ICE 2024 Pre-Proceedings

Clément Aubert Cinzia Di Giusto Simon Fowler Violet Ka I Pun

21st June 2024

This document contains the informal pre-proceedings of the 17th Interaction and Concurrency Experience (ICE
2024). The post-proceedings will be published on EPTCS.
Some of the slides can be found on the workshop’s website.

Contents

Safe Composition of Systems of Communicating Finite State Machines
Franco Barbanera (University of Catania) and Rolf Hennicker (LMU Munich) 2

The B2Scala Tool: integrating Bach in Scala with Security in Mind
Jean-Marie Jacquet (University of Namur), Manel Barkallah (University of Namur) and Doha Ouardi
(University of Namur) o e 21

Algebraic Reasoning About Timeliness
Hélene Coullon (IMT Atlantique), Simon Robillard (Université de Montpellier), Frederic Loulergue
(Université d’Orléans), Farid Arfi (IMT Atlantique) and Jolan Philippe (IMT Atlantique) 39

Towards Formal Verification of Attested TLS: Potential Replay Attacks on RA-TLS (Oral

Communication)
Muhammad Usama Sardar (TU Dresden), Arto Niemi (Huawei), Hannes Tschofenig (University of
Applied Sciences Bonn-Rhein-Sieg, Siemens) and Thomas Fossati (Linaro) 57

https://www.discotec.org/2024/ice
https://www.discotec.org/2024/ice
https://www.discotec.org/2024/ice#programme

Safe Composition of Systems
of Communicating Finite State Machines

Franco Barbanera Rolf Hennicker
Dipartimento di Matematica e Informatica Institute for Informatics
University of Catania LMU Munich
franco.barbanera@unict.it hennicke@pst.ifi.lmu.de

The Participants-as-Interfaces (Pal) approach to system composition suggests that participants of a
system may be viewed as interfaces. Given a set of systems, one participant per system is chosen to
play the role of an interface. When systems are composed, the interface participants are replaced by
gateways which communicate to each other by forwarding messages. The Pal-approach for systems
of asynchronous communicating finite state machines (CFSMs) has been exploited in the literature
for binary composition only, with a (necessarily) unique forwarding policy. In this paper we consider
the case of multiple system composition when forwarding gateways are not uniquely determined and
their interactions depend on specific connection policies complying with a connection model. We
represent connection policies as CFSM systems and prove that a bunch of relevant communication
properties (deadlock-freeness, reception-error-freeness, etc.) are preserved by Pal multicomposition,
with the proviso that also the used connection policy does enjoy the communication property taken
into account.

1 Introduction

Concurrent/Distributed systems are hardly — especially nowadays — stand-alone entities. They are part of
“jigsaws” never completely finished. Either in their design phase or after their deployment, they should
be considered as open and ready for interaction with their environment, and hence with other systems.
The possibility of extending and improving their functional and communication capabilities by compos-
ing them with other systems is also a crucial means against their obsolescence. Compositional mecha-
nisms and techniques are consequently an important subject for investigation. As mentioned in [3], sys-
tem composition investigations should focus on three relevant features of these mechanisms/techniques:

* Conservativity: They should alter as little as possible the single systems we compose.

 Flexibility: They should not be embedded into the systems we compose, i.e. they should be “sys-
tem independent”. In particular, they should allow to consider any system as potentially open.

* Safety: Relevant properties of the single systems should not be “broken” by composition.

A fairly general and abstract approach to binary composition of systems was proposed in [1] and
dubbed afterwards Participants-as-Interfaces (Pal). Roughly, the composition is achieved by transform-
ing two selected participants — one per system, say h and k, — into coupled forwarders (gateways),
provided the participants exhibit “compatible” behaviours. The graphics in Fig. 1 illustrates the Pal idea
for the binary case. If interface participant h of the first system S; can receive a message a from some
participant of S| and interface participant k of the second system S can send a to some participant of
S,, then the gateway replacing the first interface (also called h) will forward the received message to the
gateway for k. How Pal works for multicomposition of systems will be illustrated in Section 2. It is

©
To appear in EPTCS. This work is licensed under the
Creative Commons Attribution License.

2 Composition of CESM Systems

becomes

l
h | k o> h™
\

o]

Figure 1: The Pal idea for binary composition

worth remarking that the Pal approach to system composition does not expect any particular condition
to be satisfied by a single participant in order to be used as an interface.

Conservativity as well as flexibility are definitely features of the Pal composition idea. Conserva-
tivity holds since all participants not acting as interfaces remain untouched and flexibility holds since,
in principle, any participant can play the role of an interface. This fact is independent of the concrete
formalism used for protocol descriptions and system designs/implementations. Safety, instead, can be
checked only once we take into account a specific formalism. Such checks were carried out in a number
of papers where two relevant formalisms for the description and verification of concurrent communi-
cating systems were considered: MultiParty Session Types (MPST) [21, 22] and Communicating Finite
State Machines (CFSM) [12]. Safety of the binary Pal approach was investigated for MPST in [4], where
a synchronous communication model was considered. The Pal approach to multicomposition for MPST
has been exploited in [3, 2], again for synchronous communications. In particular, in [2], a restricted no-
tion of multiple connections in a client-server setting has been considered. For the synchronous MPST
formalism used in those papers, Pal proved to be safe. The binary Pal approach for safety in systems of
(standard) asynchronous CFSMs was taken into account in [1], whereas safety of Pal for a synchronous
version of the CFSM formalism was investigated in [6, 7, 8], again for binary composition.

Contributions. In the present paper we investigate safety of Pal multicomposition for the asynchronous
formalism of CFSMs. For this purpose we reuse the Pal multicomposition idea of [3] but realise it —
instead of the synchronous MPST framework — in the asynchronous CFSM setting which needs com-
pletely different design and proof techniques. At the same time we go beyond the binary composition
of asynchronous CFSMs of [1] and study multicomposition of CFSM systems. Clearly this goes also
beyond the aforementioned papers [6, 7, 8] dealing with binary composition of synchronous CFSMs.
In particular, in the asynchronous case different communication properties, like freeness of unspecified
receptions, are relevant.

A crucial role in our approach to multicomposition is played by connection policies which can be
individually chosen by the system designer on the basis of a given concrete connection model. A connec-
tion model describes architectural aspects of compositions. It specifies which forwarding links between
interface roles of different systems are meaningful from a static perspective. The concrete behavioural
instantiation of such links, in terms of which message of an interface role, say h, is forwarded in which
state of h to which interface role of another system, is determined by a connection policy which there-
fore also determines the construction of gateway CFSMs. The multicomposition of n systems of CFSMs
is then simply defined by taking all CFSMs of the single systems but replacing each CFSM of an in-
terface participant by its gateway CFSM. The use of connection models is methodologically important
since it is more likely that a connection policy complying with a connection model will satisfy desired
communication properties. Otherwise connection models are not relevant to our proofs.

In other words, we assume the existence of some connection model with which the connection policy
used for the multicomposition is compliant. However, the specifics of the connection model are irrelevant
for the safety results.

We show that a number of relevant communication properties (deadlock-freeness, orphan-message

freeness, unspecified-reception freeness, and progress) are preserved by Pal multicomposition of CFSM
systems whenever the particular property is satisfied also by the connection policy used, which is for-
malised as a CFSM system itself. Apart from orphan-message-freeness preservation we need, however,
an additional assumption which requires that interface participants do not have a state with at least one
outgoing output action and one outgoing input action, a condition referred to in the literature as no-
mixed-state [15]. We shall provide counterexamples illustrating the role played by the no-mixed-state
condition in guaranteeing safety of composition. In contrast with deadlock-freeness, the stronger prop-
erty of lock-freeness will be shown (by means of a counterexample) not to be preserved in general, even
in absence of of mixed-states.

Outline. The main ideas underlying Pal multicomposition are intuitively described in Section 2. In Sec-
tion 3 we recall the definitions of communicating finite state machine, communicating system and their
related notions. There we also provide the definitions of a number of relevant communication properties.
In Section 4, Pal multicomposition is formally defined on the basis of the definitions of connection policy
and gateway. Our main results are presented in Section 5 including counterexamples spotting the role of
the no-mixed-state condition and a counterexample for lock-freeness preservation. Section 6 concludes
with a brief summary, by pointing out a few more approaches to system composition, and with hints for
future work.

2 The Pal Approach to Multicomposition

In order to illustrate the idea underlying Pal multicom-
position', we consider an example of [3] with four sys- S %
tems Sy, S, S3 and S4. As shown in Fig. 2, we have

selected for each system one participant as an interface,]
named h, k, v and w. As in Fig. 1, we consider here only

static aspects abstracting from dynamic issues, like the —_——— ————
logical order of the exchanged messages, whose repre-
sentation depends on the chosen formalism.

Following the Pal approach, the composition of the I
four systems above consists in replacing the partici- S3 %
pants h, k, v and w, chosen as interfaces, by gateways.
Note that a message, like a in S sent to h, could be for-
warded (unlike the binary case) to different other gate-
ways. This means that a connection policy has to be set up in order to appropriately define the gateways.
Such a policy primarily depends on which partner is chosen for the current message to be exchanged.

For what concerns the present example, one could decide that message a received by h has to be
forwarded to w; the a received by v to k; the b received by k and w to v; the c received by w to h. Another
possible choice could be similar to the previous one but for the forwarding of the messages a: the one
received by h could be forwarded now to k whereas the one received by v could be forwarded to w. Such
different “choices of partners”, that we formalise by introducing the notion of connection model, can be
graphically represented, respectively, by Choice A and Choice B in Fig. 3.

Figure 2: Four interface participants

It is of course possible to compose, two by two, several systems using binary composition, but in that way — by looking at
systems as vertices and gateway connections as undirected edges — we can get only tree-like structures of systems.

4 Composition of CESM Systems

h k h k

1F
v W v W
(Choice A) (Choice B)

Figure 3: Two possible choices of partners.

(Using Choice A) (Using Choice B)

Figure 4: Two possible Pal multicompositions via gateways

The architecture of the resulting composed systems, according to the particular choices of partners
(i.e. connection models), are represented by the diagrams in Fig. 4.

In both drawings of Fig. 4, the names h,k, etc. do now represent gateways. It is important to see
that even if the original CFSMs for the participants in the single systems, like the CFSM for v in S3,
are given, the connection models and the drawings in Fig. 4 do not always provide what a gateway
CFSM, modelling the dynamic forwarding strategy, should look like. This can be illustrated by looking
at message b and participant v. No matter whether we consider Choice A or Choice B it is not determined
when the gateway for v will accept b from k and when from w. For instance, a message b from w could
be accepted by v only after two b’s are received from k. Therefore, a given choice of partners needs,
in general, to be “refined” — according to the formalism taken into account — into a specific connection
policy taking care of the dynamic choice of partners.

This Pal approach to multicomposition has been exploited in [3] for a MPST formalism with syn-
chronous communications. We are now going to realise Pal multicomposition in the context of CFSM
systems with asynchronous communications.

3 Systems of Communicating Finite State Machines

Communicating Finite State Machines (CFSMs) is a widely investigated formalism for the description
and analysis of distributed systems, originally proposed in [12]. CFSMs are a variant of finite state
I/O-automata that represent processes which communicate by asynchronous exchanges of messages via
FIFO channels. We now recall (partly following [15, 17, 24, 1]) the definitions of CFSM and system of

CFSMs.
We assume given a countably infinite set Py of participant names (ranged over by p,q,r,h,k,...) and
a countably infinite alphabet Ay of messages (ranged over by a, b, ¢, I,m,...).

Definition 3.1 (CFSM). Let P and A be finite subsets of Py and Ay respectively.
i) The set Cp of channels over P is defined by Cp = {pq|p,q € P,p #q}
ii) The set Actp 5 of actions over P and A is defined by Actp p = Cp x {!,?} X A

The subject of an output action pq!m and of an input action qp?m is p.

iii) A communicating finite-state machine over P and A is a finite transition system given by a tuple
M= (Q7q07A75)
where Q is a finite set of states, qo € Q is the initial state, and 6 C Q X Actp p X Q is a set of transi-
tions such that all the actions have the same subject, to which we refer as the name of M.

We shall write Mj, to denote a CFSM with name p. Where no ambiguity arises we shall refer to a CFSM
by its name.

Notice that the above definition of CFSM is generic with respect to the underlying sets P and A.
This is necessary, since we shall not deal with a single system of CFSMs but with an arbitrary number
of systems of CFSMs that can be composed. We shall write C and Act instead of Cp and Actp », when no
ambiguity can arise. We assume ,/,... to range over Act; @, ¢’,... to range over Act* (the set of finite
words over Act), and w,w’, ... to range over A* (the set of finite words over A). The symbol € (¢ AUAcr)
denotes the empty word and | v | the lenght of a word v € Act* U A*.

The transitions of a CFSM are labelled by actions; a label sr!a represents the asynchronous send-
ing of message a from machine s to r through channel sr and, dually, sr?a represents the reception
(consumption) of a by r from channel sr.

Given a CFSM M = (0, qo, A, §), we also define

inM)={a|(,-7a,.) €8} and out(M)={al|(,-la,-)€d}.
If M is a CFSM with name p, we also write in(p) for in(M) and out(p) for out(M). Note that, in concrete
examples, the name of a CFSM together with its input and output messages can be graphically depicted
as in Fig. 2.

A state g € Q with no outgoing transition is final; q is a sending (resp. receiving) state if it is not final
and all outgoing transitions are labelled with sending (resp. receiving) actions; ¢ is a mixed state if there
are at least two outgoing transitions such that one is labelled with a sending action and the other one is
labelled with a receiving action.

A communicating system, called “protocol” in [12], is a finite set of CFSMs. In [15, 17, 24] the
names of the CFSMs in a system are called roles. In the present paper we call them participants.

The dynamics of a system is formalised as a transition relation on configurations, where a configura-
tion is a pair of tuples: a tuple of states of the machines in the system and a tuple of buffers representing
the content of the channels.

Definition 3.2 (Communicating system and configuration). Let P and A be as in Def. 3.1.

i) A communicating system (CS) over P and A is a set S = (My)pcp where
foreachp € P, My, = (Qp,qop, A, 8) is a CFSM over P and A.

ii) A configuration of a system S is a pair s = (¢, w) where

G = (gp)pep with g, € Qp, and W = (Wpq)pqec With wpq € A*.

6 Composition of CESM Systems

The component § is the control state of the system and qp € Qp is the local state of machine My,
The component w represents the state of the channels of the system and wpq € A is the state of the
channel pq, i.e. the messages sent from p to q. The initial configuration of S is so = (qo,€) with
qo = (qo,)pep-

In the following we shall often denote a communicating system (Mp)per},; by (M,)icr.

Definition 3.3 (Reachable configuration). Let S be a communicating system over P and A, and let s =
(G, w) and s' = (¢’,w') be two configurations of S. Configuration s’ is reachable from s by firing a

transition with action I, written s — s/, if there is a € A such that one of the following conditions holds:
1. I1=srlaand (qs,l,q%) € 65 and

a) forallp#s: q, = qp and
b) Wz = Wgr -2 and for all pq # ST Wpq = Wpq;

2. l=sr? and (¢v,l,q.) € 8, and

a) forall p#x: gy =gy and
b) wsr = a-wy, and for all pq # ST @ Wy = Wpq.

We write s — s’ if there exists | such that s Ly s and we write —— ifno s’ and no [exist with s N
As usual, we denote the reflexive and transitive closure of — by —*. The set of reachable configurations
of Sis RC(S) = {s|so =" s}.

According to the above definition, communication happens via buffered channels following the FIFO
principle.

The overall behaviour of a system can be described (at least) by the traces of configurations that
are reachable from a distinguished initial one. Configurations may exhibit some pathological properties,
like various forms of deadlock or progress violation, channels containing messages that will never be
consumed (orphan messages) or just sent to a participant who is expecting another message to come
(unspecified receptions). The goal of the analysis of communicating systems is to check whether such
kinds of configurations are reachable or not. Although the desirable system properties are undecidable in
general [12], sufficient conditions are known that are effectively checkable relying, for instance, on half-
duplex communication [15], on the form of network topologies [16], or on synchronous compatibility
checking [19].

We formalise now a number of relevant communication properties for systems of CFSMs that we
shall deal with in the present paper.

Definition 3.4 (Communication properties). Let S be a communicating system, and let s = (§,w) be a
configuration of S.

i) s is a deadlock configuration of Sif W=¢€ and Vp € P. gy is a receiving state.
Le. all buffers are empty, but all machines are waiting for a message.
We say that S is deadlock-free whenever, for any s € RC(S), s is not a deadlock configuration.
ii) s is an orphan-message configuration of S if Vp € P. g, is final and w # €.
Le. each machine is in a final state, but there is still at least one non-empty buffer. We say that S is
orphan-message free whenever, for any s € RC(S), s is not an orphan-message configuration.
iii) s is an unspecified reception configuration of S if Jr € P such that

a) qr is a receiving state; and

b) Vs € P.[(qr,s1?,¢.) €6 = (IWsr| >0 A wer €a-A*)]

Le. there is a receiving state g, which is prevented from receiving any message from any of its
buffers. (In other words, in each channel sr from which role r could consume there is a message
which cannot be received by r in state q..) We say that S is reception-error free whenever, for any
s € RC(S), s is not an unspecified reception configuration.

iv) S satisfies the progress property if for all s = (g, w) € RC(S), either there exists s' such that s — '
or (Vp € P. gy, is final).

v) s is a p-lock configuration of S if p € P, q; is a receiving state and
p does not appear as subject in any label of any transition sequence from s
i.e. p remains stuck in all possible transition sequences from s. We say that S is lock-free whenever,
for each p € P and each s € RC(S), s is not a p-lock configuration.

Note that progress property (iv) implies deadlock-freeness. Moreover, an unspecified reception con-
figuration is trivially a p-lock for some p. This immediately implies that lock-freeness implies reception-
error-freeness. It is also straightforward to check that lock-freeness does imply both deadlock-freeness
and progress. The other properties are mutually independent.

The above definitions of communication properties (i)—(iv) are the same as the properties considered
in [17], though the above formulation of progress is slightly simpler but equivalent to the one in [17]. The
notions of orphan message and unspecified reception are also the same as in [24]. The same notions of
deadlock and unspecified reception are given in [15] and inspired by [12]. The deadlock notions in [12]
and [24] coincide with [15] and [17] if the local CFSMs have no final states. Otherwise deadlock in [24]
is weaker than deadlock above. A still weaker notion of deadlock configuration, and hence a stronger
notion of deadlock-freeness, has been suggested in [28]. This deadlock notion has been formally related
to the above communication properties in [1].

