Safe Composition of Systems of Communicating Finite State Machines

<u>Franco Barbanera¹</u>, Rolf Hennicker²,

¹University of Catania (IT) ²LMU Munich (D)

ICE - June 20-22, 2024, Groeningen (NL)

1/27

- The "participants-as-interfaces" (PaI) approach to (binary) system composition
- ▶ ICE'24: PaI for multicomposition (for CFSM systems).

- The "participants-as-interfaces" (PaI) approach to (binary) system composition
- ▶ ICE'24: PaI for multicomposition (for CFSM systems).

- The "participants-as-interfaces" (PaI) approach to (binary) system composition
- ▶ ICE'24: PaI for multicomposition (for CFSM systems).

- The "participants-as-interfaces" (PaI) approach to (binary) system composition
- ► ICE'24: PaI for multicomposition (for CFSM systems).

 Concurrent/Distributed systems are not STAND-ALONE ENTITIES
 (expecially nowadays) they are parts of JIGSAWS NEVER COMPLETELY TERMINATED

Concurrent/Distributed systems are

not STAND-ALONE ENTITIES

3/27

Concurrent/Distributed systems are not STAND-ALONE ENTITIES (expecially nowadays) they are parts of JIGSAWS NEVER COMPLETELY TERMINATED

Concurrent/Distributed systems are

not STAND-ALONE ENTITIES

 (expecially nowadays) they are parts of JIGSAWS NEVER COMPLETELY TERMINATED

They should be

They should be

CONSERVATIVE

Altering as less as possible the single systems

くロト (雪下) (ヨト (ヨト))

They should be

CONSERVATIVEFLEXIBLE

i.e. "system independent": the composition mechanism

- is not part of the system

-allows to consider any system as potentially open

They should be

CONSERVATIVEFLEXIBLE

► SAFE

Guaranteeing not to "break" relevant properties of the single systems we compose.

Good composition methods are **safe** when...

If one starts from systems like this....

Good composition methods are safe when...

If one starts from systems like this....

Good composition methods are safe when...

If one starts from systems like this....

Good composition methods are safe

... one does not end up with something like that

Good composition methods are safe

... one does not end up with something like that

For systems with message-passing interactions

Introduced (as far as we know) in

Franco Barbanera, Ugo de'Liguoro, Rolf Hennicker: Global Types for Open Systems. **ICE 2018**

<ロト < 部ト < 目ト < 目ト 目 の Q () 8/27

<ロト < 部ト < 目ト < 目ト 目 の Q () 8/27

We abstract here from the way communications are performed and from the logical order of the exchanged messages.

 C_h 's behaviour can be looked at as an interface (i.e. a description of what can be offered by an outer system)

・ロト ・ 四ト ・ 日ト ・ 日下

<ロト < 部ト < 目ト < 目ト 目 の Q () 8/27

8/27

<ロト</th>
 < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 9,00</th>

 9/27

COMPATIBLE: an h's input is a k's output, and vice versa

Composition via gateways (forwarders)

► CONSERVATIVE ✓

► FLEXIBLE ✓

<ロト < 部ト < 目ト < 目ト 目 の Q () 11/27

► CONSERVATIVE 🗸

▶ FLEXIBLE ✓

<ロト < 部ト < 書ト < 書ト 差 の Q () 11/27

► CONSERVATIVE 🗸

▶ FLEXIBLE 🗸

<ロト < □ ト < □ ト < Ξ ト < Ξ ト < Ξ ト Ξ の Q () 11/27

► SAFE ?

► SAFE ?

Which formalism for concurrent system description?

Which communication model?

SAFE 🗸

A number of results for Pal binary composition (see paper's References)

for MPST - MultiParty Session Types - (synchronous)

for CFSM - Communicating Finite State Machines - (synchronous and asynchronous).

▲白 ▶ ▲圖 ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ ④
SAFE 🗸

A number of results for Pal <u>binary</u> composition (see paper's References)

for MPST - MultiParty Session Types - (synchronous)

for CFSM - Communicating Finite State Machines - (synchronous and asynchronous).

Strict conditions to get safeness in synchronous CFSM systems

F. BARBANERA, IVAN LANESE, EMILIO TUOSTO: Composition of synchronous communicating systems. JLAMP (2023)

SAFENESS guaranteed by Compatibility of Interfaces

COMPATIBILITY = roughly Bisimulation

▲ 伺 ▶ ▲ 国 ▶

13/27

Drawback of binary composition:

By connecting systems two-by-two we get only tree-topologies.

