
Modular Multiparty Sessions
with Mixed Choice

Franco Barbanera1, Mariangiola Dezani2

1 University of Catania 2 University of Torino

ICE - June 20, 2025, Lille

OVERVIEW

▶ Simple MultiParty Sessions: a typing approach to multiparty session types;

▶ Extending SMPS with mixed-choice;

▶ Taming sessions with mixed-choice: a type system for modular sessions.

OVERVIEW

▶ Simple MultiParty Sessions: a typing approach to multiparty session types;

▶ Extending SMPS with mixed-choice;

▶ Taming sessions with mixed-choice: a type system for modular sessions.

OVERVIEW

▶ Simple MultiParty Sessions: a typing approach to multiparty session types;

▶ Extending SMPS with mixed-choice;

▶ Taming sessions with mixed-choice: a type system for modular sessions.

OVERVIEW

▶ Simple MultiParty Sessions: a typing approach to multiparty session types;

▶ Extending SMPS with mixed-choice;

▶ Taming sessions with mixed-choice: a type system for modular sessions.

Description/Verification of concurrent systems

Global description

faithful/property-preserving

Implementation

Choreographic formalisms for description/verification of systems

Global description

Local (single component) behaviours

Two particular approaches to the Global-Local relationship

MPST: MultiParty Session Types (Honda,Yoshida et al.)

SMPS: Simple MultiParty Sessions (Dezani et al.)

Focusing on the essential

▶ No Delegation;

▶ Syncronous communications.

The SMPS and MPST approaches to Global ↔ Local

SMPS MPST
“verification oriented” “correct-by-design oriented”

Global description

Local behaviours

The SMPS and MPST approaches to Global ↔ Local

SMPS MPST
“verification oriented” “correct-by-design oriented”

Global description Global Type Global Type

Local behaviours

The SMPS and MPST approaches to Global ↔ Local

SMPS MPST
“verification oriented” “correct-by-design oriented”

Global description Global Type Global Type

Local behaviours abstract Processes Local Types

The SMPS and MPST approaches to Global ↔ Local

SMPS MPST
“verification oriented” “correct-by-design oriented”

Global description Global Type Global Type

Typing: ⊢

Local behaviours abstract Processes Local Types

The SMPS and MPST approaches to Global ↔ Local

SMPS MPST
“verification oriented” “correct-by-design oriented”

Global description Global Type Global Type

Typing: ⊢ Projection: ↾

Local behaviours abstract Processes Local Types

The SMPS and MPST approaches to Global ↔ Local

SMPS MPST
“verification oriented” “correct-by-design oriented”

Global description Global Type Global Type

Typing: ⊢ Projection: ↾

Local behaviours abstract Processes ≈ Local Types

SMPS

The Calculus of Multiparty Sessions (SMPS local views)

Processes

P ::=coind 0 | p!{λi .Pi}i∈I | p?{λi .Pi}i∈I

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

ℓ ∈ I ⊆ J

p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M pλℓq−−−→ p[Pℓ] ∥ q[Qℓ] ∥ M

The Calculus of Multiparty Sessions (SMPS local views)

Processes

P ::=coind 0 | p!{λi .Pi}i∈I | p?{λi .Pi}i∈I

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

ℓ ∈ I ⊆ J

p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M pλℓq−−−→ p[Pℓ] ∥ q[Qℓ] ∥ M

The Calculus of Multiparty Sessions (SMPS local views)

Processes

P ::=coind 0 | p!{λi .Pi}i∈I | p?{λi .Pi}i∈I

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

ℓ ∈ I ⊆ J

p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M pλℓq−−−→ p[Pℓ] ∥ q[Qℓ] ∥ M

The Calculus of Multiparty Sessions (SMPS local views)

Processes

P ::=coind 0 | p!{λi .Pi}i∈I | p?{λi .Pi}i∈I

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

ℓ ∈ I ⊆ J

p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M pλℓq−−−→ p[Pℓ] ∥ q[Qℓ] ∥ M

The Calculus of Multiparty Sessions (SMPS local views)