4 Pal Multicomposition of Communicating Systems

As described in Section 2, the Pal approach to multicomposition of systems consists in replacing, in each
to-be-composed system, one participant identified as an interface by a forwarder (that we dub “gateway”).
Any participant in a system, say h, can be considered as an interface. This means that we can look at
the CFSM h as an abstract description of what the system expects from a number of “outer” systems
(the environment) through their respective interfaces. Hence, any message received by h from another
participant p of the system (to which h belongs) is interpreted as a message to be forwarded to some
other interface h’ among the available ones. Conversely, any message sent from h to another participant
p of the system (to which h belongs) is interpreted as a message to be received from some other interface
h’ and to be forwarded to p.
In order to clarify the notions introduced in this section, we present below an example from [3],

“implemented” here in the CFSM formalism.
Example 4.1 (Working example). Let us consider the following four systems?:
System-1 with participants h; and p.

Participant h| controls the entrance of customers in a mall (via some sensor). As soon as a customer

enters, h; sends a message start to the participant p which controls a display for advertisements.

ZFor the sake of simplicity, the example considers only systems with two or three participants. Our definitions and results
are of course independent of the number of participants in the single systems.

8 Composition of CESM Systems

hy s

‘ 7] ° 2] ©
5 © I3]

‘ S 9] " L
> - - o~

= o c

2 [o «

B < 7] 3

| B IRt

r

v

|
| B 2SN
} 7\

o
& £
s i ‘_/®
— 0
@ o 9
IS F hzr?react
o]
. H ,
r R
v H
O DOw
~
[0
[0}
+

Figure 5: The four communicating systems formalising the systems of Example 4.1

On receiving the start message, p displays a general advertising image. Participant p does also
control a sensor detecting emotional reactions as well as a card reader distinguishing regular from
new customers. Such information, through the messages react, rc and nc is sent to h;. Using that
information h; sends to p a customised image, depending on the kind of the customer, through
message img.

System-2 with participants h; and qg.
Participant h; controls an image display. Images are provided by participant q according to some
parameters sent by h, itself and depending on the reaction acquired by a sensor driven by q. Images
are chosen also in terms of the kind of customers, on the basis of their cards. Participant q is able
to receive a reset message too, even if hy cannot ever send it.

System-3 with participants h3, r and r’.
Participant r controls a sensor detecting the entrance of people from a door. Once someone enters,
a message start is sent by r to participant hz which turns on a light. The reaction of who enters,
detected by a sensor driven by hs, is sent back to r which, according to the reaction, communicates
to r’ the greeting to be broadcasted from the loudspeakers.

System-4 with participants hy and s.
Some sensors driven by Participant hs acquire the first reactions of people getting into a hall
adorned by several Christmas lights. Such reactions, sent to participant s through a message react,
enable s to send to hy a set of parameters (pars) allowing the latter to adjust the lights of the hall.

The behaviours of the participants of the above systems — assuming an asynchronous model of com-
munication — can be formalised as CFSMs. So the systems above can be formalised as the following
communicating systems

S1=My)remmipy 2= Mi)xeinyq) 3= Ma)xeqnyrr) 4= (Mx)ren)
as described, anticlockwise, in Figure 5.)

Notation: We use the following notation to denote the above set of communicating systems: {S;};c(12,3.4}
where Si - (MX)XEP; with Pl = {hl 7p}, PZ = {h27q}, P3 = {h3,I‘,I‘/} and P4 = {h47 S}'

The composition of a set of systems relies on a selection of participants, one for each system, con-
sidered as interfaces.

Definition 4.2 (Interfaces). Letr {S;}ic; be a set of communicating systems such that, for each i € I,
Si = (Mx)xep,, where the P;’s are pairwise disjoint. A set of participants H = {h; }ic; C U, Pi is a set of
interfaces for {S;}ic; whenever, for each i € I, h; € P;. An interface h; has no mixed states if the CFSM
My, in S; has no mixed states.

Example 4.3. We choose {hi}ie{1,2,3,4} as set of interfaces for the communicating systems of Figure 5.
<O

We introduce now the notion of connection model®, formalising what we have informally called
“choice of partners” in Section 2. A connection model is intended to specify the structural (architec-
tural) aspects of possible “reasonable” connections between interfaces of systems. Connection models
should be provided before systems are composed since they help the system designer to avoid blatantly
unreasonable compositions. Formally, a connection model is a set of connections, where a connection is
a triple (h,a,h’) in which h and b’ are, respectively, interfaces of two systems, say S and §’, and a is an
input message for h and an output message for h’. Being a an input for h, this participant is supposed
to receive a from the “inside” of S, i.e. from another participant of S. As previously mentioned, Pal
multicomposition relies on the idea that a can be forwarded to the interface of some other system. The
connection (h,a,h’) hence specifies that b’ is one of the possible interfaces a can be forwarded to. This
is sound since a is an output of h’, i.e. it is sent by h’ to some participant of S’. The actual composition
will then rely on gateways (forwarders) which comply with the connection model taken into account.

Definition 4.4 (Connection model). Let {S;}ic; be a set of communicating systems and let H be a set of
interfaces for it.

i) A connection model for H is a ternary relation CM C H X Ag X H such that, for eachh € H and
ae Au,
e acin(h) implies 3h' € H s.t. a € out(h') and (h,a,h’) € cm
* a cout(h) implies Ih' € H s.t. a € in(h') and (1',a,h) € CM

where h # 1.

Elements of CM are called connections. In particular, (h,a,h’") € CM is called connection for a (from
h to h'). We also define Msg(cM) = {a | (_,a,_) € CM} and assume that any message a € Msg(CM)
occurs in one of the interfaces in H either as an input or as an output.

ii) A connection model CM for H is strong if, for eachh € H and a € Ay,
e acin(h)implies 3'h' € H s.t. (h,a,h’) € cM
» acout(h) implies 3'h' € H s.t. (h/;a,h) € cM.

where h # h' and the unique existential quantifier ‘3! stands for “there exists exactly one” .

Connection models can be graphically represented by diagrams, like those used in Fig. 3.

3Such a notion was informally introduced in [3] in the setting of MultiParty Session Types.

10 Composition of CESM Systems

Example 4.5 (Some connection models). Let H = {h,k,v,w} be the set of interfaces for the systems
{S,-},-e{1727374} in Section 2. Fig. 3 represents the following connection models for H:

cMp = {(h,a,w),(v,a,k),(w,c,h),(k,b,v),(w,b,v)}
cMp = {(h,a,k),(v,a,w),(w,c,h),(k,b,v),(w,b,v)}

Obviously, both connection models are not strong, because of the presence of the connections (k,b,v)
and (w,b,v).

Let us now provide a connection model for the systems in Fig. 5 with set of interfaces H = {h;} ic{12,3,.4}-
First we determine in(h;) = {react,nc,rc}, out(h;) = {img,start}, in(hy) = {react,img},
out(hy) = {nc,rc,pars}, in(hs) = {start}, out(hs) = {react}, and in(hy) = {pars}, out(hs) = {react}.

A connection model for H is

cM = {(hj,react,hy), (h3,start,h;), (hy,img,h;), (hy,nc,hy),
(hy,rc,hy), (ha, pars,hy), (hy, react,h3)}
The representation of CM is as in Fig. 6. Obviously, this connection model is strong. &

nc
rc
start T pars

hy ——| hj img hy [«—— hy

react react
Figure 6: A connection model for the interfaces of Fig. 5.

When we have more than two systems to compose, the gateways are, in general, not uniquely deter-
mined. In order to produce gateways out of interfaces we need to decide which connection model we
wish to take into account and how the interfaces do actually interact “complying” with the connection
model. Once a connection model is selected, the forwarding strategy of the gateway is still not uniquely
determined if the connection model is not strong. The reason is that in the case of at least two connectors
with the same source or the same target, like (k, b, v) and (w, b, v) in Example 4.5, the gateway for v has a
dynamic choice when to accept message b from k and when from w. Therefore we need further (dynamic)
information which will be provided by connection policies. A connection policy is itself a communicat-
ing system which describes the dynamic choice of partners among the possible gateways by respecting
the constraints of (that is, complying with) the connection model. Technically, we first associate a set
of CFSMs (the “local connection policy set”) to each interface. Any element of this set specifies which
communications to the “outside” are allowed in which state. Technically these communications are dual
to the communications of its corresponding interface.

Definition 4.6 (Local Connection Policy Set). Let CM be a connection model for a set of interfaces H
and let h € H with CFSM My, = (Q,qo, A, 0).
The local connection policy set of My, w.r.t. CM is the set of CFSMs LCPS(My,, CM) defined as follows:

LCPS(My,cM) = {(O, 40, A,8) | & is a minimal relation s.t. (x) and ()}

where Q ={§ | q € Q} and
rh?a

(x) =q — ¢’ € 6 implies 3p € H\ {h}s.t. § la, ¢ € 8 and (h,a,p) € CM,

(xx) =¢q 2R 4 € 8 implies dpe H\{h}s.t. g Bha, ¢ € 8 and (p,a,h) € CM.

11

Notice that, in the above definition, each CFSM in LCPS(M,,,cM) has name h. Moreover, ¢ (resp. h)
is to be looked at as a “decoration” of the state g (resp. the name h). This will enable us to immediately
retrieve g (resp. h) out of ¢ (resp. f1).

Notation: In the following, for the sake of readability, we shall write k (resp. k;) for h (resp. fll‘).

Local connection policy sets are finite, since they contain machines which only differ in the names
of participants and these names belong to a finite set. Any element (Q,qo,A,5) of LCPS(My,CcM)
does comply with the connection model CM, since it can only have transitions

. hpla ° ph7a ° & .
G =2 ¢ € & with (h,a,p) € CM and transitions § — ¢’ € & with (p,a,h) €
CM, Moreover, LCPS(My,, CM) is a singleton if the connection model CM is strong.

Example 4.7 (An element of a local connection policy set). Let My, be the CFSM
for the participant h; of Example 4.1 and let CM be the strong connection model
for H = {h;}ic{1234) of Example 4.5. The CFSM on the right is the unique
element of LCPS(My,,CM). O

Given a connection model, a connection policy is obtained by choosing, for
each interface, an element of its local connection policy set.

Definition 4.8 (Connection policy). Let {S;}ic; be a set of communicating systems such that, for each
i €1, S; = (My)xep,, and let CM be a connection model for a set of interfaces H = {h; },c;. A connection
policy (for H) complying with CM is a communicating system K = (My,)ics such that, for each i € I,
My, € LCPS(M,,cM).

Connection policies are made of local connection policies which, due to the conditions (x) and ()
in Definition 4.6, are compliant with the given communication model CM. Consequently, in the above
definition, the connection policy is said to be compliant with CM. If we dropped the two requirements
(*) and () in Definition 4.6 we would get non-compliant connection policies.

Example 4.9 (A connection policy). The following four CFSMs constitute a connection policy for H =
{hi}ier complying with CM, where the M, ’s are as in Figure 5 and CM is the connection model of
Example 4.5.

k3 kg

L + +

~ 9]
';‘_‘ < L I
& B 5 I
< - -~ S
o & 2 ~
% ™ = —
Q X @ 5

<&

Remark 4.10. A connection model can be looked at as a static and abstract description of connection
policies. In particular a connection model abstracts from the order of exchanged messages. As already
pointed out above there may be several connection policies complying with a given connection model
CM if CM is not strong. As an example assume given three systems with the following interfaces:
h; shi?a
\© " N hov!a s N haw!a
O——0 O—

rhy?a

@

12 Composition of CESM Systems

We can now consider the following (non-strong) connection model: CM = {(hy,a,hy), (hi,a,hs)}.
It is easy to check that the connection policies K| and K; below do both comply with CM.

kl k2 k3 k| ky k3

N N N ¥ v 4
Ki= »wf \= 5 5 Ke= »/ \= 5 5
©] o o Iy ™ o o

By now we have almost all the necessary notions to formally define the Pal multicomposition of
systems of communicating systems. The only missing piece is that of building the gateways using a
connection policy.

We get a gateway essentially by transforming an interface M}, by inserting a fresh state in between any
transition. Any input transition g LLIEN ¢ (resp. output transition ¢ LN q") of My, is then transformed
into two consecutive transitions

sh?a_ . hh'la
q > q > q

~ hsla

(resp. q LLLN qg—4)

. . kKla_ 'kl
where § is a fresh state and ¢ ELEEN q (resp. q LEIEN ¢) belonging to the connection policy taken into
account. In the formal definition below we distinguish the fresh states by superscripting them by the
transition they are “inserted in between”.

Definition 4.11 (Gateway).
Assume given a connection model CM and two CFSMs My, and My, such that My, = (Q,qo,A,) and

My = (Q, do, A, 5) € LCPS(My, CM). The gateway My «<PMy obtained out of My, and My is defined by
Mh(_PMk = (Q U Q\7 q07A7 3)

where

— 0 =Uyeo{d"") | (q,1.4) € 8},

5= {(g,th?%,q),(q,hs!a,q) | (¢,hs'a,q') € §,(¢,tk?a, q’) €3, g =qlabs'ad)}
U{(g,sh?a,q),(g,hr'a,q') | (¢,sh?a,q) € 8, (¢, kt'a,q) € 5, 5= gla=n72:4)Y,

We refer to 8 as &, whenever h is not clear from the context; similarly for Q.

Example 4.12 (A gateway). Let My, be as in Example 4.1, and let My, be as in the connection policy of
Example 4.9. The gateway My, «PMy, is as follows.

hqp!start phy?react *5112

h2h1‘7img h1h2!nC
®

hohy?img hihy!rc
©)

<

Definition 4.13 (Composability). Let {S;}ics be a set of communicating systems such that, for eachi € I,
Si = (Mx)xep,- Moreover, let H = {h;}ics be a set of interfaces for it. We say that {S;}icr is composable
with respect to H whenever the sets P;’s are pairwise disjoint.

Let us now describe how systems are composed on the basis of a given connection policy.

13

Definition 4.14 (Multicomposition of communicating systems). Let {S;}ic; be a set of communicating
systems composable with respect to H = {h; }ic; and let K = (M,)ic1 be a connection policy complying
with a connection model CM for H. The multicomposition of {S;};c; with respect to K is the communi-
cating system

AME{Si}ier, K) = (Mp)pey,., P,

where ‘
] M if p & {hitics
P My, PMy, ifp="n;withicl

Note that the CFSMs of a composition are CFSMs over P = (J;;P; and A = | J;c; A;. Graphically,
the architectural structure of a multicomposition via gateways can be shown as in Fig. 4.

S On the Preservation of Communication Properties

The main result of the present paper is the safety of Pal multicomposition of CFSM systems for all
communication properties of Definition 3.4 but lock-freeness. Apart from orphan-message-freeness we
need the no-mixed-state assumption for interfaces to obtain the preservation results.

Theorem 5.1 (Safety of Pal multicomposition of CFSM systems). Let {S;}ic; be a set of communicating
systems composable with respect to a set H = {h;}ic; of interfaces with no mixed states (cf. Defini-
tion 4.2) and let K be a connection policy for H. Let & be either the property of deadlock-freeness
or reception-error-freeness or progress. If &2 holds for each S; with i € I and for K, then & holds for
S = ME({Si}icr, K). Moreover, the above holds also if the no-mixed-state condition is removed and &
is orphan-message-freeness.

Remark 5.2. The above result about safety of multicomposition is actually independent of a concrete
connection model. Considering connection policies which comply with a connection model is, however,
helpful at the design stage of the multicomposition and enhances the possibility of getting connection
policies which satisfy communication properties and hence support the preservation of communication
properties of the composed systems. O

Theorem 5.1 can be proved for each property & separately by contradiction. In particular by showing
that if &2 does not hold for S then it does not hold either for one of the S;’s or for K.

A key notion for the proofs is that of projection of a reachable configuration of the composed system
to configurations of each of the single systems S; and also of the connection policy K. On this basis, the
most important tool to get contradictions is the subsequent Proposition 5.4 which essentially shows that
projections of reachable configurations involving no intermediate gateway states are reachable configu-
rations again. The complete proofs of property preservations are provided in [5]. They are independent
of the communication model K complies with.

Definition 5.3 (Configuration projections). Let S = .#%€({S;}ic1,K) be as in Theorem 5.1 (but without
no-mixed-state assumption). Let s = (¢,w) € RC(S) where § = (gp)pecp and W = (Wpq)pgecy. For each
i € I, the projection s|; of s to S; is defined by

where ‘7|i = (qP)PGPi and w\i = (qu)pqecp,--
The projection s|, of s = (4, w) to K is defined if gqn, & On, for each i € I and then

Sk = (ZI\K’le)

14 Composition of CESM Systems

where Eth = (px,)ie1 is such that, for each i € I, px, = gn, (With gn, being the “dotted decoration” of
th/e local state qn,) and where W, = (W;q)p,qE{ki}ig,p#q is such that, for each pair i,j €I with i # j,
wk,‘kj = whihj'

Proposition 5.4 (On reachability of projections). Let s = (¢,w) € RC(S).
i) Foreachi€l, (qn & On, = s}, € RC(S;));

ii) (qn, & é\hifor eachie€l) = s, € RC(K).

The connection policy of Example 4.9 does enjoy all the properties of Definition 3.4. Moreover, the
interfaces of the four systems of Example 4.1 are all with no mixed state. Hence Theorem 5.1 guarantees
that any property (among those of Definition 3.4, but lock-freedom) enjoyed by the systems is also
enjoyed by their Pal multicomposition.

Now we provide some examples for cases in which communication properties are not preserved.
First we show that all the three properties for which we have assumed the no-mixed-state condition
in Theorem 5.1 would, in general, not be preserved by composition if the condition is dropped. In the
counterexamples, the receiving states introduced by the gateway construction cause the breaking of the
property taken into account.

Example 5.5 (No-mixed-state counterexample for deadlock-freeness and progress preservation). Let us
consider the two following systems S; and S, with interfaces, respectively, h; and h; containing mixed
states.

u v

\ e | L
& | N
—: hy ® ' | n 5
) N hjula ho? <
®

S1 and S5 are both deadlock free and both enjoy the progress property. There is a unique commu-
nication model for their composition: M = {(hy,2a,h;), (hj,b,hy)} The unique communication policy
complying with CM is the following one.

