
To appear in EPTCS.

Modular Multiparty Sessions with Mixed Choice

Franco Barbanera *

Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy

franco.barbanera@unict.it

Mariangiola Dezani-Ciancaglini
Dipartimento di Informatica, Università di Torino, Torino, Italy

dezani@di.unito.it

MultiParty Session Types (MPST) provide a useful framework for safe concurrent systems. Mixed
choice (enabling a participant to play at the same time the roles of sender and receiver) increases
the expressive power of MPST as well as the difficulty in controlling safety of communications.
Such a control is more viable when modular systems are considered and the power of mixed choice
fully exploited only inside loosely coupled modules. We carry over such idea in a type assignment
approach to multiparty sessions. Typability for modular sessions entails Subject Reductions, Session
Fidelity and Lock Freedom.

1 Introduction

MultiParty Session Types (MPST) offer a structured approach to the development and formal verification
of concurrent and distributed systems [18, 19]. As in the vast majority of choreographic formalisms, two
distinct but related views of concurrent systems are taken into account: (a) the global view, a formal
specification via global types of the overall behaviour of a system; (b) the local view, namely a descrip-
tion, at different levels of abstraction, of the behaviours of the single components. A key issue in MPST,
and choreographies in general, is the relation between these two views. Among others, we can refer
to the notion of projection, used till recently in most of the MPST formalisms. Given a (well-formed)
global type, the projection operator produces a tuple of local types – one for each component – which
generalises binary session types [16, 17]. Such local types can be looked at as an abstraction of finer
grained descriptions of processes. Another approach to the MPST global-local relationship is the one
embodied in the so called Simple MultiParty Sessions (SMPS) formalisms. Such an approach was first
introduced in [12] and [4], and further investigated in a bunch of papers, among which [3, 7, 5, 6, 1, 2].
Whereas the MPST approach typically considers two-layered local views – a layer of processes and a
layer of local types – SMPS are based on single-layered local views, where only a fairly abstract notion
of process is considered. In SMPS, which is the general setting of the present paper, systems of commu-
nicating processes are represented as multiparty sessions, i.e. parallel compositions of named processes
(the participants). Then, by means of type systems, global types are inferred for such sessions. Typabil-
ity is such to ensure relevant communication properties – typically Lock Freedom – for sessions. Besides
the above mentioned ones, it is worth recalling that also other approaches have been investigated, like
the one introduced in [32], where the global view is only implicitly considered.

*Partially supported by Project “National Center for HPC, Big Data e Quantum Computing”, Programma M4C2, Inves-
timento 1.3 – Next Generation EU; and by the PIAno di inCEntivi per la RIcerca di Ateneo 2024-2026 UniCT (Linea di
Intervento 1).

2 Modular Sessions with Mixed Choice

A common feature of all the above mentioned approaches, till lately, has been the use of communi-
cation models where, before any interaction, a process can clearly be identified as a sender or a receiver.
The intrinsic potentiality of nondeterministically choosing among both inputs and outputs inside a single
process interaction (usually referred to in the literature as “mixed choice”) has however recently intrigued
session type researchers, both for the binary and the multiparty cases [10, 28, 29, 30, 31]. A thorough
investigation of the expressivity of mixed choice in (synchronous) MPST formalisms has been carried on
in [31]. For instance, mixed choice enables to implement protocols safely exploiting circular interactions,
as shown in [31] through an example recalled in the present paper (see Example 2.4). This is not possible
in usual MPST formalisms where typing [7] or, equivalently, the projectability condition on global types
– as shown in [6] – consists essentially in checking the possibility of sequentialising the interactions in a
protocol. Together with its expressive power, however, mixed choice brings subtly harmful features, as
already exposed decades ago [15] in the setting of Communicating Finite State Machines [9] (an asyn-
chronous formalism closely related to MPST). In the present paper we aim at exploiting such expressive
power in a safe and controlled way using a SMPS setting. In order to do that we resort to the notion of
modularity.

Modularity is a fairly general property of complex systems. Any complex system can be decomposed
into smaller subsystems that are always going to be interdependent to some extent and independent to
some other extent [33]. In fact, in many human activities, from business to biology, as well as to software
engineering, modularisation offers a strategic approach enabling to cope with their complexity. Modu-
larity in software engineering refers to the design approach that emphasises the separation of concerns:
a complex software system is decomposed into smaller, loosely coupled modules, where coupling is the
degree of interdependence between the modules. By means of project modularisation one manages to,
among others, reduce complexity (breaking down a large system into smaller modules makes it more
manageable and easier to understand [25]) as well as to improve testing and separation of concerns
(SoC), a fundamental principle in software engineering. In particular, in modular programming, con-
cerns are separated such that modules, performing logically coherent tasks, do interact through simple
and manageable interfaces.

Our proposal is hence to restrict our attention to sessions corresponding to modularised systems. A
type discipline is then proposed that profits, as in more rigid MPST formalisms, from a form of “sequen-
tialisation” condition. Such a condition however, instead of being imposed on participants, is imposed
on the modules forming a session, inside which the mixed choice can be freely used (at the cost of a thor-
oughly check, but limited inside the single modules, of all the possible interactions among participants).
The inter-modules interactions are instead more controlled, so respecting the decoupling of modules
characterising any sound decomposition of systems. It is then possible to prove the properties of Subject
Reduction and Session Fidelity for typable modular sessions. Moreover, typability also entails the com-
munication property of Lock Freedom. Typability is shown to be independent from the way a session
can be modularised as well as from the order in which the typing of the modules is “sequentialised”.
We propose, as working example, a modular extension of the above mentioned leader election example
of [31].

Overview. In Section 2 we introduce the calculus of multiparty sessions with mixed choice as an
extension of the SMPS calculus of [4] and [7]. Modularisable multiparty sessions are then formally
presented in Section 3. Global types equipped with a coinductive LTS are defined in Section 4 in the
style of [6]. Properties of typable modular sessions are proven in Section 5, namely Subject Reduction,
Session Fidelity and Lock Freedom. In that section we also show that typability does not depend on how
a session is modularised or on the particular modules considered during typing. A summing-up section,
also discussing related and future works, concludes the paper.

Barbanera & Dezani-Ciancaglini 3

2 Multiparty Sessions with Mixed Choice

We present now a SMPS synchronous calculus of multiparty sessions with mixed choice, inspired mainly
by [31] and partially by [4]. We assume to have the following denumerable base sets: messages
(ranged over by λ ,λ ′, . . .); session participants (ranged over by p,q, r,s, . . .); indexes (ranged over by
i, j,h,k, . . .); finite sets of indexes (ranged over by I,J,H,K, . . .). We refer to the denumerable set of
participant names as P.

Processes, ranged over by P,Q,R,S, . . . , implement the behaviour of participants. In the following
and in later definitions the symbol ::=coind does express that the productions have to be interpreted
coinductively and that only regular terms are allowed. Then we can adopt in proofs the coinduction style
advocated in [21] which, without any loss of formal rigour, promotes readability and conciseness.

Definition 2.1 (Processes) i) Action prefixes are defined by π ::= p?λ | p!λ .

ii) Processes are coinductively defined by
P ::=coind 0 | Σi∈Iπi.Pi

where I ̸= /0 and finite, and πl = q?λ l , π j = q?λ j (resp. πl = q!λ l , π j = q!λ j) imply λ l ̸= λ j, for
any l, j ∈ I such that l ̸= j.

In the above definition, Σi∈Iπi.Pi stands, as usual, for the summand of processes πi.Pi’s. A Σi∈Iπi.Pi

process represents the nondeterministic choice of one of the actions πi, after which the process continues
as Pi with i ∈ I. As usual, we assume the summand of processes to be commutative and associative. A
prefix π can be any input (i.e. of the form p?λ) or output (i.e. of the form p!λ) action. We use 0 to
denote the terminated process. For the sake of readability, we omit trailing 0’s in processes.

We define the participants of action prefixes by prt(p?λ) = prt(p!λ) = {p}. Moreover we define the
participants of processes by

prt(0) = /0 prt(Σi∈Iπi.Pi) =
⋃

i∈I prt(πi)∪
⋃

i∈I prt(Pi)

By the regularity condition and the finiteness of indexes, prt(P) is finite for any P.
Processes correspond to inductively defined terms of the calculus MCMP (Mixed Choice Multiparty

Sessions) as defined in [31], where the µ-operator is used to describe infinite behaviours. Our use of
coinductively defined (possibly) infinite terms enables us to get simpler formalisations and proofs with
respect to the use of µ-terms. The latter entail just technicalities that can be dealt with as done in the
literature on session types and MPST [19], where such terms are usually considered.

