || (vO[e)y

=c ¢ book("“Dune”) || (vy[e)O)o closey (*)
—¢ ¢ book(“Dune”) || (vO[e)E)o() —¢ ¢ book(“Dune”) || ¢() —¢ ¢ book(“Dune”)

—¢ ¢ book(“Dune”

)oclosey

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 10 / 12

Extras Typing in APCP, by Example

We give the typing of the two consecutive sends on x (omitting the context 2):

o< pr(A),n T < pr(As), pr(B)
[TYP-SEND] [TYP-SEND]
Fxfvy,al cx s A @ Ay @ B, Fa'[vg,b] i 2’ » Ay @™ B,
v1: A, a: Ay @ B vy Ay b: B
p— p— — [TYP-PAR]
F xfvy,al | 2'[vg, b] vy 1 Aj,ve : Ao, b: Byx: Ap ®° Ay @™ B,
a:Ay " B,x’': Ay, @™ B
[TYP-RES]

- (vaz')(zfvy, a] | 2'[ve,0]) vyt A, vg : Ag)b: By s Ay ®° Ay @™ B

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 11 /12

Extras Typing in APCP, by Example

Let us type the consecutive inputs on y, i.e., the subprocess y(w1,vy'); v (w2, y"); Q.

Because = and y are dual names in P, the type of y should be dual to the type of x:
FQ T, w: A, ws: Ay y" @ B < pr(l,wy : Ay)
— — — [TYP-RECV]
oy (w,y"); Q= Twy t Ay - A BT B o < pr(l)
Fy(wy,y);y (we,y");Q =Ty : Ay 8° A, 3™ B

[TYP-RECV]

These two derivations tell us that

o< m < pr(A;),pr(As), pr(B),pr(l")

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 12 /12

	This Talk
	Keywords (and Slogans)
	A Difference and A Tension
	Our Work
	Plan for Today

	Context
	Asynchrony in Concurrency
	Honda and Tokoro (ECOOP'91)
	Boudol (INRIA TR, 1992)
	A Concurrent Discovery
	Progress in Sessions (FMOODS'07)
	LAST (JFP'10)

	Our Proposal: LASTn
	LASTn
	Key Ideas
	Syntax
	Running Example: A Bookshop Scenario
	Semantics: Key Ideas
	A Simple Example
	The Bookshop Scenario, Revisited
	Type System
	Typing Judgments
	Selected Typing Rules
	Guarantees Derived From Typing
	Typing Does Not Exclude Deadlocks

	APCP
	APCP
	Asynchronous Priority-based Classical Processes
	Syntax
	Reduction Semantics
	Type System
	Typing Rules (Selected)
	Properties Derived From Typing

	Translating LASTn into APCP
	Key Ideas
	Translating Types
	Translating Terms (Selection)
	Deadlock-Free LASTn

	Conclusion
	Conclusion
	Shameless Plug

	Appendix
	Extras
	Extras
	LASTn
	Typing Rules (1/4)
	Typing Rules (2/4)
	Typing Rules (3/4)
	Typing Rules (4/4)
	Example of Typing
	The Booking Scenario
	Typing in APCP, by Example