Processes

P ::=coind 0 | p!{λi .Pi}i∈I | p?{λi .Pi}i∈I

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

ℓ ∈ I ⊆ J

p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M pλℓq−−−→ p[Pℓ] ∥ q[Qℓ] ∥ M

A type discipline for multiparty sessions

A type discipline for multiparty sessions

A type discipline for multiparty sessions

Global Types

G ::=coind End | p → q : {λi .Gi}i∈I

A type discipline for multiparty sessions

Global Types

G ::=coind End | p → q : {λi .Gi}i∈I

Typing Rules

A type discipline for multiparty sessions

Global Types

G ::=coind End | p → q : {λi .Gi}i∈I

Typing Rules

========
End ⊢ p[0]

A type discipline for multiparty sessions

Global Types

G ::=coind End | p → q : {λi .Gi}i∈I

Typing Rules

========
End ⊢ p[0]

Gi ⊢ p[Pi] ∥ q[Qi] ∥ M prt(Gi) \ {p, q} = prt(M) ∀i ∈ I
== I ⊆ J
p → q : {λi .Gi}i∈I ⊢ p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M

SMPS with Mixed-Choice

More expressive behaviours with Mixed Choice

Processes

P ::=coind 0 | Σi∈Iπi .Pi π ::= p?λ | p!λ

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

p[q!λ.P + P ′] ∥ q[p?λ.Q + Q ′] ∥ M pλq−−→ p[P] ∥ q[Q] ∥ M

More expressive behaviours with Mixed Choice

Processes

P ::=coind 0 | Σi∈Iπi .Pi π ::= p?λ | p!λ

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

p[q!λ.P + P ′] ∥ q[p?λ.Q + Q ′] ∥ M pλq−−→ p[P] ∥ q[Q] ∥ M

More expressive behaviours with Mixed Choice

Processes

P ::=coind 0 | Σi∈Iπi .Pi π ::= p?λ | p!λ

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

p[q!λ.P + P ′] ∥ q[p?λ.Q + Q ′] ∥ M pλq−−→ p[P] ∥ q[Q] ∥ M

More expressive behaviours with Mixed Choice

Processes

P ::=coind 0 | Σi∈Iπi .Pi π ::= p?λ | p!λ

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

p[q!λ.P + P ′] ∥ q[p?λ.Q + Q ′] ∥ M pλq−−→ p[P] ∥ q[Q] ∥ M

More expressive behaviours with Mixed Choice

Processes

P ::=coind 0 | Σi∈Iπi .Pi π ::= p?λ | p!λ

Multiparty Sessions

M = p1[P1] ∥ · · · ∥ pn[Pn]

(synchronous) Operational Semantics

p[q!λ.P + P ′] ∥ q[p?λ.Q + Q ′] ∥ M pλq−−→ p[P] ∥ q[Q] ∥ M

Try and discipline that!

The election session

The election session

A simple mixed-choice version of standard SMPS typing

Gi ⊢ p[Pi] ∥ q[Qi] ∥ M
==
p → q : {λi .Gi}i∈I ⊢ p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M

A simple mixed-choice version of standard SMPS typing

Gi ⊢ p[Pi] ∥ q[Qi] ∥ M
==
p → q : {λi .Gi}i∈I ⊢ p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M

essentially corresponds to

Gi ⊢ Mi M Λi−→ Mi {Λi}i∈I = reductions involving p ∈ M
==

Σi∈IΛi .Gi ⊢ M

A simple mixed-choice version of standard SMPS typing

Gi ⊢ p[Pi] ∥ q[Qi] ∥ M
==
p → q : {λi .Gi}i∈I ⊢ p[q!{λi .Pi}i∈I] ∥ q[p?{λj .Qj}j∈J] ∥ M

essentially corresponds to

Gi ⊢ Mi M Λi−→ Mi {Λi}i∈I = reductions involving p ∈ M
==

Σi∈IΛi .Gi ⊢ M

NO WAY! Σi∈IΛi .Gi would not capture the overall behaviour of the Election Session.