Multiparty sessions are parallel compositions of participant-process pairs, where all participants are
different.

Definition 2.2 (Multiparty sessions) Multiparty sessions are defined by M= p1[P1] ∥ · · · ∥ pn[Pn]
where p j ̸= pl for 1 ≤ j, l ≤ n and j ̸= l.

We assume the standard structural congruence ≡ on multiparty sessions, stating that parallel composition
is commutative and associative and has neutral elements p[0] for any fresh p. Such a congruence can be
inductively defined, as multiparty sessions are. We then write p[P] ∈ M if M ≡ p[P] ∥ M′ and P ̸= 0.
Moreover, we define the participants of multiparty sessions by prt(M) = {p | p[P] ∈M}.

To define the synchronous operational semantics of sessions we use an LTS, whose transitions are
decorated by communication labels, i.e. expressions of the shape pλq. In the following we use Λ to
range over communication labels.
Notation: We use π.P

.. Q as short for either π.P+Q or π.P. Such a notation enables us to present the

4 Modular Sessions with Mixed Choice

following LTS in a compact and yet formal way, since in our processes – as in [31] – we cannot have
unprefixed 0’s as summands.

Definition 2.3 (LTS for Multiparty Sessions) The labelled transition system (LTS) for multiparty ses-
sions is the closure under structural congruence of the reduction specified by the unique axiom:

[COMM]
p[q!λ .P

.. P′] ∥ q[p?λ .Q
.. Q′] ∥M pλq−−→ p[P] ∥ q[Q] ∥M

Rule [COMM] makes the communication possible: if participant p is enabled to send message λ to par-
ticipant q which, in turn, is enabled to receive it, the message can be exchanged. This rule is non-
deterministic in the choice of messages exchanged. The implementation issues raised by such opera-
tional semantics are similar to those for most of the calculi for concurrency and can be dealt with by
resorting to suitable coordination protocols. Such issues are however outside the scope of the present
paper.

Note that in the above semantics there is no difference between the behaviours of inputs and outputs,
while usually a sender freely chooses among all its available messages. In actual communicating systems,
messages would also carry values that are abstracted away in SMPS formalisms for the sake of simplicity.
The present calculus (as well as its type system) could however be extended to messages with data.

We define traces as (possibly infinite) sequences of communication labels. Formally,
σ :::=coind ε | Λ ·σ

where ε is the empty sequence. When σ = Λ1 · . . . ·Λn (n ≥ 0) we write M σ−→M′ as short for

M Λ1−→M1 · · ·
Λn−→Mn =M′

We write M σ−→ with the standard meaning. Moreover, we define the participants of labels by prt(pλq) =
{p,q} and the participants of traces – notation prt(σ) – as its obvious extension. We also denote by

L (M) the set of all labels the session M can emit, i.e. L (M) = {Λ |M Λ−→}.

We present now, in our setting, the leader-election example used in [31] (inspired by [27], in turn
inspired by [8]) to make evident the expressive power of mixed choice.

Example 2.4 (Leader election [31]) Five participants (a,b,c,d,e) interact with the aim of electing a
leader. Each of them can send to the next participant, in a circular fashion, the message leader in order
to ask it to become the leader. If such a communication succeeds, the sender terminates. Of course only
two of this sort of communications can succeed. The protocol then allows two, among the remaining
three participants, to be able to exchange the leader message. The receiver is hence considered as the
elected leader and so it informs the station participant s which, in turn, provides to delete the participant
which remained inactive during the previous interactions.
The above behaviour is implemented by the following session:

E= a[Pa] ∥ b[Pb] ∥ c[Pc] ∥ d[Pd] ∥ e[Pe] ∥ s[Ps]
a

b

c

e

d

s
where Pa = e!leader

+b?leader.(c!leader+d?leader.s!elect)
+s?del

and (with some abuse of notation)
Ps = Σx∈{a,b,c,d,e}

(
x?elect.Σx∈{a,b,c,d,e}x!del

)
Processes of participants b, c, d and e are obtained out of Pa by applying the name substitution
ν = [a7→b,b7→c,c 7→d,d 7→e,e7→a] as follows:

Pb = Paν , Pc = Pbν , Pd = Pcν , Pe = Pdν

Barbanera & Dezani-Ciancaglini 5

Session E can be graphically represented by the diagram above on the left, where blue arrows repre-
sent the initial possible exchanges of the message leader and the red ones the potential further exchanges
of such message. The following sequence of reductions is, for instance, the one leading to the election
of e:

aleadere ·dleaderc · cleadere · eelects · sdelb ⋄
Lock Freedom is a relevant property of concurrent systems. We define it in our setting following

[26]: roughly, there is always a continuation enabling a participant to communicate whenever it is willing
to do so. Lock Freedom entails Deadlock Freedom, since it ensures progress for each participant.

Definition 2.5 (Lock Freedom) A session M is lock free if M σ−→M′ with σ finite and p∈ prt(M′) imply

M′ σ ′ ·Λ−−−→ for some σ ′ and Λ such that p ̸∈ prt(σ ′) and p ∈ prt(Λ).

The above definition corresponds to the notion of liveness used in [20] and [22] in a channel-based
synchronous communication setting.

3 Modular Multiparty Sessions

“With great [expressive] power comes great responsibility” (Spider-Man’s Uncle Ben), since expressive
power is often difficult to control and tame. Our aim is to provide a type system for multiparty sessions
with mixed choice ensuring, like usual in SMPS, relevant communication properties, together with the
guarantee that the overall behaviour of a session faithfully respects what the type assigned to the session,
if any, describes. To do that, instead of restricting the expressive power of mixed choice, we decided to
consider multiparty sessions that can be – as suggested by a well-known software engineering principle
– modularised. A module, in our SMPS setting, is formalised in terms of a subsession inside which
participants can freely interact by means of mixed choice. The communications among the modules are
instead controlled by imposing them to be performed only by particular participants called “connectors”.
The processes of the connectors (dubbed connecting processes) must satisfy the restriction that each
choice involving a participant not belonging to the module must be between communications with only
that participant. Definition 3.1, where P is the set of module participants, formalises this condition.

Definition 3.1 (Connecting processes) Given a set of participants P, we say that a process P is P-
connecting if for any subprocess of P, say Σi∈Iπi.Pi, we have that prt(π j) ̸∈ P for some j ∈ I implies
prt(πi) = prt(π j) for all i, j ∈ I.

A connector is hence a participant of a module (represented by the session M in the definition below)
whose process is a connecting process which can interact with the outside of the module.

Definition 3.2 (Connectors) Let p[P] ∈ M. We say that the participant p is a connector for M if P is
prt(M)-connecting and there is q ∈ prt(P) such that q ̸∈ prt(M).

The notions of subsession and session partition are at the basis of that of modular session. We say
that M′ is a subsession of M and write M′ ⊆M, whenever p[P] ∈M′ implies p[P] ∈M. A partition of
a session M is, as expected, a set of subsessions {Mh}h∈H of M such that prt(M) =

⋃
h∈H prt(Mh) and,

for all h,k ∈ H, prt(Mh)∩prt(Mk) = /0. Therefore, p[P] ∈M implies that there is a unique k ∈ H such
that p[P] ∈Mk.

Definition 3.3 (P-partition) Let {Mh}h∈H be a partition of a session M, and let P = {Pk}k∈K be a
partition of a finite subset of the set P. We say that {Mh}h∈H is a P-partition of M if H ⊆ K and
prt(Mh)⊆ Ph for all h ∈ H.

6 Modular Sessions with Mixed Choice

It is not difficult to check that, given a session M and a partition P = {Pk}k∈K such that prt(M) ⊆⋃
k∈K Pk, there is a unique P-partition of M.

A session is modularisable (with respect to a partition of participants) when it can be partitioned into
subsessions that interact only by means of connectors.

Definition 3.4 (P-modularisation) A P-modularisation of M is a P-partition {Mh}h∈H of M such
that, for all h ∈ H, the following conditions hold

i) p[P] ∈ Mh implies that either p is a connector of Mh or, for each q ∈ prt(P), q ∈ prt(M) implies
q ∈ prt(Mh);

ii) for each connector p[P] ∈Mh and each q ∈ prt(P)\prt(Mh):
if q ∈ prt(Mk), then q is a connector for Mk

In such a case, we say that M is P-modularisable.

It is worth noticing that we impose no limit on the number of connectors present in a module, as well as
on the number of external connectors a connector can interact with (see the following example). Besides,
a session M is always {prt(M)}-modularisable. For example M= p[q!λ + r!λ ′] is {{p}}-modularisable
and its unique module does not contain any connector. Also, given a partition P and a session M, there
exists a unique P-modularisation of M, if any.