®

Also K is deadlock free and enjoys the progress property. The system .Z%({S1,S2},K) is the fol-
lowing one.

u hihy!b hohla v
N) @ N) e ©) N
h; RN hy Y

2 N N =
- 4 4 2

T% N &y T%

hjula hyv!b
o ®—0 ®©—0 ®

The initial configuration is actually a deadlock, and hence the system does also not enjoy progress. <
Example 5.6 (No mixed-state counterexample for reception-error-freeness preservation). Let us consider
the two following systems S; and S, with interfaces, respectively, h; and hy containing mixed states.

v
u
«_ ubla uhy!b hju?c ® X

© n ® ® \ Ny
Ry
i hi? h b hiu! | h2 b !
N uh;?a uh;? julc N hyv! hpvla
© 1 ©; ® ‘ 0 1

pi<ua

S1 and S, are both reception-error free. The unique communication model for their composition is

CM = {(h] , a,hz), (h] , b,hg), (hz,C,h])}
The unique communication policy complying with CM is

K= Y kikpla kiky!b O kyk?c ko v
B 3 3 ? 2
k]kz.b ~ kikp?a

U

Also K is reception-error free. The system .#Z%({S,S2},K) is the following one.

u

N uh;la uh;!b hju?c
© 1 ® ®
hy
N uh?a hihpla uh; ?b hihy!b hohy?c hjulc
hyhy lc v
241 @ N
<
=
Dl
hyv!b hihy?a hpvla =
O @ ® 0

This communication system, however, is not reception-error free, since it is possible to reach the config-
uration s = (g, w) where

q = (2u72h130h2’ lv), Whih, = <a : b), Wyh, = <d>, We=E (VC Q/ {h]hZ,VhZ})
In the configuration s, the CFSM by is in a receiving state, namely 0, from which there are two transi-
tions, namely (0, vh;?c, 0) and (O,hlhz?b,()). Moreover, the channels vh; and hih, are both not empty
and their first element is different from both b and c. The above configuration is hence an unspecified
reception configuration. &

Notice that in case we dropped the requirement that K has to comply with a communication model,
the interfaces h; and h, of Example 5.6 could be simplified to get the counterexample. In particular, they
could have just, respectively, two and three states. The use of communication models hence limits the
possibility of getting systems whose properties are not preserved by composition. This is an indication
that connection models increase the possibility of getting safe compositions.

Let us now turn to the last communication property stated in Definition 3.4 which is lock-freeness.
This property is also meaningful in the context of synchronous communication.

In [8, Example 6.7] a counterexample is provided, showing that in the formalism of synchronous CF-
SMs the properties of (synchronous) lock-freeness and deadlock-freeness are, in general, not preserved.
As a matter of fact, lock-freeness is problematic also for the case of asynchronous communications and
no mixed states, as shown in the following example, adapted from [8].

Example 5.7 (Lock-freeness is not preserved by composition). Let us consider the following communi-
cating systems S7 and S».

s —> é
o
q—> qhy7x | b hzs!x® r—s '&jF
2 —_—>
h) — ® | 2
| 9: hos?m
o
qhy!m hos! @u ‘/®
qhi?m | 28:m Pt
ot

Note that both S| and S, are lock-free and their respective interfaces h; and h; have no mixed states.

16 Composition of CESM Systems

Let us now consider the (unique) connection policy K = (My,);c{12) Where My, € LCPS(My,,CM)
and My, € LCPS(My,,cM) with connection model CM = {(hy,x,h,), (hj,m,hy)}.

klkg!x k1k2‘7x
k; —@) @ ky —(§) ®
K=
kiko!m ki1ko?m

It is easy to see that K is lock-free. The multicomposition .#Z%({S;}ic(1 2}, K) is the following commu-
nicating system:

&

=

0~
2]

P

q
l | | :)
. P
SARe S TG ' %
< v, % & <
7 < + v Q) Q;L ﬂ
&? Q;Q’W ’,_9: hys?m
+ o
s ©° Q
qhy!m > <O
o8 o o

The initial configuration so of .#Z%({S;}ic{12},K) is an r-lock, since the transition ghy ?x of hy can never
be fired, so implying, in turn, that also hy hy!x of hy, hy hy?7x of hy, hy s!x of hy, hy s7x of s and sr!stop
of s can never be fired. Hence, no transition sequence out of so will ever involve the participant r. Thus
ME({Si}icq1,2),K) is not lock-free. o

6 Conclusions

The necessity of supporting the modular development of concurrent/distributed systems, as well as the
need to extend/modify/adapt/upgrade them, urged the investigation of composition methods. Focusing
on such investigations in the setting of abstract formalisms for the description and verification of systems
enables to get general and formal guarantees of relevant features of the composition methods.

An investigation of composition in a formalism for choreographic programming was carried out
in [25]. In [23] a modular technique was developed for the verification of aspect-oriented programs
expressed as state machines. Team Automata is another formalism in which compositionality issues have
been addressed [10, 9], as well as in assembly theories considered in [20]. Composition for protocols
described via a process algebra has been investigated in [11]. In [14, 26] a technique for modular design
in the setting of reactive programming is proposed. A possible approach to composition for a MultiParty
Session Type (MPST) formalism is developed in [27]. The mentioned papers provide just a glimpse of
the variety of approaches to system composition in the literature.

Papers dealing with the (binary) composition of systems on the basis of the participants-as-interfaces
(Pal) approach have been pointed out already in Section 1 and the idea of Pal for multicomposition of
systems has been explained in Section 2. In the present paper we study the Pal approach to multicom-
position for systems of asynchronously communicating finite state machines (CFSMs). We show that
(under mild assumptions) important communication properties relevant in the context of asynchronous
communication, like freeness of orphan messages and unspecified receptions, are preserved by compo-
sition (a feature dubbed safety in [3]). For this we assume that for each single system one participant is
chosen as an interface. A key role in our work, inspired by [3], is played by connection policies, which

17

are CFSM systems which determine the ways how interfaces can interact when they are replaced by
gateways (forwarders) in system compositions.

For an “unstructured” formalism like CFSM, the natural generalisation from multicomposition with
single interfaces to multicomposition with multiple interfaces (per system) is not trouble-free, as dis-
cussed in [1, Sect.6] for binary composition. This is mainly due to the possible indirect interactions
which could occur among the interfaces inside the single systems. In more structured formalisms, how-
ever, such possible interactions can be controlled. This is the case, for instance, in MPST formalisms. In
fact, in [18] the authors devise a direct composition mechanism without using gateways for MPST sys-
tems. Such a mechanism allows for the presence of multiple interfaces thanks to an hybridisation with
local and external information of the standard notion of global type. A combination of global and local
constructs in order to get flexible specifications (uniformly describing both the internal and the interface
behavior of systems) is also present in [13].

There are several directions to be pursued in future work starting from our results. On the first place,
we want to generalise the notion of connection policy such that Pal multicomposition could actually be
obtained by replacing interfaces by gateways which, instead of interacting directly with each other, can
interact through an “interfacing infrastructure” represented via a system of CFSMs. Such a generalisation
would be equivalent to multicomposition where exactly one system is enabled to have multiple interfaces.
Let us consider a possible application of the above idea. In Example 4.1, in the resulting composed
system, both participants p and q do emit a react message. It would be more natural to have only one of
them produce such a message, e.g., to have p be the sole sensor registering reactions which then passes
that information to both r and s. This would not be possible by our composition mechanisms and we
cannot but make the best of the fact that we are dealing with two sensors. One could think, instead, about
using an “interfacing infrastructure” containing some further participant enabling to ignore the messages
from one sensor and properly duplicating the messages from the other.

It is worth noticing how, in Examples 5.5, 5.6 and 5.7, the interfaces of the systems we compose do
have unreachable states. It is hence natural to wonder whether it is the presence of unreachable states in
interfaces that entails the possibility of getting counterexamples for the properties taken into account.

We are also planning to consider further communication properties, like strong lock-freeness (any
participant can eventually progress in any continuation of any reachable configuration), as well as to
investigate conditions to get lock-freeness preservation, not guaranteed yet.

Unlike the present paper, in [1] safeness is ensured for the binary case by assuming compatibility of
interfaces and an extra condition (called ?!-determinism) on them. We are currently considering a gener-
alisation of the binary compatibility relation. Such generalisation should imply relevant communication
properties for the communication policy it depends on.

We are planning also to identify some conditions ensuring Theorem 5.1 to hold for any communica-
tion property & satisfying them.

Finally, we could consider “partial” gateways, where only some communications of an interface are
interpreted as communications with the environment. Such an idea was actually implemented in [2] in a
MPTS setting for a restricted client-multiserver composition with synchronous communications.

Acknowledgements We warmly thank the ICE’24 reviewers for their careful reading, their thoughtful
comments/suggestions and the helpful discussion on the forum. We also thank Emilio Tuosto for his nice
tikz style for automata.

18

Composition of CESM Systems

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Franco Barbanera, Ugo de’Liguoro & Rolf Hennicker (2019): Connecting open systems of com-
municating finite state machines. J. Log. Algebraic Methods Program. 109, article 100476,
doi:10.1016/J.JLAMP.2019.07.004.

Franco Barbanera, Mariangiola Dezani-Ciancaglini & Ugo de’Liguoro (2022): Open compliance in mul-
tiparty sessions. In S. Lizeth Tapia Tarifa & José Proenca, editors: Proc. FACS 2022, LNCS 13712,
Springer, pp. 222-243, doi:10.1007/978-3-031-20872-0_13. Extended version at http://www.di.unito.
it/~dezani/papers/bd23b.pdf.

Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri & Nobuko Yoshida (2023): Multicom-
patibility for Multiparty-Session Composition. In Santiago Escobar & Vasco T. Vasconcelos, editors: Proc.
PPDP 2023, ACM, pp. 2:1-2:15, doi:10.1145/3610612.3610614.

Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese & Emilio Tuosto (2021): Composition
and decomposition of multiparty sessions. J. Log. Algebraic Methods Program. 119, article 100620,
doi:10.1016/j.jlamp.2020.100620.

Franco Barbanera & Rolf Hennicker: Safe Composition of Systems of Communicating Fi-
nite State Machines (Full Version). Available at https://github.com/francobarbanera/
asychCFSM-multicomposition/blob/20392804aab754b05735a19547clee7524149a6a/
CFSM-multicomposition-Full.pdf.

Franco Barbanera, Ivan Lanese & Emilio Tuosto (2020): Composing communicating systems, synchronously.
In Tiziana Margaria & Bernhard Steffen, editors: Proc. ISOLA 2020, LNCS 12476, Springer, pp. 39-59,
doi:10.1007/978-3-030-61362-4 3.

Franco Barbanera, Ivan Lanese & Emilio Tuosto (2022): On composing communicating systems. In Clément
Aubert, Cinzia Di Giusto, Larisa Safina & Alceste Scalas, editors: Proc. ICE 2022, EPTCS 365, Open
Publishing Association, pp. 53-68, doi:10.4204/EPTCS.365.4.

Franco Barbanera, Ivan Lanese & Emilio Tuosto (2023): Composition of synchronous communicating sys-
tems. J. Log. Algebraic Methods Program. 135, article 100890, doi:10.1016/J.JLAMP.2023.100890.

Maurice H. ter Beek, Rolf Hennicker & Jetty Kleijn (2020): Compositionality of Safe Communication in
Systems of Team Automata. In Violet Ka I Pun, Volker Stolz & Adenilso Simao, editors: Proc. ICTAC 2020,
LNCS 12545, Springer, pp. 200-220, doi:10.1007/978-3-030-64276-1_11.

Maurice H. ter Beek & Jetty Kleijn (2003): Team Automata Satisfying Compositionality. In Keijiro
Araki, Stefania Gnesi & Dino Mandrioli, editors: Proc. FME 2003, LNCS 2805, Springer, pp. 381-400,
doi:10.1007/978-3-540-45236-2_22.

Laura Bocchi, Dominic Orchard & A. Laura Voinea (2023): A Theory of Composing Protocols. Art Sci. Eng.
Program. 7(2), doi:10.22152/PROGRAMMING-JOURNAL.ORG/2023/7/6. Article 6.

Daniel Brand & Pitro Zafiropulo (1983): On Communicating Finite-State Machines. J. ACM 30(2), pp.
323-342, doi:10.1145/322374.322380.
Luis Caires & Hugo Torres Vieira (2010): Conversation types. Theor. Comput. Sci. 411(51-52), pp. 4399—
4440, doi:10.1016/J.TCS.2010.09.010.

Marco Carbone, Fabrizio Montesi & Hugo Torres Vieira (2018): Choreographies for Reactive Programming.
CoRR abs/1801.08107. Available at http://arxiv.org/abs/1801.08107.

Gérard Cécé & Alain Finkel (2005): Verification of programs with half-duplex communication. Inf. Comput.
202(2), pp- 166-190, doi:10.1016/j.ic.2005.05.006.

Lorenzo Clemente, Frédéric Herbreteau & Grégoire Sutre (2014): Decidable Topologies for Communicating
Automata with FIFO and Bag Channels. In Paolo Baldan & Daniele Gorla, editors: Proc. CONCUR 2014,
LNCS 8704, Springer, pp. 281-296, doi:10.1007/978-3-662-44584-6_20.

Pierre-Malo Deniélou & Nobuko Yoshida (2012): Multiparty Session Types Meet Communicating Automata.
In Helmut Seidl, editor: Proc. ESOP 2012, pp. 194-213, doi:10.1007/978-3-642-28869-2_10.

19

Lorenzo Gheri & Nobuko Yoshida (2023): Hybrid Multiparty Session Types: Compositionality for Proto-
col Specification through Endpoint Projection. Proc. ACM Program. Lang. 7(OOPSLA1), pp. 112-142,
doi:10.1145/3586031.

Rolf Hennicker & Michel Bidoit (2018): Compatibility Properties of Synchronously and Asynchronously
Communicating Components. Log. Meth. in Comp. Sci. 14(1), pp. 1-31, doi:10.23638/LMCS-14(1:1)2018.

Rolf Hennicker & Alexander Knapp (2015): Moving from interface theories to assembly theories. Acta
Informatica 52(2-3), pp. 235-268, doi:10.1007/S00236-015-0220-7.

Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty asynchronous session
types. In George C. Necula & Philip Wadler, editors: Proc. POPL 2008, ACM, pp. 273-284,
doi:10.1145/1328438.1328472.

Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty asynchronous session types. J. ACM
63(1), pp. 9:1-9:67, doi:10.1145/2827695.

Shriram Krishnamurthi, Kathi Fisler & Michael Greenberg (2004): Verifying aspect advice modularly.
In Richard N. Taylor & Matthew B. Dwyer, editors: Proc. SIGSOFT 2004, ACM, pp. 137-146,
doi:10.1145/1029894.1029916.

Julien Lange, Emilio Tuosto & Nobuko Yoshida (2015): From Communicating Machines to Graphical
Choreographies. In Sriram K. Rajamani & David Walker, editors: Proc. POPL 2015, ACM, pp. 221-232,
doi:10.1145/2676726.2676964.

Fabrizio Montesi & Nobuko Yoshida (2013): Compositional Choreographies. In Pedro R. D’Argenio &
Hernan C. Melgratti, editors: Proc. CONCUR 2013, LNCS 8052, Springer, pp. 425-439, doi:10.1007/978-
3-642-40184-8_30.

Zorica Savanovic, Letterio Galletta & Hugo Torres Vieira (2020): A type language for message passing
component-based systems. In Julien Lange, Anastasia Mavridou, Larisa Safina & Alceste Scalas, editors:
Proc. ICE 2020, EPTCS 324, pp. 3-24, do0i:10.4204/EPTCS.324.3.

Claude Stolze, Marino Miculan & Pietro Di Gianantonio (2023): Composable partial multiparty session
types for open systems. Softw. Syst. Model. 22(2), pp. 473—-494, doi:10.1007/S10270-022-01040-X.

Emilio Tuosto & Roberto Guanciale (2018): Semantics of global view of choreographies. J. Log. Algebr.
Meth. Program. 95, pp. 1740, doi:10.1016/j.jlamp.2017.11.002.

The B2Scala Tool: integrating Bach in Scala
with Security in Mind

Doha Ouardi Manel Barkallah Jean-Marie Jacquet
Nadi Research Institute Nadi Research Institute Nadi Research Institute
Faculty of Computer Science Faculty of Computer Science Faculty of Computer Science
University of Namur University of Namur University of Namur
Namur, Belgium Namur, Belgium Namur, Belgium
doha.ouardi@unamur.be manel.barkallahQunamur.be jean-marie.jacquet@unamur.be

Process algebras have been widely used to verify security protocols in a formal manner. However
they mostly focus on synchronous communication based on the exchange of messages. We present an
alternative approach relying on asynchronous communication obtained through information available
on a shared space. More precisely this paper first proposes an embedding in Scala of a Linda-like
language, called Bach. It consists of a Domain Specific Language, internal to Scala, that allows us
to experiment programs developed in Bach while benefiting from the Scala eco-system, in particular
from its type system as well as program fragments developed in Scala. Moreover, we introduce a
logic that allows to restrict the executions of programs to those meeting logic formulae. Our work
is illustrated on the Needham-Schroeder security protocol, for which we manage to automatically
rediscover the man-in-the-middle attack first put in evidence by G. Lowe.

1 Introduction

Besides the use of theorem provers, process algebras have been widely used to verify security protocols
in a formal manner. A seminal effort in this direction is reported in [19]. There the author illustrates
how modeling in CSP [12] and utilizing the FDR tool [10] can be used to produce an attack on the
Needham-Schroeder protocol. As another example, the article [2] demonstrates how state reduction
techniques can be applied to analyze a model of the Bilateral Key Exchange protocol written in mCRL
[6]. In these two cases the models rely on synchronous communication obtained by the exchange of
messages. Although this type of communication has been fundamental in the theory of concurrency and
has consequently benefited from extensive research support, it is not necessarily intuitive for analyzing
security protocols. Indeed, the idea of exchanging messages in a synchronous manner between partners
rests on the assumption that the communication takes place instantaneously on agreed actions and thus
does not naturally leave room for an intruder to intercept messages. As an evidence at the programming
level, in the above two pieces of work, this has lead the authors to duplicate the exchange of messages in
their model.

Another path of research has been initiated by Gelernter and Carriero, who advocated in [9] that a
clear separation between the interactional and the computational aspects of software components has to
take place in order to build interactive distributed systems. Their claim has been supported by the design
of a model, Linda [3], originally presented as a set of inter-agent communication primitives which may
be added to almost any programming language. Besides process creation, this set includes primitives
for adding, deleting, and testing the presence/absence of data in a shared dataspace. In doing so they
proposed a new form of synchronization of processes, occurring asynchronously, through the availability
or absence of pieces of information on a shared space. A number of other models, now referred to as

© D. Ouardi, M. Barkallah & J-M. Jacquet
This work is licensed under the
Creative Commons Attribution License.