Drawback of binary composition:

By connecting systems two-by-two we get only tree-topologies.

The composition via gateways trivially extends to simultaneous multiple system composition.

Issues: • Many different "connection policies" (all safe?).

<ロ> (四) (四) (三) (三) (三) (三)

Exploiting Pal multicomposition for (synchronous) MPST

F. BARBANERA, M. DEZANI-CIANCAGLINI, L. GHERI, N. YOSHIDA: Multicompatibility for Multiparty-Session Composition. **PPDP 2023**

Exploiting PaI multicomposition for systems of (asynchronous) CFSMs

(日)

17/27

A formalism for the description and the analysis of distributed systems.

M_A can send msg1 to machine M_B; asynchronously; through the directed buffered FIFO channel AB

Then, either msg2 or msg3 can be received from M_B or M_C; through channels BA or CA;

A formalism for the description and the analysis of distributed systems.

Then, either msg2 or msg3 can be received from M_B or M_C; through channels BA or CA;

A formalism for the description and the analysis of distributed systems.

*M*_A can send msg1 to machine *M*_B; asynchronously; through the directed buffered FIFO channel AB

Then, either msg2 or msg3 can be received from M_B or M_C; through channels BA or CA;

A formalism for the description and the analysis of distributed systems.

*M*_A can send msg1 to machine *M*_B; asynchronously; through the directed buffered FIFO channel AB

Then, either msg2 or msg3 can be received from M_B or M_C; through channels BA or CA;

and so on.

A formalism for the description and the analysis of distributed systems.

*M*_A can send msg1 to machine *M*_B; asynchronously; through the directed buffered FIFO channel AB

Then, either msg2 or msg3 can be received from M_B or M_C; through channels BA or CA;

<ロト < 目 ト < 目 ト < 目 ト 目 の Q () 19/27

<ロト < 部ト < 目ト < 目ト 目 のQで 19/27

20/27

• • • • • • • • • •

<ロト < 部ト < 書ト < 書ト 書 の Q () 21/27

Connection Policies as CFSM systems

Connection policies are systems of CFSMs

□ ▶ ◀륨 ▶ ◀ 볼 ▶ ◀ 볼 ▶ 볼 ~ ∽ ९... 23/27

Interfaces + Connection Policy = Gateways

□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ </p>
24/27

Interfaces + Connection Policy = Gateways

24/27

- Let $\{S_i\}_{i \in I}$ be a set of CFSM systems
 - $\bullet\ \mathbb{K}$ a communication policy for choosen interfaces
 - $\bullet \ \mathcal{P}$ be a communication property

- Let $\{S_i\}_{i \in I}$ be a set of CFSM systems
 - $\bullet\ \mathbb{K}$ a communication policy for choosen interfaces
 - $\bullet \ \mathcal{P}$ be a communication property
- $\textbf{IF} \text{ all } S_i\text{'s and } \mathbb{K} \text{ enjoy } \mathcal{P} \quad (\text{and } \textit{no-mixed-state holds})$

- Let $\{S_i\}_{i \in I}$ be a set of CFSM systems
 - $\bullet\ \mathbb{K}$ a communication policy for choosen interfaces
 - $\bullet \ \mathcal{P}$ be a communication property
- $\textbf{IF} \text{ all } S_i\text{'s and } \mathbb{K} \text{ enjoy } \mathcal{P} \quad (\text{and } \textit{no-mixed-state holds})$

THEN mcomp($\{S_i\}_{i \in I}, \mathbb{K}$) enjoys \mathcal{P} .

- Let \bullet {S_i}_{i \in I} be a set of CFSM systems
 - $\bullet\ \mathbb{K}$ a communication policy for choosen interfaces
 - $\bullet \ \mathcal{P}$ be a communication property
- $\textbf{IF} \text{ all } S_i\text{'s and } \mathbb{K} \text{ enjoy } \mathcal{P} \quad (\text{and } \textit{no-mixed-state holds})$

THEN mcomp($\{S_i\}_{i \in I}, \mathbb{K}$) enjoys \mathcal{P} .