Example 3.5 (Modules with multiple connectors) Let us consider M=M1 ∥M2,
where M1 = u[p?λ .q!λ + q!λ .p?λ] ∥ p[u!λ .(r!λ 1 + r?λ 2)] ∥ q[u?λ .(s!λ 1 + s?λ 2)]
and M2 = v[r!λ .s?λ + s?λ .r!λ] ∥ r[v?λ .(p?λ 1 +p!λ 2)] ∥ s[v!λ .(q?λ 1 +q!λ 2)].
This session is {{u,p,q},{v, r,s}}-modularisable and it has multiple connectors. In fact, p and q are the
connectors for the module {u,p,q}, whereas r and s are the connectors for the module {v, r,s}. ⋄

In actual programming, refining a modularisation enables to enhance parameters like scalability,
maintenance, reusability and many more. In the present setting, it also allows for simpler typings. Any
modularisation refinement corresponds to a partition refinement.

Definition 3.6 (Refinement) A partition P refines a partition P ′ (notation P ⊑P ′) if P = {Ph}h∈H ,
P ′ = {P′

k}k∈K and for all k ∈ K there is Hk ⊆ H such that P′
k =

⋃
h∈Hk

Ph.

As intuitively evident, it is possible to formally show that coarser partitions maintain modularisabil-
ity.

Lemma 3.7 If M is P-modularisable and P refines P ′, then M is P ′-modularisable.

Proof. It is not difficult to verify that if conditions (i) and (ii) of Definition 3.4 hold for P , then they
hold also for P ′. □
From the previous lemma, being M {prt(M)}-modularisable, it immediately follows that M is P-
modularisable for all P such that prt(M)⊆ P for some P ∈ P .

We can build a minimal refined partition, with respect to ⊑, among those modularising a session.
We start with P0 = {{p} | p ∈ prt(M)} and we iteratively build Pi+1 by replacing in Pi the two sets
P,P′ with the unique set P∪P′ if there is p[P] ∈M such that p ∈ P, q ∈ P′∩prt(P) and either P is not
P-connecting or q is not a connector for the subsession of M whose set of participants is P′. It is possible
to verify that M is P-modularisable, where P is the fixed point of this procedure. We show now such
a partition to be also the minimum among the partitions modularising a session.

Lemma 3.8 The minimal partition modularising a session is unique, i.e. a minimum.

Barbanera & Dezani-Ciancaglini 7

Proof. Assume toward a contradiction that there are two different minimal (w.r.t ⊑) partitions P =
{Ph}h∈H and P ′ = {P′

k}k∈K for modularising a session. This implies that there are h1,h2 ∈ H and k0 ∈ K
such that p∈ Ph1 , q∈ Ph2 and {p,q}⊆ P′

k0
. Then also the partition obtained from P ′ by replacing the set

P′
k0

with the two sets P′
k0
∩Ph1 and P′

k0
∩Ph2 modularises the same session. This is clearly a contradiction.

□

It is crucial that P-modularisation is preserved by reduction.

Lemma 3.9 Let M be P-modularisable and let M Λ−→M′. Then also M′ is P-modularisable.

Proof. Notice that conditions (i) and (ii) of Definition 3.4 are invariant by reduction. In fact a participant
p which is a connector in M is either a connector in M′ too or it has a process whose participants all
belong to the subsession containing p in the P-modulation of M′. Therefore a P-modularisation of M
is also a P-modularisation of M′. □

We can notice that, if P is the minimal partition for modularising M and M Λ−→M′, in general P is
not the minimal partition for modularising M′. In fact prt(M′) can be a proper subset of prt(M) and a
process in M which is not a connector can reduce to a process which is a connector in M′. For example
the minimal partition of M≡ p[q!λ .r!λ + r?λ ′.(q!λ 1 +q?λ 2)] ∥ q[p?λ +p?λ 1 +p!λ 2] ∥ r[p?λ +p!λ ′]
is {{p,q, r}}, since p is not a connector. But M rλ ′p−−→ p[q!λ 1 + q?λ 2] ∥ q[p?λ + p?λ 1 + p!λ 2] and the
minimal partition of this last session is {{p},{q}}, since p and q are connectors and r disappeared.

Example 3.10 (Modular election) We consider three “local” elections, all managed like in the Example
2.4. The names of the participants of the three local election are like the ones in the Example 2.4, but
indexed with indexes in {1,2,3}. We also consider a further “global election” with participants w1, w2
and w3 and global station gs. Such an election follows a protocol similar to that of the local elections (but
simpler, since only three participants do compete for leadership). It can be seen as an election among
the winners of the local elections. In the present example the “local leaders”, once they are elected,
are informed whether they have been elected also “global leader” or not. The above sketched global
behaviour is implemented by the following session Egl made of four subsessions: three local elections
(E1,E2,E3) and one global election G among the “local” winners.

The processes of the participants, are fairly similar to the ones in the Example 2.4 to which a part
is added implementing the communication to the local leaders of whether they are also global leader or
not.

Egl = E1 ∥ E2 ∥ E3 ∥G
where, for 1 ≤ i ≤ 3,

Ei = ai[Pai] ∥ bi[Pbi] ∥ ci[Pci] ∥ di[Pdi] ∥ ei[Pei] ∥ si[Psi]
with Pai = ei!leader

+ bi?leader.
(
ci!leader+di?leader.si!elect.

(
si?gleader + si?no

))
+ si?del

and Psi = Σx∈{ai,bi,ci,di,ei}x?elect.
(
gs?gleader.x!gleader.Qi + gs?no.x!no.Qi

)
with Qi = Σx∈{ai,bi,ci,di,ei}x!del

and with processes of participants bi, ci, di and ei obtained out of Pai by
applying the name substitution

νi = [ai 7→bi,bi 7→ci,ci 7→di,di 7→ei,ei 7→ai] as in Example 2.4

and

8 Modular Sessions with Mixed Choice

a1

b1

c1

e1

d1

s1a3

b3

c3

e3

d3

s3

a2

b2

c2

e2

d2

s2

w1

w2w3

gs

Figure 1: The three local elections and the global one of Example 3.10.

G = w1[Pw1] ∥ w2[Pw2] ∥ w3[Pw3] ∥ gs[Pgs]
with Pwi = wi+2!leader

+ wi+1?leader.gs!gleader
+ gs?del

and Pgs = Σi∈{1,2,3}wi?gleader.si!gleader.si+1!no.si+2!no.
(
Σi∈{1,2,3}wi!del

)
where all the indexes above have to be considered modulo 3, plus 1.

It is not difficult to check that Egl is P-modularisable for P = {prt(E1),prt(E2),prt(E3),prt(G)},
where s1,s2,s3 and gs are the connectors for, respectively, the modules E1, E2, E3 and G. ⋄

4 A Type System for Modular Sessions

Global types are used to represent the overall behaviour of multiparty sessions. Here we use a notion of
global type similar to the one in MPST but, following SMPS, we define them coinductively, as possibly
infinite regular terms.

Definition 4.1 (Global types) Global types are coinductively defined by:
G ::=coind End | Σi∈IΛi.Gi

where I ̸= /0 and, for any j, l ∈ I such that j ̸= l, Λi = pλ iq and Λ j = pλ jq imply λ j ̸= λ l .

We define the participants of global types by prt(End) = /0 and prt(Σi∈IΛi.Gi) =
⋃

i∈I prt(Λi) ∪⋃
i∈I prt(Gi). By the regularity condition, prt(G) is finite for any G. As usual, trailing End’s will be

omitted.

As mentioned in the Introduction, in standard SMPS, typing rules take into account single interac-
tions between pairs of participants. In our mixed-choice setting, that approach would allow to type only
sessions whose independent parts were intrinsically sequential, so ruling out protocols like the leader
election and the modular election. We hence consider a typing rule where all the interactions involving

Barbanera & Dezani-Ciancaglini 9

the participants of a single module M̂ (so including also the communications of the connectors of M̂
with other modules) are taken into account. Such a set of interactions is formalised through the notion
of coherent set of communication labels. A module M̂ is therefore indirectly represented in the rule in
terms of its corresponding coherent set and referred to, when necessary, as the witness of such a set.

Definition 4.2 (Coherent set of communication labels) A set of labels {Λi}i∈I is P-coherent for M if
M is P-modularisable and there exists an element M̂ of the (unique) P-modularisation of M such that

{Λi}i∈I = {Λ ∈ L (M) | prt(Λ)∩prt(M̂) ̸= /0}
The M̂ above is called witness for the P-coherence of {Λi}i∈I .