Preliminary Report. Final version to appear in:
ICE 2024

2 The B2Scala Tool

coordination models, have been proposed afterwards. These models seem highly attractive to us because,
in practice, message exchanges do not occur atomically through the synchronous communication of
actors. Instead, they must happen through a medium — such as a network — which can be easily modeled
as a shared space.

The aim of this paper is to explore how coordination models can be used to analyze security protocols.
More concretely, we will focus on a specific coordination model, named Bach, will derive a tool, named
B2Scala, and will employ it to produce the attack on the Needham-Schroeder protocol [20] first put in
evidence by G. Lowe (see [19]).

Implementing coordination models can be done in three different ways. First, as illustrated by Tucson
[7], one may provide an implementation as a stand alone language. This has the advantage of offering
support for a complete algebra-like incarnation of Linda but at the expense of having to re-implement
classical programming constructs that are proposed in conventional languages (like variables, loops,
lists, ...). The second approach, illustrated by pSpaces [18] is to provide a set of APIs in a conventional
language in order to access the shared space through dedicated functions or methods. This approach
benefits from the converse characteristics of the first one: it is easy to access classical programming
constructs but the abstract control flow that is offered at a process algebraic level, like non-deterministic
choice and parallel composition, is to be coded in an ad hoc manner. Finally, a third approach consists in
using a domain specific language embedded inside an existing language. We will turn to this approach
since, in principle, it enjoys the benefits of the first two approaches. More specifically, this paper proposes
to embody the Bach coordination language inside Scala. In doing so we will profit from the Scala eco-
system while benefiting from all the abstractions offered by the Bach coordination language. A key
feature is that we will interpret control flow structures, which we put in good use to restrict computations
to those verifying logic formulae. As an interesting consequence, we shall be able to produce the man-
in-the-middle attack of the Needham-Schroeder security protocol first put in evidence by G. Lowe.

The rest of the paper is structured as follows. Section 2 presents the Needham-Schroeder use-case
as well as the Bach and Scala languages. Section 3 describes the B2Scala tool, both from the point of
view of its usage by programmers and from the implementation point of view. A logic is proposed in
Section 4 together with its effect on reducing executions. Section 5 illustrates how B2Scala coupled to
constraint executions can be used to analyze the Needham-Schroeder protocol. Finally Section 6 draws
our conclusions and compares our work with related work.

2 Background

2.1 Use-case: the Needham-Schroeder Protocol

The Needham-Schroeder protocol, developed by Roger Needham and Michael Schroeder in 1978 [20], is
a pioneering cryptographic solution aimed at ensuring secure authentication and key distribution within
network environments. Its primary objective is to establish a shared session key between two parties,
typically referred to as the principal entities, facilitating encrypted communication to safeguard data
confidentiality and integrity. The protocol unfolds in a series of steps: initialization, where a client (A)
requests access to another client (B) from a trusted server (S), followed by the server’s response, which
involves authentication, session key generation, and ticket encryption. Subsequently, communication
with party B ensues, facilitated by the transmission of the encrypted ticket, along with nonces to ensure
freshness. Parties exchange messages encrypted with the session key and incorporate nonces to prevent
replay attacks. Mutual authentication is achieved through encrypted messages exchanged between A and
B, leveraging the established session key and nonces. Despite its early contributions, the original protocol

D. Ouardi, M. Barkallah & J-M. Jacquet 3

exhibited vulnerabilities, notably the reflection attack. In response, refined versions have emerged, such
as the Needham-Schroeder-Lowe [19] and Otway-Rees protocols [17].

The description of the Needham-Schroeder public key protocol is often slimmed down to the three
following actions:

Alice — Bob : message(na : a) pip
Bob — Alice : message(na : nb) pi,
Alice — Bob : message(nb) i,

where each transition of the form X — Y : m represents message m being sent from X to Y. Moreover,
the notation my, represents message m being encrypted with the public key k.

This version assumes that the public keys of Alice and Bob (resp. pka and pkb) are already known
to each other. The full version also involves communication between the parties and a trusted server to
obtain the public keys.

In this model, Alice initiates the protocol by sending to Bob her nonce na together with her identity
a, the whole message being encrypted with Bob’s public key pkb. Bob responds by sending to Alice her
nonce na together with his nonce nb, the whole message being encrypted this time with Alice’s public
key pka. Finally Alice sends to Bob his nonce nb, as a proof that a session has been safely made between
them. The message is this time encrypted with Bob’s public key.

It is worth stressing that, although public keys are known publicly (as the noun suggests), it is only
the owners of the corresponding private keys that can decrypt encrypted messages. For instance, the first
message sent to Bob can only be decrypted by him.

It is also worth noting that, although sending messages appears as an atomic action in the above
description, this is in fact not the case. Messages are transmitted through some medium, say the network,
and thus are subject to be read or picked up by opponents. This will be illustrated in Section 5 where a
more detailed model will be examined.

2.2 The Bach Coordination Language

Bach [8, 15] is a Linda dialect developped at the University of Namur by the authors. It borrows from
Linda the idea of a shared space and reformulates data and the primitives according to the constraint
logic programming setting [24]. The following presentation is based on the one of article [1].

2.2.1 Definition of data

According to the logic programming setting, we assume a non-empty set of function names, each one
associated with an arity, which indicates the number of arguments the function takes. We assume a non-
empty subset of function names associated with an arity 0, namely taking no argument. Such function
names are subsequently referred to as fokens. Based on their existence, so-called structured pieces of in-
formation are introduced inductively as expressions of the form f(ay,--- ,a,) where f is a function name
associated with arity n and where arguments ay, ..., a, are structured pieces of information, understood
either as tokens or in the structured form under description. Note that, as the special case where n = 0,
tokens are considered as being structures information terms. The set of structured pieces of information
is subsequently denoted by .#. For short, si-term is used later to denote a structured piece of information.

Example 1 The nounces used by Alice and Bob in the Needham-Schroeder protocol are coded by the
tokens na and nb, respectively. Similarly, their public keys are coded by the tokens pka and pkb. A

4 The B2Scala Tool

(T) (teli(t)| o) — (E|oU{t}) (G) (get(t)[oU{t}) — (E|0)

téo

(A) {ask(r) | oU{1}) — (E|oU{t}) N ek (o) — (Eo)

Figure 1: Transition rules for the primitives (taken from [1])

s . {Ale)) (Alo) — |)
A:Blo) — (A:B|0) (© ~{A+Blo)—A]d)
(B+A|o)— (4|0

(A]o) — ('] &)
(P) “(Al[B|o) — (A[[B[0)
(BlA] o) — (B]|4'| o)

Px) =A, (Alx/u| o) — (A"] o)

(Pe) P@) | o) — A]0)

Figure 2: Transition rules for the operators (taken from [1])

message encrypted by Alice with Bob’s public key and providing Alice’s nounce with her identity ‘a’ is
encoded as the following structured piece of information encrypt (na, a, pkbd).

2.2.2 Agents

Following the concurrent constraint setting, Linda primitives out, rd and in respectively used to output
a tuple, check its presence and consume one occurrence are reformulated as tell, ask, get, acting on
si-terms. We add to them a negative counterpart, nask checking the absence of a si-term. The execution
of these primitives is described by the transition relation defined in Figure 1. The configurations to
be considered are pairs of instructions, for the moment reduced to simple primitives, coupled to the
contents of the shared space. Following the concurrent constraint setting, the shared space is referred to
as the store. It is taken as a multiset of si-terms. Moreover, the E symbol is used to denote a terminated
computation. Consequently, rule (T) expresses that the execution of the zell(¢) primitive always succeeds
and add an occurrence of 7 to the store. Rule (A) requires ask(t) to succeed that 7 is present on the store.
As this primitive just makes a test, the contents of the store is unchanged. According to rule (G), the
get(t) primitive acts similarly but remove one occurrence of 7. Finally, as specified by rule (N), the
primitive nask(t) succeeds in case ¢ is absent from the store.

Primitives are combined to form more complex agents by means of traditional operators from con-
currency theory: sequential composition, denoted by the ; symbol, parallel composition, denoted by the
|| symbol, and non-deterministic choice, denoted by the + symbol.

Procedures are defined by associating an agent with a procedure name possibly coupled to parame-
ters. As usual, we shall assume that the associated agents are guarded, in the sense that the execution of
a primitive preceeds any call or can be rewritten in such a form. Procedures are subsequently declared
after the proc keyword.

The execution of complex agents is defined by the transition rules of Figure 2. Sequential, parallel
and choice composition operators are given the convention semantics in rules (S), (P) and (C), respec-

D. Ouardi, M. Barkallah & J-M. Jacquet 5

tively. Rule (Pc) dictates that the procedure call P(u) operates as the agent A that defines P with the
formal arguments X replaced by the actual ones u. It is important to note that, in these rules, agents of the
form (E;A), (E || A) and (A || E) are rewritten as A.

Example 2 As an example, the behavior of Alice and Bob can be coded as follows:

proc Alice = tell (encrypt(na,a,pkb)); get(encrypt(na,nb,pka));
tell (encrypt(nb,pkb)).

Bob

get(encrypt(na,a,pkb); tell (encrypt(na,nb,pka));
get(encrypt(nb,pkb)).

Note that Alice and Bob only tell messages encrypted with the public key of the other and only get
messages encrypted with their public key, which simulates their sole use of their private key.

It is also worth stressing that we will present a model of the Needham-Schroeder protocol and not a
concrete implementation. Hence the above tokens (na, nb, ...) are to be understood as globally defined
and not as a form of local variables.

2.3 The Scala Programming Language

Scala is a statically typed language known for its concise syntax and seamless fusion of object-oriented
and functional programming. Variables can be declared as immutable or mutable, as illustrated by the
following code snippet.

val immutableVariable: Int = 42
var mutableVariable: String = "Hello, Scala!"

Methods are introduced with the def keyword, can be generic (with type parameters specified in square
brackets), can be written in curried form (with multiple parameter lists) and have a return type which is
specified at the end of the signature. Here is a simple example for adding two integers.

def add(x: Int, y: Int): Int = x + y
Methods are typically included in the definition of objects, classes and traits, which act as interfaces in
Java. Of particular interest for the implementation of B2Scala is the definition of case classes which are

classes that automatically define setter, getter, hash and equal methods.
Two main additional features of Scala are worth stressing.

2.3.1 Functions and objects

Functions may be coded by defining objects with an apply function. For instance, if we define

object tell {
def apply(siterm: SI_Term) = TellAgent(siterm)
}

object Agent {
def apply(agent: BSC_Agent) = CalledAgent(agent)
}

then the evaluation of

val P = Agent { tell(f(1,2)) }

6 The B2Scala Tool

consists first in evaluating zell on the si-term f(1,2), which results in the structure TellAgent(f(1,2)),
and then in evaluating the function Agent on this value, which results in the structure
CalledAgent(TellAgent(f(1,2))). It is that result which is assigned to P.

2.3.2 Strictness and lazyness

Scala is a strict language that eagerly evaluates expressions. However there are cases in which it is
desirable to postpone the evaluation of expressions, for instance to handle recursive definitions of agents.
To that end, Scala proposes two basic mechanisms: call-by-name of arguments of functions and so-called
thunks. To understand these two concepts, let us modify the add function so that it returns the double of
its first argument, regardless of the value of the second one:

def doubleAdd(x: Int, y: => Int) = x + X

The first argument is passed using the call-by-value strategy. It is evaluated whenever the function is
called. In contrast, the second argument is passed using the call-by-name strategy. Accordingly, it is
evaluated when needed and thus in our example not evaluated at all. However one step further needs to

be made to handle recursive expressions that we want to evaluate step by step. In that case, so-called
thunks are used. They amount to consider functions requiring no arguments, as in the following definition

def mylIf[A](cond: Boolean, onTrue: () => A,
onFalse: () => A): A = {
if (cond) onTrue() else onFalse ()

}

Note that the arguments onTrue and onFalse are functions taking no arguments and leading to expres-
sions rather than simply expressions.

To conclude this point, it is possible to delay the evaluation of val-declared expression by using the
lazy keyword, such as in

lazy val recursiveExpression = (l+recursiveExpression)2

3 The B2Scala Tool

3.1 Programming interface

To embed Bach in Scala, two main issues must be tackled: on the one hand, how is data declared, and,
on the other hand, how are agents declared.

3.1.1 Data

As regards data, the trait SI_Term is defined to capture si-terms. Concrete si-terms are then defined as
case classes of this trait. For instance in order to manipulate f(1,2) in one of the primitives (tell, ask,
...) the following declaration has to be made:

case class f(x:Int, y: Int) extends SI_Term
Similarly, tokens can be declared as in

case class a() extends SI_Term

D. Ouardi, M. Barkallah & J-M. Jacquet 7

However that leads to duplicate parentheses everywhere as in tell(a()). To avoid that a Token class has
been defined as a case class of SI_Term. It takes as argument a string so that token a can be declared as

val a = Token(‘a’’)

Accordingly, a may now be used without parentheses, as in tell(a).

Example 3 As examples, the public keys and nonces used in the Needham-Schroeder protocol are de-
clared as the following tokens:

val pka = Token(*‘‘pka’’)
val pkb = Token(* ‘pkb’’)
val na = Token(‘‘na’’)
val nb = Token(‘‘nb’ ")

Encrypted messages are coded by the following si-terms:

case class encrypt2(n: SI_Term,k: SI_Term) extends SI_Term
case class encrypt3(n: SI_Term,x: SI_Term,k: SI_Term) extends SI_Term

Note that Scala does not allow the same name to be used for different case classes. We have thus renamed
them according to the number of arguments.

3.1.2 Agents

The main idea for programming agents is to employ constructs of the form
val P = Agent { (tell(f(1,2))+tell(g(3))) Il (tell(a)+tell(b)) }

which encapsulate a Bach agent inside Scala definitions. The Agent object is the main ingredient to do
so. It is defined as an object with an apply method as follows

object Agent {
def apply(agent: BSC_Agent) = CalledAgent(() => agent)
}

It thus consists of a function mapping a BSC_Agent into the Scala structure CalledAgent taking a thunk,
which consists of a function taking no argument and returning an agent. As we saw above, this is needed
to treat in a lazy way recursively defined agent.

The BSC_Agent type is in fact a trait equipped with the methods needed to parse Bach composed
agents. Technically it is defined as follows:

trait BSC_Agent { this: BSC_Agent =>
def =(other: => BSC_Agent) =
ConcatenationAgent(() => this, other _)
def I[l(other: => BSC_Agent) =
ParallelAgent(() => this, other _)
def +(other: => BSC_Agent) =
ChoiceAgent(() => this, other _)
}

As ; is a reserved symbol in Scala, sequential composition is rewritten with the * symbol.

The definition of the composition symbol *, || and + employs Scala facility to postfix operations.
Using the above definitions, a construct of the form rell(t) +tell(u) is interpreted as the call of method
+ to rell(t) with argument rell(u).

8 The B2Scala Tool

It is worth observing that the composition operators take agent arguments with call-by-name and
deliver structures using thunks, namely functions without arguments to agents.

It will be useful later to generalize choices such that they offer more than two alternatives according
to an index ranging over a set, such as in },o; ag(x) where ag(x) is an agent parameterized by x. This is
obtained in B2Scala by the following construct

GSum(L, x => ag(x))

where L is a list.

3.2 Implementation of the Domain Specific Language

The implementation of the domain specific language is based on the same ingredients as those employed
in the Scan and Anemone workbenches [13, 14]. They address two main concerns: how is the store
implemented and how are agents interpreted.

3.2.1 The store

The store is implemented as a mutable map in Scala. Initially empty, it is enriched for each told structured
piece of information by an association of it to a number representing the number of its occurrences on
the store. The implementation of the primitives follows directly from this intuition. For instance, the
execution of a tell primitive, say tell(t), consists in checking whether t is already in the map. If it
is then the number of occurrences associated with it is simply incremented by one. Otherwise a new
association (t, 1) is added to the map. Dually, the execution of get (t) consists in checking whether t
is in the map and, in this case, in decrementing by one the number of occurrences. In case one of these
two conditions is not met then the get primitive cannot be executed.

3.2.2 Interpretation of agents

Agents are interpreted by repeatedly executing transition steps. This boils down to the definition of
function run_one, which assumes given an agent in an internal form, namely as a subtype of BSC_Agent,
and which returns a pair composed of a boolean and an agent in internal form. The boolean aims at
specifying whether a transition step has taken place. In this case, the associated agent consists of the
agent obtained by the transition step. Otherwise, failure is reported with the given agent as associated
agent.

The function is defined inductively on the structure of its argument, say ag. If ag is a primitive,
then the run_one function simply consists in executing the primitive on the store. If ag is a sequentially
composed agent ag; ; agi;, then the transition step proceeds by trying to execute the first subagent ag;.
Assume this succeeds and delivers ag’ as resulting agent. Then the agent returned is ag’ ; ag;; in case ag’
is not empty or more simply ag;; in case ag’ is empty. Of course, the whole computation fails in case ag;
cannot perform a transition step, namely in case run_one applied to ag; fails.

The case of an agent composed by a parallel or choice operator is more subtle. Indeed for both
cases one should not always favor the first or second subagent. To avoid that behavior, we use a boolean
variable, randomly assigned to O or 1, and depending upon this value we start by evaluating the first or
second subagent. In case of failure, we then evaluate the other one and if both fails we report a failure. In
case of success for the parallel composition we determine the resulting agent in a similar way to what we
did for the sequentially composed agent. For a composition by the choice operator the tried alternative
is simply selected.

D. Ouardi, M. Barkallah & J-M. Jacquet 9

The computation of a procedure call is performed by computing the defining agent.

4 Constrained executions

The fact that Bach agents are interpreted in the B2Scala tool opens the door to select computations of
interest. This is obtained by stating logic formulae to be met.

Two main approaches have been used in concurrency theory to describe properties by means of
logic formulae. One approach, exemplified by Linear Temporal Logic (LTL) [22], is based on Kripke
structures. In two words, LTL extends classical propositional logic by introducing temporal operators
that allow to describe how properties evolve over time. For instance, X ® means that ® holds in the next
state while ®U ¥ specifies that ® holds until ¥ holds. Central to this approach are, on the one hand, a
transition relation between states, indicating which states can be reached from which states, and, on the
other hand, a labelling function that assigns to each state a set of atomic propositions that are true in that
state.