WHEN \mathcal{P} is

Deadlock-freeness

- Let $\{S_i\}_{i \in I}$ be a set of CFSM systems
 - $\bullet\ \mathbb{K}$ a communication policy for choosen interfaces
 - $\bullet \ \mathcal{P}$ be a communication property
- **IF** all S_i 's and \mathbb{K} enjoy \mathcal{P} (and *no-mixed-state* holds)

THEN mcomp($\{S_i\}_{i \in I}, \mathbb{K}$) enjoys \mathcal{P} .

- Deadlock-freeness
- Orphan-message freeness

- Let $\{S_i\}_{i \in I}$ be a set of CFSM systems
 - $\bullet\ \mathbb{K}$ a communication policy for choosen interfaces
 - $\bullet \ \mathcal{P}$ be a communication property
- **IF** all S_i 's and \mathbb{K} enjoy \mathcal{P} (and *no-mixed-state* holds)

THEN mcomp($\{S_i\}_{i \in I}, \mathbb{K}$) enjoys \mathcal{P} .

- Deadlock-freeness
- Orphan-message freeness
- Reception-error freeness

- Let \bullet {S_i}_{i \in I} be a set of CFSM systems
 - $\bullet\ \mathbb{K}$ a communication policy for choosen interfaces

イロト 不得 トイヨト イヨト ニヨー

- $\bullet \ \mathcal{P}$ be a communication property
- **IF** all S_i 's and \mathbb{K} enjoy \mathcal{P} (and *no-mixed-state* holds)

THEN mcomp($\{S_i\}_{i \in I}, \mathbb{K}$) enjoys \mathcal{P} .

- Deadlock-freeness
- Orphan-message freeness
- Reception-error freeness
- Progress

- Let \bullet {S_i}_{i \in I} be a set of CFSM systems
 - $\bullet\ \mathbb{K}$ a communication policy for choosen interfaces
 - $\bullet \ \mathcal{P}$ be a communication property
- **IF** all S_i 's and \mathbb{K} enjoy \mathcal{P} (and *no-mixed-state* holds)

THEN mcomp($\{S_i\}_{i \in I}, \mathbb{K}$) enjoys \mathcal{P} .

WHEN \mathcal{P} is

- Deadlock-freeness
- Orphan-message freeness
- Reception-error freeness
- ► Progress 🗸
- Lock-freeness X

▲□▶ ▲御▶ ▲国▶ ▲国▶ - 国 - 20

In the future

Multicompatibility. In the binary composition: Compatibility of interfaces (~ bisimilarity) entails communication properties for the unique connection policy (if any).

Multiconnection via "interfacing infrastructure".

- "Partial" gateways (some messages dealt with directly by the interfaces).
- How can Lock-freedom be recovered?

In the future

Multicompatibility.

In the binary composition: Compatibility of interfaces (\sim bisimilarity) entails communication properties for the unique connection policy (if any).

Multiconnection via "interfacing infrastructure".

- "Partial" gateways (some messages dealt with directly by the interfaces).
- ► How can Lock-freedom be recovered?

In the future

Multicompatibility.
 In the binary composition:
 Compatibility of interfaces (~ bisimilarity) entails
 communication properties for the unique connection
 policy (if any).

Multiconnection via "interfacing infrastructure".

 "Partial" gateways (some messages dealt with directly by the interfaces).

How can Lock-freedom be recovered?
In the future

Multicompatibility.
 In the binary composition:
 Compatibility of interfaces (~ bisimilarity) entails
 communication properties for the unique connection
 policy (if any).

Multiconnection via "interfacing infrastructure".

 "Partial" gateways (some messages dealt with directly by the interfaces).

How can Lock-freedom be recovered?

In the future

Multicompatibility.
 In the binary composition:
 Compatibility of interfaces (~ bisimilarity) entails
 communication properties for the unique connection
 policy (if any).

- Multiconnection via "interfacing infrastructure".
- "Partial" gateways (some messages dealt with directly by the interfaces).

How can Lock-freedom be recovered?

In the future

- Multicompatibility.
 In the binary composition:
 Compatibility of interfaces (~ bisimilarity) entails
 communication properties for the unique connection
 policy (if any).
- Multiconnection via "interfacing infrastructure".
- "Partial" gateways (some messages dealt with directly by the interfaces).
- How can Lock-freedom be recovered?

Thanks for your attention

<ロト < 部 ト < 言 ト < 言 ト ミ の < で 27/27