Example 4.3 (Witness) Let us consider M′
1 = u[q!λ] ∥ p[r!λ 1+r?λ 2] ∥ q[u?λ .(s!λ 1+s?λ 2)] and M2 =

v[r!λ .s?λ + s?λ .r!λ] ∥ r[v?λ .(p?λ 1 + p!λ 2)] ∥ s[v!λ .(q?λ 1 + q!λ 2)]. The session M′
1 ∥ M2 can be

obtained by reducing the session of Example 3.5. It is still {{u,p,q},{v, r,s}}-modularisable and M′
1 is

the witness for the {{u,p,q},{v, r,s}}-coherent set of labels {uλq, pλ1r, rλ2p}. ⋄
Here and in the following, the double line indicates that the rules are interpreted coinductively.

Definition 4.4 (Type system) The type system ⊢P is defined by the following axiom and rule, where
sessions are considered modulo structural congruence:

[END]
End ⊢P p[0]

[TCOMM]

M Λi−→Mi Gi ⊢P Mi ∀i ∈ I ̸= /0
{Λi}i∈I is P-coherent for M prt(Σi∈IΛi.Gi) = prt(M)

Σi∈IΛi.Gi ⊢P M
==

It is not difficult to check that we can derive the global type uλq.pλu.G1 + pλu.uλq.G1, where G1 =
vλ r.sλv.G2 + sλv.vλ r.G2, G2 = pλ 1r.G3 + rλ 2p.G3, and G3 = qλ 1s+ sλ 2q, for the session of Exam-
ple 3.5.

The condition “{Λi}i∈I is P-coherent for M” is essential to get Subject Reduction. In fact, by
allowing any subset of L (M) as {Λi}i∈I in [TCOMM], we could derive pλ ′r.pλq ⊢P M0 for

M0 ≡ p[q!λ + r!λ ′.q!λ] ∥ q[p?λ] ∥ r[p?λ ′]

regardless of P . However, we would also have M0
pλq−−→ r[p?λ ′], with r[p?λ ′] untypable. The above ex-

ample also shows that, in order to get Subject Reduction it is necessary that, at any moment, a connector
can interact with one other connector only. Let us assume to relax Definition 3.1 as follows

Given a set of participants P, we say that a process P is P-connecting if for any subprocess
of P, say Σi∈Iπi.Pi, we have that prt(π j) ̸∈ P for some j ∈ I implies prt(πi) ̸∈ P for all i ∈ I.

This would imply M0 above to be {{p},{q},{r}}-modularisable and all the participants would turn out
to be connectors in their respective modules. Hence M0 would be ⊢{{p},{q},{r}} typable, whereas r[p?λ ′]
would not.

The condition “prt(Σi∈IΛi.Gi) = prt(M)” is necessary to get Lock Freedom. For example without
this condition we could derive G ⊢{{p},{q},{r}} p[P] ∥ q[Q] ∥ r[s!λ] with P = q!λ .P, Q = p?λ .Q and
G= pλq.G. For what concerns the condition I ̸= /0, let us consider one of our previous examples, namely
M= p[q!λ + r!λ ′]. Such a session can be uniquely modularised with itself as possible module and it is
not lock free. In fact it is not typable, since its unique coherent set is empty.

10 Modular Sessions with Mixed Choice

It can be proved that P-coherence of a label set for a session is preserved by reducing the session
with a label not belonging to the P-coherent set, see Lemma 5.6.

The type system is decidable, since processes and global types are regular, and there is only a fi-
nite number of partitions for the participants of a session. More interesting, typability of a session does
depend on the choice neither of the P-coherent sets nor of the partition P (see, respectively, Theo-
rems 5.11 and 5.12).

We define the semantics of global types via a coinductive formal system, as done first in [6]. Such a
coinductive definition enables to take into account global types containing branches, where some com-
munications can be indefinitely procrastinated, see Example 4.7. In order to do that, it is handy to
associate to a global type the set of communication labels which might (not necessarily) decorate its
transitions. We dub them capabilities of the global type.

Definition 4.5 (Capabilities) Capabilities of global types are defined by:
cap(End) = /0 cap(Σi∈IΛi.Gi) = {Λi}i∈I ∪

⋃
i∈I cap(Gi)

Definition 4.6 (LTS for global types) The labelled transition system (LTS) for global types is specified
by the following axiom and rule:

[E-COMM]
Σi∈IΛi.Gi

Λ j−→ G j

j ∈ I

[I-COMM]
Gi

Λ−→ G′
i Λ ∈ cap(Gi) prt(Λ)∩prt(Λi) = /0 ∀i ∈ I

Σi∈IΛi.Gi
Λ−→ Σi∈IΛi.G

′
i

===

Axiom [E-COMM] formalises the fact that, in a session exposing the behaviour Σi∈IΛi.Gi, the commu-
nication labelled Λ j for any j ∈ I can happen. When such a communication is actually performed, the
resulting session will expose the behaviour G j.

Rule [I-COMM] enables to describe independent and concurrent communications, even if global types
apparently look like sequential descriptions of sessions’ overall behaviours. In fact, behaviours involving
participants ready to interact with each other uniformly in all branches of a global type, can do that if
neither of them is involved in an interaction appearing at top level in the global type. The condition
Λ ∈ cap(Gi) in Rule [I-COMM] is needed because such a rule is coinductive. In fact, without such a

condition, we could get the following infinite derivation for G
pλq−−→ G with G= rλ ′s.G:

D =
D

====== [I-COMM]

G
pλq−−→ G

Example 4.7 (Use of coinduction in Rule [I-COMM]) As shown in [6] the coinductive formulation of

Rule [I-COMM] allows to get G
pλq−−→ G′, where G = rλ1s.G+ rλ2s.pλq and G′ = rλ1s.G

′ + rλ2s. The
inductive definition of this rule does not allow the shown transition. ⋄
Example 4.8 (Typing the modular election session) In Figure 2 we provide a typing for the modular
session Egl of Example 3.10 in the type system ⊢P with

P =
⋃

i∈{1,2,3}{{ai,bi,ci,di,ei,si}}∪{{w1,w2,w3,gs}}
We use colours for representing reduced participants. In particular, a participant has the colour

in its initial state; after one interaction; after two interactions;
after three interactions; after four interactions; when terminated.

Barbanera & Dezani-Ciancaglini 11

End ⊢ b[0] ∥ s[0]
==========================

G̃′′′
3 = sdelb ⊢

a

b

c

e

d

s ···
===========================

G̃′′
3 = sgle.G̃′′′

3 ⊢

a

b

c

e

d

s ···
===========================

G̃′
3 = gsdelw2.G̃

′′
3 ⊢

w1

w2w3

gs ···
==================================

G̃3 = gsnos2.G̃
′
3 ⊢

w1

w2w3

gss2 ···
==============================

gsnos1.G̃3 ⊢
w1

w2w3

gss1 ···
================================...(local elections 1 and 2)
==============================

G′
3 = gsgls.G′′

3 ⊢
w1

w2w3

gss ···
===

G3 = w3glgs.G′
3 ⊢

w1

w2w3

gs ···
D2 D1===

G′ = Σi∈{1,2,3}wi+1lwi.Gi ⊢
w1

w2w3

gs ···
=================================

G′′
ce = ees.G′ ⊢

a

b

c

e

d

s ···
============================

G′
dc = cle.G′′

ce ⊢

a

b

c

e

d

s ···
D ′

cb===

Gae = dlc.G′
dc+ clb.G′

cb ⊢

a

b

c

e

d

s ···
Ded Ddc Dcb Dba==

ale.Gae+ eld.Ged+dlc.Gdc+ clb.Gcb+bla.Gba ⊢

a

b

c

e

d

s ···

Figure 2: A type derivation for Example 3.10.

12 Modular Sessions with Mixed Choice

For instance:
gs = gs[Σi∈{1,2,3}wi?gleader.si!gleader.si+1!no.si+2!no.

(
Σi∈{1,2,3}wi!del

)
]

gs = gs[s3!gleader.s1!no.s2!no.
(
Σi∈{1,2,3}wi!del

)
] gs = gs[s1!no.s2!no.

(
Σi∈{1,2,3}wi!del

)
]

gs = gs[s2!no.
(
Σi∈{1,2,3}wi!del

)
] gs = gs[Σi∈{1,2,3}wi!del] gs = gs[0]

In Figure 2, arrows do connect pair of participants forming a redex. Moreover, in the conclusion of
the rules we show only the participants of the module containing the coherent set of reductions and, in
case, the “external” connectors. The rest of the session will be denoted by “···”. Also, the figure shows
only one branch of the typing derivation tree: the one concerning the global election of e3.