The other approach is based on labelled transition systems. It is exemplified by the Hennessy-Milner
logic (HML) [11]. This logic provides a way to specify properties in terms of actions and capabilities.
The two following modalities are the key concepts of HML:

* <a>Y¥ means that, by following the labelled transition system, it is possible to make a transition
by a such that the resulting process satisfies ¥

* [a]¥ means that, whenever a is performed the resulting process satisfies V.

However, since they are finite HML formulae can only describe properties with a finite depth of reason-
ing. A way to circumvent this problem is to use a generalisation called the p-calculus [16]. It extends
HML with fixed-point operators, such as in uX.(®V <a>X) which states that there is a path where ®
holds directly or after having repeatedly taken a-transitions.

The logic we use is inspired by these three logics. It is subsequently presented in two steps by
describing so-called basic formulae and the bsL-calculus. The effect on computations is then specified.
This yields so-called constrainted computations.

4.1 Basic formulae

Similarly to LTL logic, we first specify formulae that are true on states. Obviously, a key concept in our
coordination setting is whether a si-term is present on the store under consideration. This is specified by
a construct of the form bf (¢) which requires that the si-term 7 is present on the current store. The formal
definition is as follows.

Definition 1 For any si-term t, the formula bf (t) holds on store o ifft € ©. This is subsequently denoted
as 6 = bf (t). Such formulae are subsequently called bf-formulae.

As expected, bf-formulae can be combined with the classical logic operators. Formulae built in this
way are called basic formulae. The formal definition is as follows.

Definition 2 Basic formulae are the formulae meeting the following grammar:
b:=bf(t)|'b|b1\Vby| by NDy

where bf (t) denotes a bf-formula, b, by, by denote basic formulae and the symbols |, \/, N\ respectively
express the negation, the disjunction and the conjuction of basic formulae.

10 The B2Scala Tool

The fact that a basic formula f holds on the store ¢ is defined from the relation |= on bf-formulae
according to the traditional truth tables of propositional logic. By extension, this will be subsequently
denoted by o = f.

Example 4 As an example, bf(i_running(Alice,Bob)) is a bf-formula that states that the si-term
i_running(Alice,Bob) is on the store, which can be used to specify that Alice and Bob have initiated
a session.

4.2 The bsL calculus

Similarly to Hennessy-Milner logic and the mu-calculus, we now turn to specify sequences of properties
that have to hold on the sequences of stores produced by computations. Obviously, as we want to restrict
computations, we have to discard the [...] modality. However we can use the <...> modality in the
following manner. Remember that in HML the formula <a>F expresses that it is possible to do an
a step followed by a b step and reach a process in which F holds. In a similar way, we will express by
bf (a);bf (b) the property that it is possible to do a step which leads to bf (a) being true followed by a step
after which bf (D) is true. This is for instance performed by the Bach agent rell(a);zell(b). Note that as a
reminder of the sequential composition of agents in Bach, we have used the ““;” to compose sequentially
bf-formulae. As noticed in the above mu-calculus formula, besides sequential composition, we shall also
use disjunction to allow the choice between several paths. This leads us to the following grammar where,
by analogy to Bach operators, the “+” symbol is used to indicate disjunction.

Definition 3 BsL-formulae are the formula defined by the following grammar:

f = DbIP|i+folfifo

where b denotes a basic formula, fi and f, are bsL-formulae and P a variable to be defined by an
equation of the form P = f’ with f’' being a bsL-formula. As usual in concurrency theory, we assume
that f' is guarded in the sense that a bf-formula is requested before variable P is called recursively.

Example S As an example, the attack on the Needham-Schroeder protocol may be discovered by finding
a computation that obeys the bsL-formula X defined by

X = (not(i_running(Alice,Bob)) ; X)+ r_commit(Alice, Bob)

that is by a computation that does not produce the si-term i_running(Alice,Bob) and that ends when
r_commit(Alice, Bob) appears on the store. Restated in other terms such a computation never includes
the start of a session between Alice and Bob but terminates with Alice and Bob ending the session by
committing together.

4.3 Constrained computations

We are now in a position to detail how computations may be constrained by bsL-formulae. Intuitively,
if f is a bsL-formula composed of a sequence of basic formulae, a computation c is considered to be
constrained by f if the sequence of stores involved in ¢ successively obeys the successive basic formulae
in f. This is defined by means of the auxiliary I~ relation, itself defined by the rules of Figure 3. Intu-
itively, the notation o b f [f'] states that a first basic formula of f is satisfied on the store ¢ and that the
remaining formulae of f’ need to be satisfied. Accordingly rule (BF) asserts that if the basic formula b

D. Ouardi, M. Barkallah & J-M. Jacquet 11

okEb = :
BE) SFbe] or) =L [;/{ =
ok filf3]
(CF) ok (fi+r5)fs] (SF) ok (f(ly;l_szp; H;l ;)]

ot (f+f1)lf3]

Figure 3: Transition rules for the - relation

Alo) —@A|o), o't fIf]

ED) —Refo)— was o)

Figure 4: Extended transition rule

is satisfied by the store o then it is also the first formula to be satisfied and nothing remains to be estab-
lished. The symbol ¢ is used there to denote an empty sequence of basic formulae. Rule (PF) states that
if formula P is defined as f and if a first bf-formula of f is satisfied by o yielding f’ to be satisfied next
then so does P with f” to be satisfied next. Finally rules (CF) and (SF) specify the choice and sequential
composition of bsL-formulae as one may expect.

Given the |- relation, we can define constrained computations by extending the — transition relation
as the — relation specified by rule (ET) of Figure 4. Informally this rule states that if, on the one hand,
agent A can do a transition from the store ¢ yielding a new agent A’ and a new store ¢’ and if, on the other
hand, a first formula of f is met by ¢’ yielding f’ as a remaining bsL-formula to be established, then
agent A can make a constrained transition from store 6 and bHM-formula f to agent A’ to be computed
on store ¢’ and with respect to bHM-formula f”.

It is worth noting that the encoding in B2Scala is quite easy. On the one hand, bf-formulae are
defined similarly to Bach primitives through the bf function and are combined as primitives are. On the
other hand, bsL formulae are defined by the bsL function and recursive definitions are handled in the
same way as recursive agents.

The interpretation of agents is then made with respect to a bsL-formula. Basically, a step is allowed
by the run_one function if one step can be made according to the bsL-formula, as specified by the
— transition relation. This results in a new agent to be solved together with the continuation of the
bsL-formula to be satisfied.

5 The Needham-Schroeder protocol in B2Scala

As an application of the B2Scala tool, let us now code the Needham-Schroeder protocol and exhibit a
computation that reflects G. Lowe’s attack. The interested reader will find the code, the tool and a video
of its usage under the web pages of the authors at the addresses mentioned in [21].

Allowing for an attack requires us to introduce an intruder. It is subsequently named Mallory. This
being said, the first point to address is to declare nonces and public keys for all the participants of the

12 The B2Scala Tool

protocol, namely Alice, Bob and Mallory. This is achieved by the following token declarations:

val na = Token(" Alice_nonce")

val nb = Token("Bob_nonce")

val nm = Token (" Mallory_nonce")

val pka = Token(" Alice_public_key ")
val pkb = Token (" Bob_public_key")

val pkm = Token (" Mallory_public_key")

It will also be useful later to refer to the three participants, which can be achieved by means of the
following token declarations:

val alice = Token(" Alice_as_agent")
val bob = Token (" Bob_as_agent")
val mallory = Token(" Mallory_as_intruder")

To better view who takes which message produced by whom, encrypted messages introduced in
Section 3, are slightly extended as si-terms of the form message(Sender, Receiver, Encryted_Message).
Moreover, to highlight which message is used in the protocol, we shall subsequently rename encrypted
messages as encrypt_n, with n the number in the sequence of messages. This has the additional advantage
of avoiding to overload case classes, which is forbidden in Scala. The following declarations follow.

case class encrypt_i(vNonce: SI_Term, vAg: SI_Term,
vKey: SI_Term) extends SI_Term
case class encrypt_ii(vNonce: SI_Term, wNonce: SI_Term,
vKey: SI_Term) extends SI_Term
case class encrypt_iii (vNonce: SI_Term,
vKey: SI_Term) extends SI_Term
case class message(agS: SI_Term, agR: SI_Term,
encM: SI_Term) extends SI_Term

Finally, si-terms are introduced to indicate with whom Alice and Bob start and close their sessions.
They are declared as follows:

case class a_running(vAg: SI_Term) extends SI_Term
case class b_running(vAg: SI_Term) extends SI_Term
case class a_commit(vAg: SI_Term) extends SI_Term
case class b_commit(vAg: SI_Term) extends SI_Term

We are now in a position to code the behavior of Alice, Bob and Mallory. Coding Alice’s behavior
follows the description we gave in Example 2 in Section 2. The code is provided in Figure 5. Although
Alice wants to send a first encrypted message to Bob, she can just put her message on the network,
hoping that it will reach Bob. The network is simulated here by the store, which leaves room to Mallory
to intercept it. As a result, the first action is for Alice to start of a session. Hopefully it is with Bob but,
to test for a possible attack, we have to take into account the fact that Mallory can take Bob’s place. This
is coded by offering a choice between Bob and Mallory by the GSum([bob,mallory], ...) construct.
Calling this actor Y, Alice’s first action is to tell the initialization of the session with Y, thanks to the a_-
running(Y) si-term being told and then to tell the first encrypted message with her nonce, her identity
and the public key of Y. The sender and receiver of this message are respectively Alice and Y. Then
Alice waits for a second encrypted message with her nonce and what she hopes to be Bob’s nonce, this
message being encrypted by her public key. As the second nonce is unknown a new choice is offered
with the WNonce si-term. Finally, Alice sends the third encrypted message with this nonce, encoded with

D. Ouardi, M. Barkallah & J-M. Jacquet 13

val Alice = Agent ({
GSum(List(bob,mallory), Y => {
tell (a_running (Y)) =
tell (message(alice, Y, encrypt_i(na, alice, public_key(Y)))) =
GSum(List(na,nb,nm), WNonce => {
get(message(Y, alice, encrypt_ii(na,WNonce,pka))) =
tell (message(alice ,Y,encrypt_iii (WNonce, public_key(Y)))) =
tell (a_commit(Y))
1)
P
}

Figure 5: Coding of Alice in B2Scala

val Bob = Agent {
GSum(List(alice ,mallory), Y => {
tell (b_running (Y)) =
GSum(List(alice ,mallory), VAg => {
get(message(Y,bob,encrypt_i(na,VAg,pkb))) =
tell (message(bob,Y,encrypt_ii(na,nb,public_key(VAg)))) =
get(message(Y,bob,encrypt_iii(nb,pkb))) =
tell (b_commit(VAg))
1)
P

Figure 6: Coding of Bob in B2Scala

the public key of ¥ and terminates the session by telling the a_commit (Y) si-term. It is worth noting
that public_key(Y) consists of a call to a Scala function that returns the public key corresponding to
the Y argument.

Coding Bob’s behavior proceeds in a dual manner. This time the coding has to take into account that
Mallory can have taken Alice’s place. Hence the first choice GSum([alice,mallory], ...) withY
denoting the sender of the message. Moreover, the identity of the agent in the first message being got
can be different from Y. A second choice GSum([alice,mallory], ...) results from that. The whole
agent is given in Figure 6.

As an intruder, Mallory gets and tells messages from Alice and Bob, possibly modifying some parts
in case the messages are encrypted with his public key. This applies for the three kinds of message
sent/received by Alice and Bob. Figure 7 provides the code for the first message. It presents three GSum
choices resulting from the three unknown arguments VNonce, VAg, VPK of the message. In all the cases,
Bob’s attitude is to get the message and to resend it, by modifying the public key if he can decrypt the
message, namely if VPK is his public key.

To conclude the encoding of the protocol in B2Scala, a bsL-formula F is specified, on the one hand,
by excluding a session starting between Bob and Alice and, on the other hand, by requiring the end
of the session by Bob with Alice. These two requirements are obtained through the basic formulae
inproper_init and end_session, as specified below:

val inproper_init = not(bf(a_running(bob)) or bf(b_running(alice)))

14 The B2Scala Tool

lazy val Mallory:BSC_Agent = Agent {

(GSum(List(na,nb,nm), VNonce => {
GSum(List(alice ,bob), VAg => {
GSum(List(pka,pkb,pkm), VPK => {
get(message(alice ,mallory,encrypt_i(VNonce,VAg,VPK))) =
(if (VPK == pkm) {
tell (message(mallory ,bob,encrypt_i(VNonce,VAg,pkb)))
} else {
tell (message(mallory ,bob,encrypt_i(VNonce,VAg,VPK)))
}) = Mallory

Figure 7: Coding of Mallory in B2Scala

val end_session = bf(b_commit(alice))

Formula F is then coded recursively by requiring F' after a step meeting inproper_init and by
stopping the computation once a step is done that makes end_session holds. This is specified as follows.

val F = bsL { (inproper_init = F) + end_session }
Computations are started by invoking the following Scala instructions

val Protocol = Agent { Alice |l Bob |l Mallory }

val bsc_executor = new BSC_Runner
bsc_executor.execute (Protocol ,F)

The result is given in Figure 8 in a verbose form in which all the primitives are displayed as Scala
objects. As we shall see in a few lines, it produces G. Lowe’s attack. To view that, let us reformulate
the Scala objects TellAgent, GetAgent and BSC_Token in their corresponding Bach counterparts. The
listing of Figure 8 then becomes as follows, where numbers are introduce to facilitate the explanation:

(1) tell(a_running(mallory))

(2) tell(b_running(mallory))

(3) tell(message(alice ,mallory,encrypt_i(na,alice ,pkm)))

(4) get(message(alice ,mallory ,encrypt_i(na,alice ,pkm)))

(5) tell(message(mallory ,bob,encrypt_i(na,alice ,pkb)))

(6) get(message(mallory ,bob,encrypt_i(na,alice ,pkb)))

(7) tell (message (bob,mallory ,encrypt_ii(na,nb,pka)))

(8) get(message(bob,mallory,encrypt_ii(na,nb,pka)))

(9) tell (message(mallory,alice ,encrypt_ii(na,nb,pka)))
(10) get(message(mallory ,alice ,encrypt_ii(na,nb,pka)))
(11) tell(message(alice ,mallory,encrypt_iii(nb,pkm)))
(12) get(message(alice ,mallory,encrypt_iii(nb,pkm)))
(13) tell (a_commit(mallory))

(14) tell (message(mallory ,bob,encrypt_iii(nb,pkb)))
(15) get(message(mallory ,bob,encrypt_iii(nb,pkb)))
(16) tell(b_commit(alice))

D. Ouardi, M. Barkallah & J-M. Jacquet 15

Welcome to the B2Scala excution engine.
We are going to process the following query.
| => root / Compile / packageBin / mappings
calledAgent(bscala.bsc_agent. ngentﬁﬂﬁLambda(SSB-‘/0&3000000“04“21440@10009“94)

successfully evaluated TellAgent(a_running(BSC_Token(Mallory_as. lntruder)))
TellAgent (b_running(Bs! Tor
A Bs(_Token(Alice_nounce),BSC_Token(Alice_as_agent),BSC_Token(Mallory public_key))))
(ALL ice_as_agent),BSC_Token(Mallory_public_key))))
TellAgent (message (BSC_ i

GetAgent(message(BSC_Ty b_as_agent),encrypt_
Tellngent(me“age(BS(get truder),encryp:
intruder),encrypt_

as_agent),encr

s_agent) encryj

TellAgent (message (BSC_Token(H x &) oken(Bob_as_agent) encrypt_iii(BSC_Token(Bob_nounce),BSC_Token(Bob_public_key))))

successfully evaluated GetAgent(message(BSC_Token(Mallory_a ,BSC_Token(Bob_as_agent),encrypt_iii(BSC_Token(Bob_nounce),BSC_Token(Bob_public_key))))
Successfully evaluated TellAgent (b_commit(BSC_ Tokemnue as_agent)))

Figure 8: Screenshot of the computation

Lines (1), (2), (13) and (16) evidence that Alice and Bob have actually exchanged messages with
Mallory whereas they thought they would speak to each other. In fact Mallory manages to make himself
appear as Bob to Alice and as Alice to Bob. Let us abstract from these lines. It is then worth observing
that the above listing makes appear tell and get in pairs employing the same message. This corresponds
to one actor sending the message to another actor, which is translated in our framework as the first actor
telling the message and the second one getting it. By reusing the description of Section 2.1, the listing
can then be summed up as follows:

Alice — Mallory : message(na : alice) pjm (lines 3 and 4)
Mallory — Bob : message(na : alice) pim (lines 5 and 6)
Bob — Mallory : message(na : nb)p, (lines 7 and 8)

Mallory — Alice : message(na : nb)pi, (lines 9 and 10)

Alice — Mallory : message(nb) pim (lines 11 and 12)
Mallory — Bob : message(nb) ,xp (lines 14 and 15)

This is in fact the attack identified by G. Lowe in [19]. It consists essentially in placing Mallory in be-
tween Alice and Bob, in having him forward Alice’s first message, by changing the public key encrypting
the message, in getting Bob’s reply and transfer it as such, and finally in forwarding Alice’s reply to Bob,
again by changing the public key encrypting the message.

Note that a key ingredient for producing the above computation is that imposing inproper_init to
hold forces the first choice in Alice’s code and Bob’s code to be made such that Y takes Mallory as value.

6 Conclusion

In the aim of formally verifying security protocols, this paper has proposed an embedding of the coordi-
nation language Bach in Scala, in the form of an internal Domain Specific Language, named B2Scala. It
has also proposed a logic that allows for constraining executions. The Needham-Schroeder protocol has
been modeled with our proposal to illustrate its interest in practice.

The choice for an internal Domain Specific Language has been motivated by the possibility of tak-
ing profit from the Scala eco-system, notably its type system, while benefiting from all the abstractions
offered by the Bach coordination language. We hope to have convinced the reader of these two features
through the coding of the Needham-Schroeder protocol. Indeed, on the one hand, the BSC_Agents coding
Alice, Bob and Mallory mimick the procedures that would have been written directly in Bach. Moreover
the sequential composition operator, the parallel composition operator and the non-deterministic choice

16 The B2Scala Tool

operator have been used as one would have used them in Bach. This feature allows to embed the Bach
control flow operators in B2Scala. It is here also worth observing that a similar description could have
been written in a pure process algebra setting like the one used in the workbenches Scan and Anemone.
However type checking is not supported by these workbenches but is given for free in B2Scala. More-
over, auxiliary concepts like public_key(Y) would have been rewritten as mapping functions, with care
for completeness of the code left to the programmer while it is provided for free in B2Scala (through
completeness verification done by Scala for the match operation).