Gi ⊢ Mi M Λi−→ Mi
=================

Σi∈IΛi .Gi ⊢ M

Gi ⊢ Mi M Λi−→ Mi
=================

Σi∈IΛi .Gi ⊢ M

It would work for the Election Session

Gi ⊢ Mi M Λi−→ Mi
=================

Σi∈IΛi .Gi ⊢ M

It would work for the Election Session

BUT

A global type would not “factorise” anything.
It would correspond to the complete reduction-tree.

MODULARISATION

Complex (software) systems can be decomposed – to some extent – into
smaller, loosely coupled modules.

MODULARISATION

Complex (software) systems can be decomposed – to some extent – into
smaller, loosely coupled modules.

MODULARISATION

Complex (software) systems can be decomposed – to some extent – into
smaller, loosely coupled modules.

“Divide and conquer”

Modular Election

Modular Election

Modular Election

Modular Multiparty Sessions

Partitionable sessions such that

▶ Unrestricted mixed-choice can be used inside the modules;

▶ Inter-module communication through connectors;

▶ Connectors can interact using one-to-one mixed choice.

Modular Multiparty Sessions

Partitionable sessions such that

▶ Unrestricted mixed-choice can be used inside the modules;

▶ Inter-module communication through connectors;

▶ Connectors can interact using one-to-one mixed choice.

Modular Multiparty Sessions

Partitionable sessions such that

▶ Unrestricted mixed-choice can be used inside the modules;

▶ Inter-module communication through connectors;

▶ Connectors can interact using one-to-one mixed choice.

Modular Multiparty Sessions

Partitionable sessions such that

▶ Unrestricted mixed-choice can be used inside the modules;

▶ Inter-module communication through connectors;

▶ Connectors can interact using one-to-one mixed choice.

Modular Election

Modular Election

Modular Election

Modular Election

Modular Election

Modular Election

Modular typing

Gi ⊢ Mi M Λi−→ Mi
=================

Σi∈IΛi .Gi ⊢ M

Modular typing

Gi ⊢ Mi M Λi−→ Mi {Λi}i∈I = reductions involving p ∈ M
==

Σi∈IΛi .Gi ⊢ M

Modular typing

Gi ⊢P Mi M Λi−→ Mi {Λi}i∈I = reductions in a module of modularisation P
===

Σi∈IΛi .Gi ⊢P M

Some properties of modularised typing

▶ Modularisation is preserved by reduction;

▶ Typability does depend neither on the module one starts with
nor on the chosen modularisation.

Some properties of modularised typing

▶ Modularisation is preserved by reduction;

▶ Typability does depend neither on the module one starts with
nor on the chosen modularisation.

Some properties of modularised typing

▶ Modularisation is preserved by reduction;

▶ Typability does depend neither on the module one starts with
nor on the chosen modularisation.

What do we get by typing?

▶ Subject Reduction;

▶ Session Fidelity;

▶ Lock Freedom.

What do we get by typing?

▶ Subject Reduction;

▶ Session Fidelity;

▶ Lock Freedom.

What do we get by typing?

▶ Subject Reduction;

▶ Session Fidelity;

▶ Lock Freedom.

What do we get by typing?

▶ Subject Reduction;

▶ Session Fidelity;

▶ Lock Freedom.

Subject Reduction

Subject Reduction

Global Types LTS - coinductive [Dezani et al.]

Session Fidelity

Lock Freedom

Lock Freedom

Definition (Lock-freedom)

Ongoing work

▶ Typing modular sessions with mixed choice and asynchronous
communications

▶ Inspiration for conditions enabling to compose systems of
Communicating Finite State Machines (mixed-choice harmful for that)

▶ What about projection?

Ongoing work

▶ Typing modular sessions with mixed choice and asynchronous
communications

▶ Inspiration for conditions enabling to compose systems of
Communicating Finite State Machines (mixed-choice harmful for that)

▶ What about projection?

Ongoing work

▶ Typing modular sessions with mixed choice and asynchronous
communications

▶ Inspiration for conditions enabling to compose systems of
Communicating Finite State Machines (mixed-choice harmful for that)

▶ What about projection?

Ongoing work

▶ Typing modular sessions with mixed choice and asynchronous
communications

▶ Inspiration for conditions enabling to compose systems of
Communicating Finite State Machines (mixed-choice harmful for that)

▶ What about projection?