For the sake of readability, l and gl are abbreviation for, respectively, leader and gleader. Moreover,
a,b,c,d,e and s stand for a3,b3,c3,d3,e3 and s3. ⋄

5 Properties

A subsession of the shape p[q!λ .P
.. P′] ∥ q[p?λ .Q
.. Q′] is called a redex and p[P] ∥ q[Q] is the con-

tractum of the redex. In a transition labelled by pλq both the redex and the contractum are uniquely
determined.

Lemma 5.1 If M pλq−−→M′, then there exists a unique redex p[q!λ .P
.. P′] ∥ q[p?λ .Q
.. Q′] such that

M≡ p[q!λ .P
.. P′] ∥ q[p?λ .Q
.. Q′] ∥M′′

and M′ ≡ p[P] ∥ q[Q] ∥M′′.

Proof. Immediate by the definition of session LTS. □

Rule [COMM] in Definition 2.3 entails an easy relation between the participants connected by reduc-
tions in a session.

Lemma 5.2 If M Λ−→M′, then prt(M) = prt(Λ)∪prt(M′).

It is not difficult to check that the participants of a session and of its global type are the same.

Lemma 5.3 If G ⊢P M, then prt(G) = prt(M).

The following technical lemma relating capabilities and possible reductions of a global type will be
handy later on.

Lemma 5.4 If G Λ−→ G′, then Λ ∈ cap(G).

Proof. By cases on the applied axiom/rule justifying G
Λ−→ G′. If this is [E-COMM], then G= Σi∈IΛi.Gi and

Λ = Λ j for some j ∈ I and Λ j ∈ cap(Σi∈IΛi.Gi) by Definition 4.5.

Otherwise, G = Σi∈IΛi.Gi and G′ = Σi∈IΛi.G
′
i by Rule [I-COMM], where Gi

Λ−→ G′
i, Λ ∈ cap(Gi) and

prt(Λ)∩ prt(Λi) = /0 for all i ∈ I. This implies Λ ∈ cap(G), since
⋃

i∈I cap(Gi) ⊆ cap(G) by Defini-
tion 4.5. □

For showing Subject Reduction it is crucial to ensure that the P-coherence of a set of labels is
preserved by reducing a label not belonging to this set, see Lemma 5.6 whose proof uses Lemma 5.5
below.

Lemma 5.5 Let {Λi}i∈I be P-coherent for M and let Λ ∈ L (M). Moreover, let Λ ̸= Λi for all i ∈ I.
Then prt(Λ) ∩ prt(Λi) = /0 for all i ∈ I.

Barbanera & Dezani-Ciancaglini 13

Proof. By definition of coherence (Definition 4.2), we have a subsession M̂ of M witnessing the P-
coherence of {Λi}i∈I . By contradiction, let us assume prt(Λ) ∩ prt(Λ j) ̸= /0 for some j ∈ I. By definition
of P-modularisation, this implies that prt(Λ j) contains a connector p of M̂. Let prt(Λ j) = {p,q} with
q ̸∈ prt(M̂) and prt(Λ) = {q, r}. Then q ∈ prt(M) and the process Q of q must have a choice between a
communication with p and a communication with r. But this is impossible, since q must be a connector
for some subsession M̂′ of M by condition (ii) of Definition 3.4 and then the process Q must be prt(M̂′)-
connecting by Definition 3.2. □

Lemma 5.6 (Coherence preservation) Let {Λi}i∈I be P-coherent for M and let M Λ−→M′. Then Λ ̸∈
{Λi}i∈I implies that {Λi}i∈I is P-coherent for M′ as well.

Proof. Let M̂ be the subsession of M witnessing the P-coherence of {Λi}i∈I for M. From Λ ̸∈ {Λi}i∈I

and Lemma 5.5 we get that prt(Λ) ∩ prt(Λi) = /0 for all i ∈ I. This implies that the reduction Λ−→ cannot
affect any reduction with label in {Λi}i∈I . Hence M̂ is a witness of the P-coherence of {Λi}i∈I also for
M′. □

Notice how the conditions on connectors (Definitions 3.1 and 3.2) are crucial in getting the property
that prt(Λ) ∩ prt(Λi) = /0 for all i ∈ I in the above result of coherence preservation. If we allowed
connectors to communicate with external partners having unrestricted processes we could consider the
{{p},{r,s}}-modularisation of M= p[r!λ] ∥ r[p?λ + s?λ] ∥ s[r!λ]. In such a case, the set {pλ r} would

be {{p},{r,s}}-coherent with witness M′ = p[r!λ]. However, we would also have that M sλ r−−→M′, but
{pλ r} would not be {{p},{r,s}}-coherent for M′, since pλ r ̸∈ L (M′).

Theorem 5.7 (Subject Reduction) If G ⊢P M and M Λ−→M′, then G′ ⊢P M′ and G
Λ−→ G′ for some G′.

Proof. By coinduction on the derivation of G ⊢P M. Let Λ = pλq. By Lemma 5.1, if M Λ−→ M′, then
there exists a unique redex

R = p[q!λ .P
.. P′] ∥ q[p?λ .Q
.. Q′]

such that M ≡ R ∥M′′ and M′ ≡ p[P] ∥ q[Q] ∥M′′ for some M′′. By the hypothesis that G ⊢P M we
know that G is of the form Σi∈IΛi.Gi and the derivation ends by

[TCOMM]

M Λi−→Mi Gi ⊢P Mi ∀i ∈ I ̸= /0
{Λi}i∈I is P-coherent for M prt(Σi∈IΛi.Gi) = prt(M)

Σi∈IΛi.Gi ⊢P M
==

We proceed by distinguishing the two possible following cases.

Case pλq= Λ j for some j ∈ I. By the premises of the rule, we have M Λ−→M j and G j ⊢P M j, where

M′ =M j . Moreover, it immediately follows that G Λ−→ G j by Axiom [E-COMM].
Case pλq ̸= Λi for all i ∈ I. We have that, for all i ∈ I, Mi ≡R ∥M′

i for some M′
i. Hence we get that

Mi
Λ−→ p[P] ∥ q[Q] ∥M′

i for all i ∈ I. Moreover, for all i ∈ I, M′′ Λi−→M′
i. By the coinduction hypothesis

on the premises of the rule, we have that, for all i ∈ I, G′
i ⊢P p[P] ∥ q[Q] ∥M′

i and Gi
Λ−→ G′

i for some G′
i.

Now, by Lemma 5.4, we get that Λ ∈ cap(Gi) for all i ∈ I, hence we have that G Λ−→ Σi∈IΛi.G
′
i by Rule

[I-COMM]. From M Λ−→ M′ ≡ p[P] ∥ q[Q] ∥ M′′ and M′′ Λi−→ M′
i we get M′ Λi−→ p[P] ∥ q[Q] ∥ M′

i for all
i ∈ I, which imply, by Lemma 5.2,

prt(M′) =
⋃

i∈I prt(Λi)∪
⋃

i∈I prt(p[P] ∥ q[Q] ∥M′
i)

14 Modular Sessions with Mixed Choice

By Lemma 5.3, G′
i ⊢P p[P] ∥ q[Q] ∥ M′

i gives prt(G′
i) = prt(p[P] ∥ q[Q] ∥ M′

i) for all i ∈ I. Hence
prt(Σi∈IΛi.G

′
i) =

⋃
i∈I prt(Λi)∪

⋃
i∈I prt(G

′
i) = prt(M′). Moreover, from Lemma 5.6 and pλq ̸= Λi for all

i ∈ I, it follows that {Λi}i∈I is P-coherent for M′ as well. Therefore Rule [TCOMM] applies, namely

M′ Λi−→ p[P] ∥ q[Q] ∥M′
i G′

i ⊢P p[P] ∥ q[Q] ∥M′
i ∀i ∈ I ̸= /0

{Λi}i∈I is P-coherent for M′ prt(Σi∈IΛi.G
′
i) = prt(M′)

Σi∈IΛi.G
′
i ⊢P M′

==

□

Theorem 5.8 (Session Fidelity) If G ⊢M and G
Λ−→ G′, then M Λ−→M′ and G′ ⊢M′ for some M′.