On the other hand, the code to be written is a real Scala code. Examples of that are the definitions
of tokens or si-terms, which are Scala case classes. In that respect, it is worth stressing that arguments
of si-terms need to be declared with a type, which is verified at compilation time. Moreover, they can be
obtained as the result of a Scala function, as exemplified by the use of public_key(Y) in the coding of
Alice and Bob (see Figures 5 and 6). It is also to be noted that the GSum construct offers a form of local
variable, binding the Scala and Bach worlds. Take for instance the first GSum of Figure 5 :

GSum(List(bob,mallory), Y => {
tell (a_running (Y)) =

There Y plays the role of a local variable which has to be bound to bob or mallory. Once the value has
been decided (by the run_one function through the alternative selected for the choice, see Section 3.2.2),
it can be used later in the code. Similarly, the second GSum construct allows to bind W Nonce to the value
selected by the get primitive:
GSum(List(na,nb,nm), WNonce => {

get(message(Y, alice, encrypt_ii(na,WNonce,pka))) =

This being said, our main goal in this paper is to offer a modelling language to describe and reason
on systems, such as the Needham-Schroeder protocol, rather than a programming language to code the
implementation of the protocol. In these lines, it is worth observing that a direct modelling for analysis
purposes would not have been possible in (pure) Scala since we would lack the abstraction offered by
process algebras like Bach.

As reported in [S], many coordination languages have been implemented, in some cases as stand
alone languages, like Tucson [7], but mostly as API’s of conventional languages, accessing tuple spaces
through dedicated functions or methods, as in pSpaces [18]. To the best or our knowledge, B2Scala is
the first implementation of a coordination language as a Domain Specific Language. We are also not
aware of an implementation done in Scala. However, our work is linked to the work on Caos [23], which
provides, by using Scala, a generic tool to implement structured operational semantics and to generate
intuitive and interactive websites. In practice, one has however to define the semantics of the language
under consideration by using Scala. In contrast, we take an opposite approach which already offers an
implementation of the Bach constructs and in which programmers need to code Bach-like programs in a
Scala manner. Moreover we propose a logic to constraint executions, which is not proposed in [23].

Scafi [4] is another research effort to integrate a coordination language in Scala. It targets a different
line of research in the coordination community by being focussed on aggregate computing. Moreover, to
the best of our knowledge, no support for constrained executions is proposed.

This work is a continuation of previous work on the Scan and Anemone workbenches [13, 14]. It
differs by the fact that both Scan and Anemone interpret directly Bach programs. Moreover the PLTL
logic they use is different from the logic proposed in this paper.

As regards the Needham-Schroeder protocol, to our best knowledge, it has been never been modeled
in a coordination language, most probably because the Coordination community and the one on security
are quite different. Nevertheless it has been modeled in more classical process algebras. In [19] the

D. Ouardi, M. Barkallah & J-M. Jacquet 17

author uses CSP and its associated FDR tool to produce an attack on the protocol. This analysis has
been complemented in [2] by using the mCRL process algebra and its associated model checker. Our
work differs by using a process algebra of a different nature. Indeed the Bach coordination language
rests on asynchronous communication which happens by information being available or not on a shared
space. This allows to naturally model messages being put on the network as si-terms told on the store.
Similarly the action of an intruder is very intuitively modeled by getting si-terms. In contrast, [2] and [19]
use synchronous communication which does not naturally introduce the network as a communication
medium and which technically forces them to model the intruder by duplicating Alice and Bob’s send
and receive actions by intercept and fake messages.

Our work open several paths for future research. First the synergy with Scala given by B2Scala offers
a natural way of making interfaces much more user friendly than the one of Figure 8. Second we have
only investigated the use of B2Scala to analyze the Needham-Schroeder protocol. Our current research
aims at exploring the security of other protocols, such as the Quic protocol. Finally, our logic is used to
restrict computations at run-time without lookahead strategies, which could lead to select computations
that fail later to meet the remaining logic formulae. As a solution to that problem, we are investigating
how statistical model checking can be married with B2Scala.

7 Acknowledgment

The authors warmly thank the anonymous reviewers for their insightful comments, which greatly con-
tributed to the improvement of this article. They also thank the University of Namur for its support as
well as the Walloon Region for partial support through the Ariac project (convention 210235) and the
CyberExcellence project (convention 2110186).

References

[1] M. Barkallah & J.-M. Jacquet (2023): On the Introduction of Guarded Lists in Bach: Expressiveness, Cor-
rectness, and Efficiency Issues. In C. Aubert, C. Di Giusto, S. Fowler & L. Safina, editors: Proceedings 16th
Interaction and Concurrency Experience (ICE) 2023, EPTCS 383, pp. 55-72.

[2] S.Blom, J.F. Groote, S. Mauw & A. Serebrenik (2004): Analysing the BKE-security Protocol with tCRL. In
I. Ulidowski, editor: Proceedings of the 6th AMAST Workshop on Real-Time Systems, Electronic Notes in
Theoretical Computer Science 139, Elsevier, pp. 49-90.

[3]1 N. Carriero & D. Gelernter (1989): Linda in Context. Communications of the ACM 32(4), pp. 444-458.

[4] R. Casadei, M. Viroli, G. Aguzzi & D. Pianini (2022): ScaFi: A Scala DSL and Toolkit for Aggregate
Programming. SoftwareX 20, p. 101248.

[5] G. Ciatto, S. Mariani, G. Di Marzo Serugendo, M. Louvel, A. Omicini & F. Zambonelli (2020): Twenty Years
of Coordination Technologies: COORDINATION Contribution to the State of Art. Journal of Logical and
Algebraic Methods in Programming 113, p. 100531.

[6] S. Cranen, J.F. Groote, J.J.A. Keiren, FP.M. Stappers, E.P. de Vink, W. Wesselink & T.A.C. Willemse (2013):
An Overview of the mCRL2 Toolset and Its Recent Advances. In N. Piterman & S.A. Smolka, editors: Pro-
ceedings of the 19th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science 7795, Springer, pp. 199-213.

[7] M. Cremonini, A. Omicini & F. Zambonelli (2000): Coordination and Access Control in Open Distributed
Agent Systems: The TuCSoN Approach. In A. Porto & G.-C. Roman, editors: Proceedings of 4th International

Conference on Coordination Languages and Models, Lecture Notes in Computer Science 1906, Springer, pp.
99-114.

18

(8]

The B2Scala Tool

D. Darquennes, J.-M. Jacquet & I. Linden (2018): On Multiplicities in Tuple-Based Coordination Languages:
The Bach Family of Languages and Its Expressiveness Study. In G. Di Marzo Serugendo & M. Loreti, editors:
Proceedings of the 20th International Conference on Coordination Models and Languages, Lecture Notes in
Computer Science 10852, Springer, pp. 81-109.

D. Gelernter & N. Carriero (1992): Coordination Languages and Their Significance. Communications of the
ACM 35(2), pp. 97-107.

T. Gibson-Robinson, P. Armstrong, A. Boulgakov & A.W. Roscoe (2014): FDR3 — A Modern Refinement
Checker for CSP. In E. Abraham & K. Havelund, editors: Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science 8413, pp. 187-201.

M. Hennessy & R. Milner (1980): On Observing Nondeterminism and Concurrency. In J.W. de Bakker &
J. van Leeuwen, editors: Proceedings of the International Conference on Automata, Languages and Program-
ming, Lecture Notes in Computer Science 85, Springer, pp. 299-309.

C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice-Hall International Series in Computer
Science, Prentice Hall.

J.-M. Jacquet & M. Barkallah (2019): Scan: A Simple Coordination Workbench. In H. Riis Nielson &
E. Tuosto, editors: Proceedings of the 21st International Conference on Coordination Models and Languages,
Lecture Notes in Computer Science 11533, Springer, pp. 75-91.

J.-M. Jacquet & M. Barkallah (2021): Anemone: A workbench for the Multi-Bach Coordination Language.
Science of Computer Programming 202, p. 102579.

J.-M. Jacquet & L. Linden (2007): Coordinating Context-aware Applications in Mobile Ad-hoc Networks.
In T. Braun, D. Konstantas, S. Mascolo & M. Wulff, editors: Proceedings of the first ERCIM workshop on
eMobility, The University of Bern, pp. 107-118.

D. Kozen (1983): Results on the Propositional mu-Calculus. Theoretical Computer Science 27, pp. 333-354.

Kening Liu, Junyao Ye & Yinglian Wang (2012): The Security Analysis on Otway-Rees Protocol Based
on BAN Logic. In: Proceedings of the Fourth International Conference on Computational and Information
Sciences, pp. 341-344.

M. Loreti & A. Lluch Lafuente (2024): Programming with Spaces. Available at https://github.com/
pSpaces/Programming-with-Spaces/blob/master/README.md.

G. Lowe (1996): Breaking and Fixing the Needham-Schroeder Public-Key Protocol using FDR. In T. Mar-
garia & B. Steffen, editors: Proceedings of the International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Lecture Notes in Computer Science 1055, Springer, pp.
147-166.

R.M. Needham & M.D. Schroeder (1978): Using Encryption for Authentication in Large Networks of Com-
puters. Communication of the ACM 21, pp. 993-999.

D. Ouardi, M. Barkallah & J.-M. Jacquet (2024): Coding and Breaking the Needham-Schroeder Protocol
using B2Scala. Available at https://github.com/UNamurCSFaculty/B2Scala. Created on February
26th, 2024.

A. Pnueli (1977): The Temporal Logic of Programs. In: Proceedings of the 18th Annual Symposium on
Foundations of Computer Science, IEEE Computer Society, pp. 46-57.

J. Proenga & L. Edixhoven (2023): Caos: A Reusable Scala Web Animator of Operational Semantics. In S.-
S. Jongmans & A.Lopes, editors: Proceedings of the 25th International Conference on Coordination Models
and Languages, Lecture Notes in Computer Science 13908, Springer, pp. 163—171.

V. Saraswat (1993): Concurrent Constraint Programming. ACM Doctoral dissertation awards, MIT Press.

An Overview of the Decentralized Reconfiguration Language
Concerto-D through its Maude Formalization

Farid Arfi, Hélene Coullon, Frédéric Loulergue, Jolan Philippe, Simon Robillard

We propose an overview of the decentralized reconfiguration language CONCERTO-D through its
Maude formalization. CONCERTO-D extends the already published CONCERTO language. CONCERTO-
D improves on two different parameters compared with related work: the decentralized coordination
of numerous local reconfiguration plans which avoid a single point of failure when considering un-
stable networks such as edge computing, or cyber-physical systems (CPS) for instance; and a mech-
anized formal semantics of the language with Maude which offers guarantees on the executability of
the semantics. Throughout the paper, the CONCERTO-D language and its semantics are exemplified
with a reconfiguration extracted from a real case study on a CPS. We rely on the Maude formal speci-
fication language, which is based on rewriting logic, and consequently perfectly suited for describing

a concurrent model.

1 Introduction

Running and maintaining large-scale distributed software is now a commonplace activity, but managing
the inherent complexity of this task requires dedicated tools, models, and languages. The complexity
is particularly apparent when distributed software needs to be reconfigured during execution, either to
satisfy changing requirements or to carry out maintenance operations.

The DevOps community (and associated tools) as well as component-base software engineering
(CBSE) are the main domains focussing on the deployment and reconfiguration of distributed software
systems. A reconfiguration consists of a set of tasks to execute on the different pieces of software,
distributed across the network, to lead the system in the new desired configuration (i.e., state). In these
domains, tasks are almost always orchestrated by a central coordinator [24, 9], i.e., an entity that keeps
track of the tasks to apply and their dependencies, as well as the global state of the distributed system.

However, a centralized model is necessarily limited in terms of resilience, as it creates a single point
of failure. For instance, in the context of constrained (e.g., energy, communications) cyber-physical sys-
tems [20, 21], or edge computing where network disconnections are commonplace, as well as in the
context of large-scale projects where cross-DevOps teams [15, 22, 24, 25] have to collaborate, decentral-
ized reconfiguration models are preferred.

With this work, we extend the semantics of the reconfiguration language CONCERTO [6] and turn
it into a decentralized model called CONCERTO-D, by extending the semantics to describe the specifics
of communication and synchronization between components. In CONCERTO-D multiple coordinators
collaborate to achieve their respective local reconfigurations (one for each node). Both CONCERTO [4, 5]
and CONCERTO-D [22, 20, 21] have been the subject of experimental studies to validate the approach
and compare it to related work [10, 24]. In particular, and while this is not the main subject of this paper,
CONCERTO and CONCERTO-D allow better parallel execution of reconfiguration tasks compared to the
related work, thus leading to faster reconfigurations.

To support the development of this decentralized semantics, it appeared necessary to go beyond a
pen-and-paper approach and to provide a mechanized formalization of the semantics. To this end, we

© Afrfi et. al.
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
ICE 2024

2 Concerto-D

idb sys - 2 :
database -—®——)— system —e)——&— listener; ® ©—+{ SENnsor

H db_service! sys_service :
listener, D) ®©—- Sensor,

Figure 1: Full overview of the CPS use case with 2 4 n nodes hosting database, system, n listeners, and
I Sensors.

used Maude [8, 19], a language based on rewriting logic, and consequently perfectly suited to describing
a concurrent model. Developing and formalizing the semantics of CONCERTO-D in Maude helped us
manage the complexity of the model, and clarify it where needed, but it also allowed us to generate
tools such as an interpreter and a model-checker for these semantics. A Maude program describes a
logical theory, while a Maude computation consists of logical deductions using the axioms specified in
the theory.

Throughout the paper, we will use an example taken from a real case study from the literature: a
wildlife monitoring system that utilizes sensors to capture animal sounds [18] illustrated in Figure 1.
These sensors are linked to a gateway and calibrated to specific sound frequencies. Reconfiguration is
regularly required in this system to adjust the listening frequency of each sensor. However, during the
reconfiguration process, the sensor must temporarily cease listening. Similarly, if the gateway fails to
receive data from a sensor, the sensor is required to halt its observation activities. The collected data is
stored in a remote database. In such a use case, disconnections are common between listeners and sen-
sors. A central coordination of the reconfiguration program is typically a single point of failure, which
makes the system fully inactive during unavailability. Furthermore, when facing disconnections, it is
more difficult to maintain the global state of the system, which slows down the process: synchroniza-
tion with the central entity is required even for purely local actions. A decentralized language such as
CONCERTO-D is preferable in such a context.

In this paper, we give an overview of the semantics of CONCERTO-D through its Maude formal-
ization. The complete Maude specification with all the rules is available at https://github.com/
Concerto-D/concertod-maude/tree/ice24-conference. First, Section 2 presents how the life cy-
cles of components, and the creation and modification of a components assembly are formalized in
CONCERTO-D. Second, Section 3 gives an overview of the main semantics rules of CONCERTO-D and
how are formalized communications in CONCERTO-D. Finally, Section 4 and Section 5 respectively give
the related work and a conclusion on this contribution.

2 Control components and reconfiguration language

This section presents the structural concepts of CONCERTO-D as well as its reconfiguration language.
Some elements of the formalization in Maude are included, as well as examples based on our case study.

2.1 Control components

In CONCERTO-D, a distributed software system is modeled as an assembly of control component in-
stances, linked together via ports (i.e., interfaces), to represent dependencies in their life cycles (e.g.,
data exchanges, or other interactions between components). There are two types of ports in such con-

Arfi et. al. 3

nections: provide ports and use ports. A provide port represents information or a resource offered by
a component when the port is active. Conversely, a use port indicates that a component requires some
information or resources to perform.

Each piece of software (i.e., component, service), identified by a unique identifier, is an instance of a
control component type, that models a component’s life cycle as a set of places and transitions. Each port
is bound to a subset of the life cycle (i.e., places and transitions) that is called a group. Places represent
milestones of the life cycle. A specific initial place serves as the starting point for the component’s life
cycle. Transitions represent concrete actions to perform between places (e.g., admin commands).

The dynamic nature of components is captured by their behaviors. A behavior is a subset of the
component’s transitions. At any given point, a control component instance executes one behavior, i.e.,
only the transitions in this behavior can be fired. Requests to change the active behavior for a component
(see reconfiguration instructions in Section 2.2) are queued and executed in the order in which they are
received: a behavior remains active until no more transitions in it can be fired, at which point the behavior
is changed to the next requested behavior, if any. This mechanism makes up the behavioral interface of
components.

Informal example. Figure 1 depicts an assembly modeling our use case, where distributed sensors
interact with a system through listeners. Physically, the components are distributed on several nodes. The
first node serves as a host for the database component responsible for storing recorded data obtained from
sensors. The second node comprises the components system and listener. The system component
establishes a connection with the database through a use port (represented using the UML notation),
enabling the usage of the database’s service. Furthermore, the system is interconnected with n listeners,
each corresponding to a program responsible for monitoring and reconfiguring remote sensors. These
listeners are connected to system via their use port. Finally, each sensor; is hosted on a node and is
connected to its associated 1istener;.

Figure 2 shows the internals of some components of this assembly, omitting others (i.e., database,
system) for clarity. Each listener has four places: off, paused, configured, and running; and three be-
haviors deploy, update, and destroy. The sensors have five places: off, provisioned, installed,
configured, and running; and also three behaviors: start, pause, stop. Each listener has two con-
nections with its respective sensor. Through the first connection, the listener exposes the configuration
to apply on the sensor (e.g., frequency of listening). Through the second connection, the listener offers a
service to which data can be sent by the sensor when observing.

Maude specification. Let us present the definitions of sorts, subsorts, and operators used to encode
the above syntactic aspects of the CONCERTO-D model, starting from elementary concepts to the con-
struction of a net of CONCERTO-D components. In Maude, a type hierarchy can be defined using the
keywords sort and subsort. An operator definition starts with the keyword op followed by the operator
name and type signature; several operators with the same signature can be defined using ops.

A component type is defined by a set of places, an initial place, and a set of transitions. The definition
also includes the behaviors (sets of transitions) of the component type, and its use and provide ports, each
bound to a group of places. In the definition below, some details are omitted for simplicity.

We use predefined data structures and the module system of Maude to import the parameterized
module SET{Place} and define the sort Places to be a supersort of SET{Place}. Generally, given a
sort T, we let Ts stand for SET{T} and QT stand for LIST{T}.

sorts Place InitialPlace Transition Behavior UsePort ProvidePort GroupUse GroupProvide
ComponentType .