Proof. By coinduction on the derivation of G Λ−→G′. We distinguish two cases according to the axiom/rule
justifying G

Λ−→ G′.
Axiom [E-COMM]: then G = Σi∈IΛi.Gi, Λ = Λ j and G′ = G j for some j ∈ I. Since G ̸= End, the last

rule in the derivation of G ⊢M must be [TCOMM], which implies that Λ = pλq for some p, λ and q such
that

M≡ p[q!λ .P
.. P′] ∥ q[p?λ .Q
.. Q′] ∥M0

pλq−−→ p[P] ∥ q[Q] ∥M0 ≡M′

for some M0, and G′ ⊢P M′.
Rule [I-COMM]: then G = Σi∈IΛi.Gi and G′ = Σi∈IΛi.G

′
i with Gi

Λ−→ G′
i and Λ ∈ cap(Gi) and prt(Λ)∩

prt(Λi) = /0 for all i ∈ I.
Since the last rule in the derivation of G ⊢M must be [TCOMM], it follows that

• {Λi}i∈I is P-coherent for M;

• M Λi−→Mi and Gi ⊢P Mi, for all i ∈ I ̸= /0;

• prt(Σi∈IΛi.Gi) = prt(M).

By the coinduction hypothesis, we know that, for each i ∈ I, there exists M′
i such that

Mi
Λ−→M′

i and G′
i ⊢M′

i

Notice that, being the label Λ the same for all these reductions, by Lemma 5.1 there exists a unique redex
p[q!λ .P

.. P′] ∥ q[p?λ .Q
.. Q′]

with contractum p[P] ∥ q[Q] in all the Mi, such that Λ = pλq. On the other hand, since we know that
prt(Λ)∩prt(Λi) = /0 for all i ∈ I, it must be the case that Λi = riλ isi and

M′
i ≡ ri[Ri] ∥ si[Si] ∥M′′

i

for some ri, si, Ri, Si, M′′
i and for all i ∈ I. Hence, since Mi

pλq−−→M′
i, we have that, for each i ∈ I,

M≡ ri[si!λ i.Ri
.. R′

i] ∥ si[r?λ i.Si
.. S′i] ∥M′′

i
pλq−−→ ri[si!λ i.Ri

.. R′
i] ∥ si[r?λ i.Si

.. S′i] ∥M′′′
i ≡M′

for some R′
i, S′i (if any), M′′′

i and for all i ∈ I.
By Lemma 5.3, G′

i ⊢ ri[Ri] ∥ si[Si] ∥M′′
i implies prt(G′

i) = prt(ri[Ri] ∥ si[Si] ∥M′′
i) and then prt(G′) =

prt(M′). Moreover, from prt(Λ)∩prt(Λi) = /0 for all i ∈ I, we immediately get that Λ ̸∈ {Λi}i∈I . So, by
Lemma 5.6 we get that {Λi}i∈I is P-coherent for M′. We conclude that there exists a derivation ending
by the following application of Rule [TCOMM]

[TCOMM]

M′ Λi−→M′
i G′

i ⊢M′
i ∀i ∈ I ̸= /0

{Λi}i∈I is P-coherent for M′ prt(G′) = prt(M′)

G′ ⊢P M′
===

□

Barbanera & Dezani-Ciancaglini 15

Toward establishing the property that typable sessions are lock free, we first prove the following
lemma. In words, if p ∈ prt(G), then it must occur somewhere in its syntactic tree, hence there is a trace
σ ·Λ out of G, consisting just of external communications, which corresponds to a path in the tree ending
by the first communication label Λ involving p.

Lemma 5.9 If p ∈ prt(G), then there are σ , Λ and G′ such that G σ ·Λ−−−→ G′, p ̸∈ prt(σ) and p ∈ prt(Λ).

Proof. The proof is by coinduction on G. Since p ∈ prt(G) we have that G = Σi∈IΛi.Gi. Now, let us
assume p ∈

⋃
i∈I prt(Λi). Without loss of generality, we can also assume that p ∈ prt(Λ j) for some j ∈ I.

Then we immediately have that G
Λ j−−→ G j by Axiom [E-COMM], and the thesis trivially follows by taking

σ = ε . Otherwise, since p ∈ prt(G) =
⋃

i∈I prt(Λi)∪
⋃

i∈I prt(Gi), we have that p ̸∈
⋃

i∈I prt(Λi) implies
p ∈ prt(G j) for some j ∈ I. By the coinduction hypothesis, we have that there are a σ ′ and a Λ such that

G j
σ ′·Λ−−−→ G′, p ̸∈ prt(σ ′) and p ∈ prt(Λ). Then the thesis follows by setting σ = Λ j ·σ ′, since G

Λ j−→ G j

by Axiom [E-COMM] and G j
σ ′·Λ−−→ G′. □

Observe that the last lemma is a sort of inverse implication w.r.t. Lemma 5.4, since it shows that the
existence of a capability which is an actual communication of a global type G follows by the fact that
one of the involved participants is in prt(G).

We are now in place to prove that typable sessions are lock free.

Theorem 5.10 (Lock Freedom) If M is typable, then M is lock free.

Proof. Let G ⊢P M. Following Definition 2.5, in order to prove Lock Freedom for M, let M σ−→M′ for
a finite σ and let p ∈ prt(M′). By Subject Reduction (Theorem 5.7) we get G′ ⊢P M′. We can now
recur to Lemma 5.3 and get p ∈ prt(G′). From the fact that p ∈ prt(G′) and by Lemma 5.9 it follows

that G′ σ ′·Λ−−−→ G′′ for some σ ′ and Λ with p ̸∈ prt(σ ′) and p ∈ prt(Λ). Now the thesis follows by Session
Fidelity (Theorem 5.8). □

We conclude this section by showing that typability of a session does depend on the choice neither
of the P-coherent sets nor of the partition P .

Theorem 5.11 If M is typable in ⊢P and {Λi}i∈I is P-coherent for M, then Σi∈IΛi.Gi ⊢P M for some
Gi and all i ∈ I.

Proof. The P-coherence of {Λi}i∈I for M gives M Λi−→Mi, which implies by Subject Reduction (The-
orem 5.7) Gi ⊢P Mi for some Gi and all i ∈ I. By Lemma 5.3 prt(Gi) = prt(Mi) for all i ∈ I. From

M Λi−→ Mi for all i ∈ I we get prt(M) =
⋃

i∈I prt(Λi) ∪
⋃

i∈I prt(Mi) by Lemma 5.2. By definition,
prt(Σi∈IΛi.Gi) =

⋃
i∈I prt(Λi)∪

⋃
i∈I prt(Gi). We conclude prt(Σi∈IΛi.Gi) = prt(M), so we can derive

Σi∈IΛi.Gi ⊢P M using Rule [TCOMM]. □

Theorem 5.12 If M is typable in ⊢P and it is P ′-modularisable, then M is typable in ⊢P ′
too.

Proof. Since M is typable in ⊢P , then M is P-modularisable by Definition 4.2. Let P = {Pk}k∈K and
{Λk

h}h∈Hk = {Λ ∈L (M) | prt(Λ)∩Pk ̸= /0}. By definition of partition we observe that
⋃

k∈K
⋃

h∈Hk
Λk

h =
L (M). By Definitions 4.2 and 3.4 for all k ∈ K {Λk

h}h∈Hk is P-coherent for M. By Lemma 5.11
for each k ∈ K there is a global type Gk = Σh∈Hk Λ

k
h.Ĝh which can be assigned to M in ⊢P , that is

Σh∈Hk Λ
k
h.Ĝh ⊢P M.

Let {Λi}i∈I be P ′-coherent for M. We proceed now by coinduction simultaneously on the derivations
Σh∈Hk Λ

k
h.Ĝh ⊢P M for all k ∈ K. From the above, for each i ∈ I there is ki ∈ K and li ∈ Hki such that one

16 Modular Sessions with Mixed Choice

of the premises of the conclusion Σh∈Hki
Λ

ki
h .Ĝh ⊢P M is Ĝli ⊢P Mi where M Λi−→Mi. By coinduction we

get G′′
i ⊢P ′ Mi for some G′′

i and for all i ∈ I. By Lemma 5.3 prt(G′′
i) = prt(Mi) for all i ∈ I. We have

prt(Σi∈IΛi.G
′′
i) =

⋃
i∈I prt(Λi)∪

⋃
i∈I prt(G

′′
i) and prt(M) =

⋃
i∈I prt(Λi)∪

⋃
i∈I prt(Mi) by Lemma 5.2,

so we get prt(Σi∈IΛi.G
′′
i) = prt(M). Then we can use Rule [TCOMM] to derive Σi∈IΛi.G

′′
i ⊢P ′ M. □

6 Concluding Remarks, Related and Future Works

In the setting of the message-passing communication model, it is possible to envisage mechanisms of in-
teraction where a process can be, at the very same time, both a potential sender and a potential receiver. In
various frameworks for concurrent systems, like session types and communicating finite state machines,
as well as the π-calculus, such mechanism is referred to as mixed choice. The flexibility and expressive
power of mixed choice is understandably counterbalanced by a difficult control of the behaviour of sys-
tems. That was arguably the motivation that mostly restrained the session type community from pursuing
a thorough investigation of this sort of interactions. A stimulus in that direction has been instead recently
given by some papers like [10, 28, 29, 30, 31]. In particular, [10, 30] investigate mixed choice for binary
session types, whereas [31] considers mixed choice in a MPST setting [18, 19] following the approach
of [32] (global types are in fact not taken into account in [31]). Even if the main concern of [31] is the
expressivity of multiparty calculi (according to the full range of possible restrictions of mixed choice),
type systems assigning local types to processes are provided, where various predicates on contexts of
local types are investigated. In [28, 29] binary sessions with timeout and mixed choice are enriched with
a semantics guaranteeing Progress and a type system enjoying Subject Reduction.

Inspired by [31], we carry on an investigation on the use of mixed choice for synchronous commu-
nications in the setting of SMPS [12, 4]. In SMPS, global types are inferred for sessions, i.e. parallel
compositions of named processes, the latter being an abstraction for both processes and local types usu-
ally considered in MPST. Our processes can use now mixed choice. Subject Reduction, Session Fidelity,
as well as Lock Freedom are ensured for typable sessions. The most relevant aspect of our type sys-
tem is that we look at sessions as implicitly composed by modules whose participants freely interact
via unrestricted mixed choice, whereas the inter-module communications can be more easily controlled
by allowing communications with only one participant. Such an approach does not discard a priori any
session. In fact all sessions – even those developed without any specific modularisation in mind – can
be modularised in a less or more refined way: from a single large module comprising the whole session,
to a set of modules made by single participants. In the former case the typing is less effective, since the
global type would result in a complete interaction tree, whereas in the latter case the typing coincides
with the standard SMPS (with no mixed choice). In particular, our type system is conservative since, for
processes without mixed choice, it coincides with the type system of [6], which is at present one of the
most expressive. For mixed choice there is only the type system of [31], which is modularised by predi-
cates on local types. An interesting property ensured by that type system is safety. Safety in [31] entails
that the protocol for process interactions is such that, when a participant intends to perform an interac-
tion, it nondeterministically chooses among all the participants that can interact with it. Then there is a
nondeterministic decision concerning who has to play the role of the sender and who of the receiver. At
that point, the sender performs an internal choice among the available outputs. Typing then guarantees
that the possibility of interaction does not depend on the chosen output. We consider, instead, a simpli-
fied synchronisation protocol where there exists a nondeterministic choice among all the participants that
can actually interact and all the possible communication interactions. As mentioned in Section 2, this
approach makes “!” and “?” just two complementary synchronisation actions. It is however possible to

Barbanera & Dezani-Ciancaglini 17

modify our type system in order to guarantee safety of sessions as defined in [31] by requiring that
p[q!λ .P

.. P′] ∈M and q[p?λ ′.Q
.. Q′] ∈M imply pλq ∈ L (M)

The safety condition only ensures that an output finds the corresponding input if the receiver offers some
inputs for the sender. An alternative condition is

p[q!λ .P
.. P′] ∈M implies M σ ·pλq−−−→ for some σ

With this last condition we would type less sessions, for example we would not type
p[q!λ + r!λ ′] ∥ r[p?λ ′]

and the election example. The feature of this alternative condition is that the choice between outputs is
internal, in agreement with an asynchronous implementation. In such a case it is worth remarking that a
restriction of the subtyping relation used in [31] would be implicitly entailed by our typing.

As first pointed out in [14], the naive extension of the original type system [19] to sessions where
input choices have different senders is unsound. In fact one can type sessions which reduce to untypable
and stuck sessions. Suitable conditions ensuring a sound extension have been proposed both for the
synchronous [14] and asynchronous [24, 11] communications. Notably the type system proposed here
does not have this problem.

We notice that modular sessions can be obtained by connecting independent sessions via gateways,
according to the PaI approach to system composition. When composing several typable SMPS systems
(through compatible interfaces) one gets a typable system [7]. Although the presence of mixed choice
does not seem to be a major obstacle, it is unlikely a result like the one of [7] could be easily translated
in the present context. In fact, as shown in Example 3.5 we allow the presence of multiple connectors
per module. This possibility is actually a severe impediment to the safeness of PaI composition. In fact,
let us take the following two typable sessions:

p[q!λ] ∥ q[p?λ] r[s?λ] ∥ s[r!λ]
Taking all the participants as interfaces and considering that there exists a typable connection policy
among them [7], the PaI composition would result in the following untypable {{p,q},{r,s}}-modular
session

p[r?λ .q!λ] ∥ q[p?λ .s!λ] ∥ r[s?λ .p!λ] ∥ s[q?λ .r!λ]
where all the processes begin with an input, so forming a deadlock. This problem was overcome in [13],
in a setting using projections and without mixed choice, by means of a suitable extension of the syntax
of global types.

It is worth noticing that mixed choice make PaI composition problematic even by allowing one
connector only. For example, by composing using p and t the following typable sessions

p[q!λ 1 + r?λ 2] ∥ q[p?λ 1 + s?λ 3] ∥ r[p!λ 2 + s!λ 4] ∥ s[q!λ 3 + r?λ 4]
t[u?λ 1 +v!λ 2] ∥ u[t!λ 1 +w!λ 3] ∥ v[t?λ 2 +w?λ 4] ∥ w[u?λ 3 +v!λ 4]

we get the session
p[t?λ 1.q!λ 1 + r?λ 2.t!λ 2] ∥ q[p?λ 1 + s?λ 3] ∥ r[p!λ 2 + s!λ 4] ∥ s[q!λ 3 + r?λ 4] ∥
t[u?λ 1.p!λ 1 +p?λ 2.v!λ 2] ∥ u[t!λ 1 +w!λ 3] ∥ v[t?λ 2 +w?λ 4] ∥ w[u?λ 3 +v!λ 4]

which reduces to the stuck session
p[t!λ 2] ∥ t[p!λ 1]

PaI composition provides also an intuitive justification for the shape of connectors in our modu-
larisation. In fact, by composing systems via interfaces with unrestricted mixed choice, most of the
communication properties, if any, are not preserved, as shown by the previous example.

As future work we plan to investigate PaI composition for sessions with mixed choice and asyn-

18 Modular Sessions with Mixed Choice

chronous communication, taking inspiration from [28, 29], where asynchronous communication for ses-
sions with mixed choice is first modelled. We deem worth investigating the modular approach to session
types also for standard MPST, as well as for the recent approaches to global types and projections devised
in [24, 23].

References
[1] Franco Barbanera, Viviana Bono & Mariangiola Dezani-Ciancaglini (2025): Open compliance in multiparty

sessions with partial typing. Journal of Logical and Algebraic Methods in Programming 144, p. 101046,
doi:10.1016/j.jlamp.2025.101046.

[2] Franco Barbanera, Viviana Bono & Mariangiola Dezani-Ciancaglini (2025): Partially typed multiparty ses-
sions with internal delegation. Journal of Logical and Algebraic Methods in Programming 142, p. 101018,
doi:10.1016/J.JLAMP.2024.101018.

[3] Franco Barbanera & Mariangiola Dezani-Ciancaglini (2023): Partially typed multiparty sessions. In Clément
Aubert, Cinzia Di Giusto, Simon Fowler & Larisa Safina, editors: ICE, EPTCS 383, Open Publishing Asso-
ciation, pp. 15–34, doi:10.4204/EPTCS.383.2.

[4] Franco Barbanera, Mariangiola Dezani-Ciancaglini & Ugo de’Liguoro (2022): Open compliance in multi-
party sessions. In S. Lizeth Tapia Tarifa & José Proença, editors: FACS, LNCS 13712, Springer, pp. 222–243,
doi:10.1007/978-3-031-20872-0 13.

[5] Franco Barbanera, Mariangiola Dezani-Ciancaglini & Ugo de’Liguoro (2024): Partial typing for asyn-
chronous multiparty sessions. In Sandra Alves & Ian Mackie, editors: DCM, EPTCS 408, Open Publishing
Association, pp. 1–20, doi:10.4204/EPTCS.408.1.