4 Concerto-D

sorts Places Transitions Behaviors GroupUses GroupProvides .
subsort InitialPlace < Place .

——=[..]

op b(_) : Transitions -> Behavior .
op (_!_) : UsePort Places -> GroupUse .

op (_7_) : ProvidePort Places -> GroupProvide .

op { places: _,
initial: _,
———[..]
transitions: _,
behaviors: _,
groupUses: _,
groupProvides: _
} o
Places InitialPlace

——[..]

Transitions Behaviors GroupUses GroupProvides -> ComponentType .

Example in Maude. We can now describe the component type sensor (an instance of which is dis-
played on the right of Figure 2). We first define a few constants corresponding to the element of the
component type, then the type itself:

ops Running Configured Installed Provisioned 0ff : ->Place .

op 0Off : ->InitPlace .

-——=[..]

ops RcvService ConfigService : ->UsePort .

ops Deployll Deployl2 Deployl3 Deploy2 Deploy3 Deploy4 Pausel Stopl : ->Transition .
ops Deploy Pause Stop : ->Behavior .

eq Deploy = b(Deployll,Deployl2,Deployl13,Deploy2,Deploy3,Deploy4)
eq Pause = b(Pausel)
eq Stop = b(Stopl)

op sensor : -> ComponentType .
eq sensor =
{ places: Running, Configured, Installed, Provisioned, Off,
initial: Off,
-——=[...]
transitions: (Deployll,Deployl2,Deployl3,Deploy2,Deploy3,Deploy4,Pausel, Stopl),
behaviors: (Deploy, Pause, Stop),
groupUses: RcvService ! (Running, Configured),
ConfigService ! (Configured, Running, Installed),

groupProvides: empty } .

2.2 Reconfiguration language and assembly of components

To allow the modification of assemblies, CONCERTO-D proposes a simple imperative language for writ-
ing reconfiguration programs, that offers four commonly used topological instructions to create or mod-
ify the existing assemblies: add(id,,c), del(id.) (creation and deletion of control component instances),

Arfi et. al. 5

Listing 1: Listeners reconfiguration on node; Listing 2: One sensor reconfiguration on node; . ;
for i in range(nb_listener): pushB(sensor;, pause, 0)
pushB(listener;, update, 2+i*2) wait(listener;, 2+ix*2)
pushB(listener;, deploy, 3+ix*2) pushB(sensor;, start,1)

con(idey,u,ide, p), decon(id.y,u,idy, p) (connection and disconnection between two control component
instances), where id, is an instance identifier, c a component type, u a use port, p a provide port. Besides
these instructions, two additional instructions manage the execution of behaviors: pushB(id.,b,idp) to
request the execution of a behavior b on the component instance id,; and wait (id,.,id},) to synchronize
onto the end of a given behavior. id. is a component instance identifier, and id,, the identifier of a given
pushB.

As a decentralized coordination model, CONCERTO-D considers a network of n nodes, and a parti-
tion of component instances over these nodes. Each node operates its own local CONCERTO-D controller
and runs its own reconfiguration program. Concrete communications allow the synchronization of ac-
tions between paired components. This is an evolution of previous work on the CONCERTO model [6],
in which a single central entity executed the reconfiguration and synchronization of components, and
communications were implicit. Two examples of CONCERTO-D reconfiguration programs in our case
study are given in Listings 1 and 2.

In CONCERTO-D reconfiguration, programs apply changes to the current assembly of components,
i.e., component instances and their connection, and to the queue of requested behaviors for each com-
ponent instance. A specific instance of a component (and its state at any given point of the execution)
is specified by its component type, a queue of identified behaviors to be executed by the instance, and a
marking that indicates the places reached and transitions fired.

sorts IdInstance Instance IdBehavior BehaviorWithId TransitionEnding
Marking .

sorts TransitionEndings

sort QBehaviorWithId .

———[..]
op (_;_) : IdBehavior Behavior -> BehaviorWithId .
op m(_,_,_) : Places Transitions TransitionEndings -> Marking .
op < type: _,
queueBehavior: _,
marking: _

>
ComponentType (BehavoirWithId Marking -> Instance

To illustrate this, the definition below describes an instance sensor1 of type sensor, in a state where
only the place running is marked, and a single behavior pause is pending in the queue of behaviors.
This corresponds to the state (0) in Figure 2.

eq instanceS1 = < type: sensor,
queueBehavior: (0 ; Pause),
marking: m(Running, empty, empty) > .

6 Concerto-D

In order to describe an assembly, it is also necessary to specify the connections between the ports of
its component instances, through their identifiers.

sort Connection .
sorts Connections .
op (_,_,_,_) : IdInstance UsePort IdInstance ProvidePort -> Connection .

Here is an example of such connections between node2 and node3:

eq connectionSL1 = (sensorl, RcvService, listenerl, Rcv)
eq connectionSL2 = (sensorl, ConfigService, listenerl, Config)

We now define instructions that can be executed to perform a reconfiguration on a CONCERTO-D
assembly.

sorts Instruction Program .
subsort List{Instruction} < Program .

op add(_,_) : IdInstance ComponentType -> Instruction .

op del(_) : IdInstance -> Instruction .

op pushB(_,_,_) : IdInstance Behavior IdBehavior -> Instruction .
op con(_) : Connection -> Instruction .

op dcon(_) : Connection -> Instruction .

op wait(_,_) : IdInstance IdBehavior -> Instruction .

The reconfiguration program given in Listing 2 (as instantiated specifically for node3) can thus be
specified in Maude as follows:

eq programNode3 =
pushB(sensorl,start,1) wait(listenerl, 2) pushB(sensorl, start, 1)

3 Elements of operational semantics

CONCERTO-D is equipped with a small-step semantics. We first illustrate the execution of a reconfigu-
ration on our use case to give an intuition of this semantics.

We consider deployed and running components, i.e., the places running are marked in all listener
and sensor components. From there, we aim to trigger an update of each sensor’s listening frequency.
Hence, each listener has to pause to change its configuration, forcing the sensors to pause as well.

Listings 1 and 2 give the reconfiguration programs respectively for all listeners (all hosted on the
same node node;) and one sensor i (corresponding to the update of the frequency of each sensor). These
programs are executed concurrently on each node. The execution of these scripts is illustrated in Figure 2
to give the reader an intuition of the semantics of CONCERTO-D. Some possible steps of the execution are
represented by a number representing the current configuration of the system (i.e., a snapshot). Using
these numbers, three pieces of information are given: (i) the marking, represented by the red dots on
marked places and transitions; (ii) the status of the behavior queue, and (iii) the coordination information
required between nodes introduced by decentralized execution of CONCERTO-D. In the following, we
describe the state of each configuration according to its number. We decompose each state, and we
highlight communication steps using the notation A.

0. Both listener; and sensor; services are running. Thus, the running places are marked. The behav-
iors to trigger the update are pushed in the queue, i.e., update and deploy for listener;, and pause

Arfi et. al. 7

10 |
5-9:
behaviors: 0-4.

running

sys_service

sensor;'s config_service active?
sensor;'s rcv_service active?

sensor;'s config_service not active
sensorj's rcv_service not active

dgeploy | () | 77 istener, completed 242

destroy

Figure 2: Control components of 1istener; on node; and sensor; from node, ;. State example when
applying the reconfiguration plans of Listings 1 and 2.

for sensor;. The behavior start for sensor; is not pushed due to wait instruction of a behavior of
listener;.

. By triggering pause, sensor; leaves the place running.

listener; needs to know if any component is using its ports before executing update. Then,
listener; requests information on sensor;’s use ports rcv_service and config_service, to know if
they are active or not.

sensor; ends its previously fired transition.

A sensor; answers listener; about its use ports rcv_service and config_service, indicating that both

>

are inactive. To maintain the consistency of the communicated information between nodes, infor-
mation previously received from listener; is disregarded, i.e., the connection and activity status of
listener; ports are marked unknown since this information is subject to change as a result of this
communication (as shown in 3).

. listener; can begin the update behavior, therefore deactivating its provide ports. sensor; removes

the pause behavior from its queue, as no more transitions in this behavior can be fired.
The information sent in 2 is received by listener;, allowing it to start its update.

listener; finishes its transition related to its update behavior.

A sensor; is now waiting the behavior identified by 2+i*2, and runs on listener;, to be ended. Then it

sends a request to listener; to know if the behavior 2+i*2 (update) is completed.

8 Concerto-D

5. The behavior update of listener; is retrieved from its queue.

A sensor; is informed that this behavior is completed, which allows it to continue its execution, i.e.,
to push and execute the transitions of the start behavior.

6. After pushing the behavior start and completing its first transition.

A sensor; sends a request to determine whether the port config of listener; is connected and active,
before entering in config_service group.

A sensor; receives information on listener;’s port config. It is now active and connected.
sensor; enters the place installed. listener; begins the activation of its service.

listener; activates its service and provides the port rcv.

> 0 *

sensor; sends a request asking whether the port rcv is active and connected before entering the
place configured.

10. listener; removes the deploy behavior from its queue.
A sensor; get the information that listener; provides the port rcv.
11. sensor; enters the place configured.

12. sensor; reactivates its service and removes the start behavior from its queue.

The rest of this section gives some formal elements of the small-step semantics of CONCERTO-D.
Because of space reasons, we cannot fully detail all rules of the semantics. Instead, the section first illus-
trates one execution rule at a component level and then details communications: the main formalization
challenge in a decentralized model as CONCERTO-D.

3.1 Execution and synchronization of reconfiguration actions

As described in Section 2, the life cycles of components are modeled by places (milestones in the recon-
figuration) and transitions between places (reconfiguration actions). A marking on places and transitions
indicates the current state of the reconfiguration. When a place is marked, its outgoing transitions can be
fired. The place is then unmarked, and the fired transitions are marked. Conversely, when all the incom-
ing transitions toward a place are finished, those transitions are unmarked and the place is entered. This
model is well suited to represent concurrent execution, in particular, multiple transitions can be marked
simultaneously, corresponding to parallel execution of reconfiguration tasks.

The program execution is possible thanks to six semantics rules, one for each instruction (i.e., adding,
deleting a component instance, connecting, disconnecting component instances, pushing a behavior to a
component instance, and waiting for a given behavior identifier of a given component instance). When
executing behaviors, the execution and synchronization of control components are guaranteed by four
rules: FiringTransitions, EndingTransition, EnteringPlace, and FinishingBehavior.

For space reasons, we only detail one of these rules: Firing Transitions given in Listing 3. It modifies
the marking in one component on one node, namely unmarking a place P and marking the outgoing
transitions of Ts (only those transitions that belong to the active behavior of the component). Note
that this is a conditional rule, as indicated by the keyword crl and the boolean conditions after the
rule. The first condition merely ensures that there are transitions to fire. The second condition relies
on the predicate safeToFire to check dependencies towards other components, modeled by ports, are
not violated by the firing of the transitions. In particular, this predicate is true only if the firing of the
transitions does not lead to deactivating a provide port that is being used, i.e., connected to an active
use port. The rule to end a transition (not given) is somewhat similar but instead requires that use ports

Arfi et. al. 9

attached to the reached place are connected to an active provide port. Thus, ports impose inter-component
synchronization conditions on the execution.

Listing 3: The rule to fire a transition. The rule applies to a node (as defined in Section 3.2) but rewrites
a single component instance in that node.

crl [FiringTransitions]
< nodeInventory: Ids,
instances: (Id1 | -> { type: Ct,
queueBehavior: (IdBeh ; b(TsBeh)) Qb,
marking: m((P, Ps), Ts, Tes)

b, I,
connections: C,
———/...]
receivedAnswers: Rcv,
———[..]
>
=>

< nodeInventory: Ids,

instances: (Idl | -> { type: Ct,
queueBehavior: (IdBeh ; b(TsBeh)) Qb,
marking: m(Ps, union(Ts,

restrictTransitionsToPlace(TsBeh,P)),
Tes)

P, I,

connections: C,

——[...]

receivedAnswers: Rcv,

—-—[..]

>
if (restrictTransitionsToPlace(TsBeh,P) =/= empty and
safeToFire(Ids,
m(Ps, union(Ts, restrictTransitionsToPlace(TsBeh,P)),Tes),
(Id1 | -> { type: Ct,
queueBehavior: (IdBeh ; b(TsBeh)) Qb,
marking: m(P, Ps,Ts,Tes) }, I),
Rcv,
connectionProlIdent (Id1l, C))

3.2 Communications

Firing or ending a transition on one component may require checking the activity status of a port on
another component. In previous work [6], the coordination was assumed to be carried out by a central
entity that kept track of the status of every port. Instead, CONCERTO-D is meant to represent a decentral-
ized process, it is therefore necessary to explicitly model communications between the nodes that host
components. Thus, when evaluating the status of a port (such as above, in the predicate safeToFire),
we distinguish the case where the port belongs to a component located on the same node, from the case
where messages must be exchanged between nodes:

N

10 Concerto-D

eq evaluation(Req, Ids, RcvA, I, L, P) = if isProcessedLocallyEvaluation(Req, Ids))
then localEvaluation(Req, I, L, P) else externEvaluation(Req, RcvA) fi .

More generally, the following information may be needed for synchronization, and can be requested
by components on remote nodes: (1) the completion of a dcon action; (2) the completion of an anticipated
behavior (i.e., wait instruction); (3) the activity of a use or provide port.

Essentially, each CONCERTO-D node maintains a localized perspective of its components and com-
municates with neighboring nodes (i.e., other CONCERTO-D controllers hosting connected control com-
ponents). In CONCERTO-D, an asynchronous message-based communication model, increasingly fa-
vored in distributed systems, manages the communication [20]. Asynchronous communication is mod-
eled via a buffer: each node is equipped with a queue of messages, and messages must transit through
this queue before being effectively received (this assumes that the order of messages is preserved). Thus
a message exchange involves two steps, one for sending the message and one for receiving it.

A message can either be a Request or an Answer. The former is aimed at a specified component
instance and contains one of several possible queries

sorts Query Request.

op isActive(_) : Port -> Query [ctor]

op isRefusing(_) : Port -> Query [ctor]

op isConnected(_) : Connection -> Query [ctor]

op isDisconnect(_) : Connection -> Query [ctor]

op isCompleted(_) : IdBehavior -> Query [ctor]

op [dst: _ , query: _] : IdInstance Query ->Request [ctor]

while an Answer gives the boolean evaluation corresponding to a request. It can take the values true,
false or noValueYet, when the answer to the corresponding request is currently unknown.

sorts ExpectedValue Answer .

subsort Bool < ExpectedValue .

op noValueYet : ->ExpectedValue .

op [req: _, value: _] : Request ExpectedValue -> Answer [ctor]

For example, the request [dst: listenerl, query: isActive(Rcv)] can be sent by node3
(which hosts sensor1) to node2 (which hosts 1istener1l) to check whether the port Rcv of listenerl
is active. This corresponds to the state 9 in Figure 2. The answer [req: [dst: listenerl, query

isActive(Rcv)], value: true] isthe answer which will be returned at state (10) to indicate that
the port is indeed active. For more details about the remaining queries, the reader can refer to [6].

A node is specified by the identifiers of all the component instances in the assembly (used to identify
the corresponding node involved in the communication), a mapping that associates the identifiers of
the component instances to their nodes (i.e., an inventory), the connections between local component
instances and external instances, and the local reconfiguration program to be executed on the node. A
node is additionally specified by five parameters used for communication: the received answers to the
previously sent requests (sent by this node), the queues of outgoing requests and answers, a history of
previously sent requests (to avoid redundant messages for already pending requests) and the incoming
buffer for this node. Received answers are stored as a mapping that associates requests to the value of
the answer. This represents the node’s vision of the status of other components. This information must
be kept up to date. Note that requests are not uniquely identified, the same request can thus be sent at
different points in time, and the value attached to it in receivedAnswers can be modified to denote
updated information about other components.

Arfi et. al. 11

sorts IdInstance IdInstances
pr MAP{Request,ExpectedValue}
pr MAP{IdInstance,Instance}
sorts Qrequest Qanswer .

op < nodelnventory: _,
instances: _,
connections: _,
program: _,
receivedAnswers: _,

outgoingAnswers: _,

outgoingRequests: _,

history: _,

buffer: _ >

IdInstances Map{IdInstance,Instance} Connections Program Map{Request,

ExpectedValue} Qrequest Qrequest Requests Qanswer -> LocalConfiguration

For example, the description of the local configuration of node3 in state O is as follows:

eq ConfNode3 =
< nodelnventory: sensorl,
instances: { sensorl +— instanceS1 },
connections: { connectionSL1, connectionSL2 },
program: programNode3,
receivedAnswers: receivedAnswersNode3,
outgoingAnswers: nil,
outgoingRequests: nil,
history: empty,
buffer: nil >

where instanceS1, connectionSL1, connectionSL2 and programNode3 are the elements previ-
ously described for our use case in Sections 2 and 3.2. sensorl is the identifier of instanceS1 and
receivedAnswersNode3 is the mapping specifying the received answers of the previous requests sent by
node3. Following the deployment steps that preceded the reconfiguration state 0, receivedAnswersNode3
of node3 is described as follows:

eq receivedAnswersNode3 =

{
[dst: listenerl,query: isActive(Rcv)] — true,
[dst: listenerl,query: isConnected(connectionSL1)] +— true,
[dst: listenerl,query: isActive(Config)] +— true,
[dst: listenerl,query: isConnected(connectionSL2)] +— true.
}

Finally, we give the execution semantics of communication in CONCERTO-D using Maude rewrite
rules, which operate on a net of local configurations of nodes. Figure 3 illustrates the communication
between two nodes x and y using our communication protocol. It specifies the rules for communication
presented in listings 4, 5, 6 and 7.

Listing 4 describes the sending of arequest [dst: Dst, query: Q] from node x to node y. The
destination node y is determined since the identifier of the instance of the request Dst appears in the
set of identifiers of the instances of node y. Therefore, sending the request implies adding to the buffer
of ythe tuple [req: [dst: Dst, query: Q 1 , value: noValueYet] where the default value

12 Concerto-D

% T ” Send evaluation to y :
outgoingAnswers_x]IE EnY outgoingAnswers_y

..~ Send request to
outgoingRequests_x :Elﬂ N 4 2

:EEE[outgoingRequests_y

_ _ _ _Nodex _ _ _ _ _ Node_y
, > N s T - 0 - 0 0 0= ~ N
/ / Receive request i :EEE[/ - -
nodelnventory_x {} \ | {} nodelnventory_y | |
buffer_x

instances_x { ----- } = l | { ----- } instances_y |

; I
connections_x {} | {} connections_y l
Receive evaluation | | |
program_x :EEE[[| :EEE[program_y |
receivedAnswers_x {}g‘ | | {} receivedAnswers_y | |

— THT

|

|

|

I

K history_x {}

|
|
[M e {} history_y
|

buffer_y |
Internal data structures / Internal data structures
\ \ /
~ _ _ 7 N~ _ 7
{"'"}591 structure ——oUpdate or Insert =eeese » Send to node i (i 1= y) —> Insert
:EEE[Queue structure —®Reset € Receive from node i (x I=y)

Figure 3: Communication protocol between nodes.

chosen for the request is noValueYet. The sent request will also be inserted in the set of the history of
node x to avoid the request being sent multiple times.

Listing 5 describes the sending of an answer from node x to node y concerning a request R previously
sent by y. The destination node y is chosen when the concerned request R is in its history of sent
requests, and has not yet received in its communication buffer an answer to this request (not InQueue
(R,By)). The value of the answer is computed on node x by the function LocalEvalaution and sent
to node y by placing the answer in the buffer of node y. It is important to maintain the consistency
of shared information, so requests are also used by the receiving nodes to invalidate some previously
known information. For example, when a component asks (request) if a connected provide port is active,
it means that its own use port may be activated soon after the answer is received. Consequently, upon
replying, the node receiving the request should forget the information in its store regarding the status of
that use port (of course, it should not yet assume that the use port is active). In Listing 5, this update is
carried out by the function Reset.

Finally, listings 6 and 7 describe the semantics of receiving a message in node x from a remote node.
Listings 6 describes the case when the retrieved message is a request on a component local to x. This
is stated when the identifier Dst of the request [dst: Dst, query: Q] is in the set of identifiers of
the components of node x. The request is evaluated and the answer is placed in the queue of outgoing
answers. Listing 7 describes the case when the retrieved message is an answer to a request R previ-
ously sent by node x (as indicated by its presence in the history). The answered value val is recorded
(UpdateInsert (R, val, RcvA)) and it replaces previous information about the result of request R, if
any. The request R is removed from the history of node x, so that a similar request may be sent again in
the future.

F O SR

o

Arfi et. al. 13

Listing 4: The rule to send a Request, that rewrites two nodes (unaffected variables are omitted).

rl [SendRequest]

< ——=/[...]
outgoingRequests: [dst: Dst, query: Q] OutR,
history: H,
———[..]

B

>
< nodelnventory: (Dst, Ids),

———[...]
buffer: B >
=>
< ——=[...]
outgoingRequests: OutR,
history: ([dst: Dst, query: Q 1, H),
——[...]

B

>
< nodelnventory: (Dst, Ids),

———[..]
buffer: append(B, [req: [dst: Dst, query: Q] , value: noValueYet]) >

4 Related work

CONCERTO and CONCERTO-D can be considered as component models, such as defined in Component-
Based Software Engineering (CBSE). As explained in [6, 9] CONCERTO, and by extension CONCERTO-
D, differ from usual component models by modeling the life cycle of components instead of modeling
the functional code of components. For this reason, both CONCERTO and CONCERTO-D are more com-
parable to DevOps approaches. Only one other component model can be compared to CONCERTO:
Aeolus [10]. However, Aeolus is more limited than CONCERTO in terms of parallelism and concurrency.
As for CONCERTO, and unlike CONCERTO-D, Aeolus is a centralized model, and it has been formalized
manually.

Regarding DevOps approaches for deployments, a few contributions have studied a decentralized
approach. In [15, 25] each component of the application expresses its dependencies with the other com-
ponents in a central plan, distributed to the corresponding nodes, deploying their part of the application.
Deployment executions are then coordinated between the nodes according to their dependencies. Here,
the execution is decentralized as in CONCERTO-D. In [24], an extension of the DevOps tool Pulumi is
presented to handle both the computation and execution of deployment and update programs in a de-
centralized manner. However, the three approaches above, and almost all DevOps tools, lack formal
specifications: their language is defined by a unique implementation and informal documentation.

To our knowledge, there are only two DevOps contributions that offer formal semantics of their
system configuration languages: SMARTFROG [2] a tool no longer maintained, and £PUPPET [14] a
subset of PUPPET. The semantics of SMARTFROG is a denotational semantics of a compiler for a core
SMARTFROG fragment. From the high-level language SF, which handles features such as inheritance,
composition, references, etc., the compilation process produces a store, basically a tree of attribute-value
pairs. These trees are also the abstractions for system states in SMARTFROG’s semantics. The authors
wrote three implementations (in Scala, Haskell, and OCaml) of the compiler guided by the semantics

14 Concerto-D

Listing 5: The (conditional) rule to send an Answer

crl [SendAnswer]

< ———/[...]
instances: I,
connections: C,
program: P,
receivedAnswers: RcvA,
outgoingAnswers: R OutA,

———[...]

> s

< ——=/[.]
history: (R, H),
buffer: B >

=>

< ———[..]

instances: I,

connections: C,

program: P,

receivedAnswers: Reset(RcvA, ResetId(C, R, LocalEvaluation(R, I, C, P))),
outgoingAnswers: OutA ,

——=[..]

> 3

< ——=/[.]
history: H,

buffer: append(B, [req: R, value: LocalEvaluation(R, I, C, P) 1) >
if (not InQueue(R, B))

but not proved correct w.r.t. to the formal semantics (which is not mechanized). These implementations
were randomly tested and a few implementation errors were found. They were also tested against the
production compiler: it allowed them to find both a misunderstanding of the semantics of SMARTFROG
and bugs in the production compiler. The semantics of tPUPPET is a small-step operational semantics.
An implementation of a yPUPPET compiler exists, guided by the semantics but not proved correct w.r.t.
the formal semantics, which is also not mechanized. The output of the compiler is a catalog, i.e., a
structure close to the stores’ output by SMARTFROG’s compiler. A catalog is also an abstraction for a
system state. To help debug uPUPPET manifests, Fu [13] also proposed an analysis of provenance [7]
based on the yPUPPET operational semantics. In both cases, the formal semantics is not an executable
artifact as is our proposal.

Khebbeb et al. also use Maude to formalize adaptation in the Cloud [17] and at the edge [16].
The motivation and approach are however very different from our work. There is no reconfiguration
language: the goal is to automatically adapt resources depending on the load of the Cloud system. On
the one hand, this work considers the provisioning and de-provisioning of virtual machines, an aspect
we do not consider. On the other hand, their concept of service is very simplistic: a service is something
that processes requests (and only the number of requests is formalized) and there are no connections
between services. Their rewrite rules implement pre-defined elasticity strategies. While they perform
model-checking on a small example (3 services, 1 VM, and 2 Fog nodes) [16], they neither provide any
information about the number of states, nor the time required for the verification. In its complexity, our

Arfi et. al. 15

Listing 6: The rule for receiving a request

rl [ReceiveRequest]
< nodelInventory: (Dst, Ids),

———[..]
outgoingAnswers: QOutA,
——=[..]
buffer: [req: [dst: Dst, query: Q], value: val] B >
=>
< nodelnventory: (Dst, Ids),
—-——[..]
outgoingAnswers: append(OutA, [dst: Dst, query: Ql),
buffer: B >

Listing 7: The rule for receiving an answer

rl [ReceiveAnswer]

< ——=/[.]

receivedAnswers: RcvA,

———[...]

history: (R, H),

buffer: [req: R, value: val] B >
=>

< ——=[..]

receivedAnswers: UpdatelInsert(R, val, RcvA),

———[...]
history: H,
buffer: B >

proposal is closer to work that models APIs for e.g., [26]. As Yu et al., to analyze interesting enough
case studies, we will need to optimize the model-checking by implementing partial order reduction [12].

5 Conclusion

In this paper, we have proposed a formalization in Maude of the decentralized reconfiguration language
CONCERTO-D, an extension of the centralized reconfiguration language CONCERTO [6]. In CONCERTO-
D each node is responsible for a local reconfiguration program that may require some coordination with
reconfiguration programs on other nodes (through their connected component instances). CONCERTO-D
automatically manages the necessary communications between nodes via asynchronous communica-
tions, which involve nodes communicating by exchanging messages through buffers.

In future work, we plan to use the mechanical formalization of CONCERTO-D presented in this
paper as follows. First, we plan on proving properties of the CONCERTO-D model itself (e.g., veri-
fying that component progress is guaranteed if port requirements are eventually satisfied, or verifying
that transitions and places correctly describes a partial order on the execution of reconfiguration tasks)
to ensure that the model behaves as intended. Second, thanks to CONCERTO-D, CONCERTO could
be transformed into a choreographic language (as defined in [1]). In a choreographic approach CON-

16 Concerto-D

CERTO would be the choreography language. A compilation process would then automatically generate
the CONCERTO-D programs (i.e., local projections) on the nodes, and guarantee that required commu-
nications between nodes will be performed when required. The formalization may be used to prove
that the set of CONCERTO-D programs yielded by that process simulates the original centralized CON-
CERTO program. Verifying the generic properties mentioned above may require the use of interactive
theorem proving (ITP). There are ongoing efforts to develop a dedicated interactive theorem prover for
Maude [11] or to translate Maude specifications into existing ITP languages [23]. Automated methods
such as parametric or symbolic model checking may also be used. Maude has been used in conjunction
with SMT solvers to perform parametric model-checking [3].

References

[1] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo
Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen,
Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas Ng, Luca
Padovani, Vasco T. Vasconcelos & Nobuko Yoshida (2016): Behavioral Types in Programming
Languages. Foundations and Trends in Programming Languages 3, doi:10.1561/2500000031.

[2] Paul Anderson & Herry Herry (2016): A Formal Semantics for the SmartFrog Configuration Lan-
guage. J. Netw. Syst. Manag., doi:10.1007/s10922-015-9351-y.

[3] Jaime Arias, Kyungmin Bae, Carlos Olarte, Peter Csaba Olveczky, Laure Petrucci & Fredrik Rgm-
ming (2023): Symbolic analysis and parameter synthesis for time Petri nets using Maude and SMT
solving. In: International Conference on Applications and Theory of Petri Nets and Concurrency,
Springer, pp. 369-392, doi:10.1007/978-3-031-33620-1_20.

[4] Maverick Chardet, Hélene Coullon & Christian Pérez (2020): Predictable Efficiency for Reconfig-
uration of Service-Oriented Systems with Concerto. In: 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGrid), IEEE, doi:10.1109/CCGrid49817.2020.00-
59.

[5] Maverick Chardet, Hélene Coullon, Christian Pérez, Dimitri Pertin, Charléne Servantie & Simon
Robillard (2020): Enhancing Separation of Concerns, Parallelism, and Formalism in Distributed
Software Deployment with Madeus. hal: hal-02737859.

[6] Maverick Chardet, Hélene Coullon & Simon Robillard (2021): Toward safe and efficient recon-
figuration with Concerto. Sci. Comput. Program., doi:10.1016/j.s¢cic0.2020.102582. hal: hal-
03103714.

[7] James Cheney, Laura Chiticariu & Wang Chiew Tan (2009): Provenance in Databases: Why, How,
and Where. Found. Trends Databases, doi:10.1561/1900000006.

[8] Manuel Clavel, Francisco Durdn, Steven Eker, Santiago Escobar, Patrick Lincoln, Narciso Marti-
Oliet, José Meseguer, Rubén Rubio & Carolyn Talcott (2024): Maude manual (version 3.4). Avail-
able at https://maude.lcc.uma.es/maude-manual/.

[9] Hélene Coullon, Ludovic Henrio, Frédéric Loulergue & Simon Robillard (2023): Component-
Based Distributed Software Reconfiguration: A Verification-Oriented Survey. ACM Comput. Surv.,
doi:10.1145/3595376.

[10] Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli & Gianluigi Zavattaro (2014): Aeolus: a
Component Model for the Cloud. Information and Computation, doi:10.1016/j.ic.2014.11.002.

Arfi et. al. 17

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

F Durdn, S Escobar, J] Meseguer & J Sapina (2024): An Inductive Theorem Prover for Maude
Equational Theories.

Azadeh Farzan & José Meseguer (2006): Partial Order Reduction for Rewriting Semantics of Pro-
gramming Languages. In: Workshop on Rewriting Logic and its Applications (WRLA), ENTCS
176, Elsevier, doi:10.1016/J.ENTCS.2007.06.008.

Weili Fu (2019): Semantics and provenance of configuration programming language [LPuppet.
Ph.D. thesis, University of Edinburgh, UK. Available at https://ethos.bl.uk/OrderDetails.
do?uin=uk.bl.ethos.798916.

Weili Fu, Roly Perera, Paul Anderson & James Cheney (2017): muPuppet: A Declarative Subset of
the Puppet Configuration Language. In: 31st European Conference on Object-Oriented Program-
ming (ECOOP), LIPIcs, doi:10.4230/LIPIcs. ECOOP.2017.12.

Herry Herry, Paul Anderson & Michael Rovatsos (2013): Choreographing configuration
changes. In: 9th International Conference on Network and Service Management (CNSM 2013),
doi:10.1109/CNSM.2013.6727828.

Khaled Khebbeb, Nabil Hameurlain & Faiza Belala (2020): A Maude-Based rewriting ap-
proach to model and verify Cloud/Fog self-adaptation and orchestration. J. Syst. Archit.,
doi:10.1016/J.SYSARC.2020.101821.

Khaled Khebbeb, Nabil Hameurlain, Faiza Belala & Hamza Sahli (2019): Formal modelling and
verifying elasticity strategies in cloud systems. IET Softw. 13(1), doi:10.1049/IET-SEN.2018.5030.

Vincent Lostanlen, Antoine Bernabeu, Jean-Luc Béchennec, Mikaél Briday, Sébastien Faucou &
Mathieu Lagrange (2021): Energy Efficiency is Not Enough:Towards a Batteryless Internet of
Sounds. In: 16th International Audio Mostly Conference, doi:10.1145/3478384.3478408.

Peter Csaba Olveczky (2017): Designing Reliable Distributed Systems. Springer, doi:10.1007/978-
1-4471-6687-0.

Antoine Omond, Hélene Coullon, Issam Rais & Otto Anshus (2023): Leveraging Relay Nodes to
Deploy and Update Services in a CPS with Sleeping Nodes. In: 16th IEEE International Conference
on Cyber, Physical and Social Computing (CPSCom), IEEE. hal: hal-04372320.

Antoine Omond, Issam Rais & Hélene Coullon (2023): Evaluating the energy consumption of
adaptation tasks for a CPS in the Arctic Tundra. In: 19th IEEE International Conference on Green
Computing and Communications (GreenCom), IEEE. hal: hal-04372340.

Jolan Philippe, Antoine Omond, Héleéne Coullon, Charles Prud’Homme & Issam Rais (2024): Fast
Choreography of Cross-DevOps Reconfiguration with Ballet: A Multi-Site OpenStack Case Study.
In: IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER),
IEEE. hal: hal-04457484.

Rubén Rubio & Adridan Riesco (2022): Theorem proving for Maude specifications using
Lean. In: International Conference on Formal Engineering Methods, Springer, pp. 263-280,
doi:10.1007/978-3-031-17244-1_16.

Daniel Sokolowski, Pascal Weisenburger & Guido Salvaneschi (2021): Automating Serverless De-
ployments for DevOps Organizations. In: 29th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE),
doi:10.1145/3468264.3468575.

18 Concerto-D

[25] Karoline Wild, Uwe Breitenbiicher, Kdlman Képes, Frank Leymann & Benjamin Weder (2020):
Decentralized Cross-organizational Application Deployment Automation: An Approach for Gen-
erating Deployment Choreographies Based on Declarative Deployment Models. In: Advanced
Information Systems Engineering (CAiSE), Springer, doi:10.1007/978-3-030-49435-3_2.

[26] Geunyeol Yu, Seunghyun Chae, Kyungmin Bae & Sungkun Moon (2024): Formal Specification
of Trusted Execution Environment APIs. In: Fundamental Approaches to Software Engineering,
Springer Nature Switzerland, doi:10.1007/978-3-031-57259-3_5.

Towards Formal Verification of Attested TLS:
Potential Replay Attacks on RA-TLS*

Muhammad Usama Sardar!, Arto Niemi?, Hannes Tschofenig® and Thomas

Fossati*

L TU Dresden, Germany
muhammad_usama.sardar@tu-dresden.de
2 Huawei Technologies, Helsinki, Finland
arto.niemi@huawei.com
3 University of Applied Sciences Bonn-Rhein-Sieg and Siemens, Germany
Hannes.Tschofenig@siemens.com
4 Linaro, Lausanne, Switzerland
thomas.fossati@linaro.org

Abstract. Transport Layer Security (TLS) is a widely used protocol for
secure channel establishment. However, it lacks any inherent mechanism
for validating the security state of the endpoint software and its plat-
form. To overcome this limitation, there have been recent proposals to
combine remote attestation and TLS, named as attested TLS. The most
common attested TLS protocol for confidential computing is Intel’s RA-
TLS, which is used in multiple open-source industrial projects. By using
the state-of-the-art symbolic security analysis tool ProVerif, we found a
potential issue in RA-TLS, namely attestation evidence can be replayed
from an old session without the verifier noticing. We finally reflect on the
challenges and lessons learned in the formalization process, including the
discovery of crucial issues in the earlier formalization of TLS.

Keywords: Formal analysis - Transport Layer Security (TLS) - Remote
Attestation (RA) - Symbolic Security Analysis - ProVerif.

* funded by DFG grant 389792660 as part of TRR 248 — CPEC.

	Safe Composition of Systems of Communicating Finite State Machines Franco Barbanera (University of Catania) and Rolf Hennicker (LMU Munich)
	The B2Scala Tool: integrating Bach in Scala with Security in Mind Jean-Marie Jacquet (University of Namur), Manel Barkallah (University of Namur) and Doha Ouardi (University of Namur)
	Algebraic Reasoning About Timeliness Hélène Coullon (IMT Atlantique), Simon Robillard (Université de Montpellier), Frederic Loulergue (Université d'Orléans), Farid Arfi (IMT Atlantique) and Jolan Philippe (IMT Atlantique)
	Towards Formal Verification of Attested TLS: Potential Replay Attacks on RA-TLS (Oral Communication) Muhammad Usama Sardar (TU Dresden), Arto Niemi (Huawei), Hannes Tschofenig (University of Applied Sciences Bonn-Rhein-Sieg, Siemens) and Thomas Fossati (Linaro)