[6] Franco Barbanera, Mariangiola Dezani-Ciancaglini & Ugo de’Liguoro (2024): Un-projectable global types
for multiparty sessions. In Alessandro Bruni, Alberto Momigliano, Matteo Pradella & Matteo Rossi, editors:
PPDP, ACM Press, pp. 15:1–15:13, doi:10.1145/3678232.3678245.

[7] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri & Nobuko Yoshida (2023): Multicom-
patibility for multiparty-session composition. In Santiago Escobar & Vasco T. Vasconcelos, editors: PPDP,
ACM Press, pp. 2:1–2:15, doi:10.1145/3610612.3610614.

[8] Luc Bougé (1988): On the existence of symmetric algorithms to find leaders in networks of communicating
sequential processes. Acta Informaticae 25(2), p. 179–201, doi:10.1007/BF00263584.

[9] Daniel Brand & Pitro Zafiropulo (1983): On communicating finite-state machines. Journal of ACM 30(2),
pp. 323–342, doi:10.1145/322374.322380.

[10] Filipe Casal, Andreia Mordido & Vasco T. Vasconcelos (2022): Mixed sessions. Theoretical Computer
Science 897, pp. 23–48, doi:10.1016/J.TCS.2021.08.005.

[11] Ilaria Castellani, Mariangiola Dezani-Ciancaglini & Paola Giannini (2022): Asynchronous Sessions with
Input Races. In Marco Carbone & Rumyana Neykova, editors: PLACES, EPTCS 356, Open Publishing
Association, pp. 12–23, doi:10.4204/EPTCS.356.2.

[12] Francesco Dagnino, Paola Giannini & Mariangiola Dezani-Ciancaglini (2023): Deconfined global types
for asynchronous sessions. Logical Methods in Computer Science 19(1), pp. 1–41, doi:10.46298/lmcs-
19(1:3)2023.

[13] Lorenzo Gheri & Nobuko Yoshida (2023): Hybrid multiparty session types: compositionality for protocol
specification through endpoint projection. PACMPL 7 (OOPSLA1), pp. 112–142, doi:10.1145/3586031.

[14] Rob van Glabbeek, Peter Höfner & Ross Horne (2021): Assuming just enough fairness to make
session types complete for lock-freedom. In Leonid Libkin, editor: LICS, IEEE, pp. 1–13,
doi:10.1109/LICS52264.2021.9470531.

[15] Mohamed G. Gouda, Eric G. Manning & Yao-Tin Yu (1984): On the progress of communication between
two machines. Information and Control 63(3), pp. 200–2016, doi:10.1016/S0019-9958(84)80014-5.

http://dx.doi.org/10.1016/j.jlamp.2025.101046
http://dx.doi.org/10.1016/J.JLAMP.2024.101018
http://dx.doi.org/10.4204/EPTCS.383.2
http://dx.doi.org/10.1007/978-3-031-20872-0_13
http://dx.doi.org/10.4204/EPTCS.408.1
http://dx.doi.org/10.1145/3678232.3678245
http://dx.doi.org/10.1145/3610612.3610614
http://dx.doi.org/10.1007/BF00263584
http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1016/J.TCS.2021.08.005
http://dx.doi.org/10.4204/EPTCS.356.2
http://dx.doi.org/10.46298/lmcs-19(1:3)2023
http://dx.doi.org/10.46298/lmcs-19(1:3)2023
http://dx.doi.org/10.1145/3586031
http://dx.doi.org/10.1109/LICS52264.2021.9470531
http://dx.doi.org/10.1016/S0019-9958(84)80014-5

Barbanera & Dezani-Ciancaglini 19

[16] Kohei Honda (1993): Types for dyadic Interaction. In Eike Best, editor: CONCUR, LNCS 715, Springer,
pp. 509–523, doi:10.1007/3-540-57208-2 35.

[17] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998): Language primitives and type discipline for
structured communication-based programming. In Chris Hankin, editor: ESOP, LNCS 1381, Springer, pp.
122–138, doi:10.1007/BFb0053567.

[18] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty asynchronous session types. In
George C. Necula & Philip Wadler, editors: POPL, ACM Press, pp. 273–284, doi:10.1145/1328897.1328472.

[19] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty asynchronous session types. Journal
of the ACM 63(1), pp. 9:1–9:67, doi:10.1145/2827695.

[20] Naoki Kobayashi & Davide Sangiorgi (2010): A hybrid type system for lock-freedom of mobile
processes. ACM Transactions on Programming Languages and Systems 32(5), pp. 16:1–16:49,
doi:10.1016/j.jlamp.2024.101018.

[21] Dexter Kozen & Alexandra Silva (2017): Practical coinduction. Mathematical Structures in Computer Sci-
ence 27(7), pp. 1132–1152, doi:10.1017/S0960129515000493.

[22] Julien Lange, Nicholas Ng, Bernardo Toninho & Nobuko Yoshida (2017): Fencing off go: liveness and safety
for channel-based programming. In Giuseppe Castagna & Andrew D. Gordon, editors: POPL, ACM Press,
pp. 748–761, doi:10.1145/3009837.3009847.

[23] Elaine Li, Felix Stutz, Thomas Wies & Damien Zufferey (2023): Complete multiparty session type projection
with automata. In Constantin Enea & Akash Lal, editors: CAV, LNCS 13966, Springer, pp. 350–373,
doi:10.1007/978-3-031-37709-9 17.

[24] Rupak Majumdar, Madhavan Mukund, Felix Stutz & Damien Zufferey (2021): Generalising projection in
asynchronous multiparty session types. In Serge Haddad & Daniele Varacca, editors: CONCUR, LIPIcs 203,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 35:1–35:24, doi:10.4230/LIPIcs.CONCUR.2021.35.

[25] https://www.ottia.com/en/post/project-modularization.
[26] Luca Padovani (2014): Deadlock and lock freedom in the linear π-calculus. In Thomas A. Henzinger & Dale

Miller, editors: CSL-LICS, ACM Press, pp. 72:1–72:10, doi:10.1145/2603088.2603116.
[27] Catuscia Palamidessi (2003): Comparing the expressive power of the synchronous and asyn-

chronous pi-calculi. Mathematical Structures in Computer Science 13(5), pp. 685–719,
doi:10.1017/S0960129503004043.

[28] Jonah Pears, Laura Bocchi & Andy King (2023): Safe Asynchronous Mixed-Choice for Timed Interactions.
In Sung-Shik Jongmans & Antónia Lopes, editors: COORDINATION, LNCS 13908, Springer, pp. 214–231,
doi:10.1007/978-3-031-35361-1 12.

[29] Jonah Pears, Laura Bocchi, Maurizio Murgia & Andy King (2024): Introducing TOAST: Safe Asynchronous
Mixed-Choice For Timed Interactions. CoRR abs/2401.11197, doi:10.48550/ARXIV.2401.11197.

[30] Kirstin Peters & Nobuko Yoshida (2024): Mixed choice in session types. Information and Computation 298,
p. 105164, doi:10.1016/J.IC.2024.105164.

[31] Kirstin Peters & Nobuko Yoshida (2024): Separation and encodability in mixed choice multiparty ses-
sions. In Pawel Sobocinski, Ugo Dal Lago & Javier Esparza, editors: LICS, ACM Press, pp. 62:1–62:15,
doi:10.1145/3661814.3662085.

[32] Alceste Scalas & Nobuko Yoshida (2019): Less is more: multiparty session types revisited. PACMPL
3 (POPL), pp. 30:1–30:29, doi:10.1145/3290343.

[33] Herbert A. Simon (1991): The architecture of complexity. In: Facets of Systems Science, Springer, pp.
457–476, doi:10.1007/978-1-4899-0718-9 31.

http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1328897.1328472
http://dx.doi.org/10.1145/2827695
http://dx.doi.org/10.1016/j.jlamp.2024.101018
http://dx.doi.org/10.1017/S0960129515000493
http://dx.doi.org/10.1145/3009837.3009847
http://dx.doi.org/10.1007/978-3-031-37709-9_17
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://www.ottia.com/en/post/project-modularization
http://dx.doi.org/10.1145/2603088.2603116
http://dx.doi.org/10.1017/S0960129503004043
http://dx.doi.org/10.1007/978-3-031-35361-1_12
http://dx.doi.org/10.48550/ARXIV.2401.11197
http://dx.doi.org/10.1016/J.IC.2024.105164
http://dx.doi.org/10.1145/3661814.3662085
http://dx.doi.org/10.1145/3290343
http://dx.doi.org/10.1007/978-1-4899-0718-9_31

	Introduction
	Multiparty Sessions with Mixed Choice
	Modular Multiparty Sessions
	A Type System for Modular Sessions
	Properties
	Concluding Remarks, Related and Future Works

