A Formalization of the Reversible Concurrent Calculus CCSK^P in Beluga

Gabriele Cecilia

Augusta University

20 June 2025

ICE 2025

Table of Contents

► Introduction

► CCSK^F

Beluga Formalization

Conclusions

Reversible Concurrent Calculi

Concurrent Calculi:

- Abstract models for concurrent systems
- Examples: CCS, π -calculus

Reversible Concurrent Calculi

Concurrent Calculi:

- Abstract models for concurrent systems
- Examples: CCS, π -calculus

Reversible Concurrent Calculi:

- Abstract models for concurrent systems in which every action can be undone
- Examples: CCSK, RCCS, CCSK^P

Reversibility

Reversibility

- Accurate representation of reversible systems
- Computational efficiency: chips, debuggers, quantum computing, ...

Formalization

How one line of code caused a \$60 million loss

 $60,000\ people$ lost full phone service, half of AT&T's network was down, and 500 airline flights were delayed

NOV 13, 2023

On January 15th, 1990, AT&T's New Jersey operations center detected a widespread system malfunction, shown by a plethora of red warnings on their network display.

Despite attempts to rectify the situation, the network remained compromised for 9 hours, leading to a 50% failure rate in call connections.

AT&T lost over **\$60 million** as a result with **over 60,000 of Americans left with fully** disconnected phones.

How a single line of code brought down a half-billion euro rocket launch

It's Tuesday, June 4th, 1996, and the European Space Agency is set to launch its new Ariane 5 rocket for the first time. This is the culmination of a decade of design, testing and a budget spending billions of euros.

Formalization

Mechanized Metatheory for the Masses: The POPLMARK Challenge

Brian E. Aydemir¹, Aaron Bohannon¹, Matthew Fairbairn², J. Nathan Foster¹, Benjamin C. Pierce¹, Peter Sewell², Dimitrios Vytiniotis¹, Geoffrey Washburn¹, Stephanie Weirich¹, and Steve Zdancewic¹

> Department of Computer and Information Science, University of Pennsylvania
> ² Computer Laboratory, University of Cambridge

Abstract. How close are we to a world where every paper on programming languages is accompanied by an electronic appendix with machinechecked proofs?

Existing Concurrent Calculi Formalizations

Author, Year	Publication	Technique	
Nesi 94	A Formalization of the Process Algebra CCS in HOL	Named syntax	
Melham 94	A Mechanized Theory of the π -Calculus in HOL	Named syntax	
Hirschkoff 97	A Full Formalisation of π -Calculus Theory	De Bruijn	
	in the Calculus of Constructions	indexes	
Bengtson 09	Formalizing Process Calculi	Nominal techniques	
Miller et al. 99	Foundational Aspects of Syntax	HOAS	
Honsell et al. 01	π -Calculus in (Co)Inductive Type Theory	HOAS	

Existing Concurrent Calculi Formalizations

Author, Year	Publication	Technique	
Nesi 94	A Formalization of the Process Algebra CCS in HOL	Named syntax	
Melham 94	A Mechanized Theory of the π -Calculus in HOL	Named syntax	
Hirschkoff 97	A Full Formalisation of π -Calculus Theory	De Bruijn	
	in the Calculus of Constructions	indexes	
Bengtson 09	Formalizing Process Calculi	Nominal techniques	
Miller et al. 99	Foundational Aspects of Syntax	HOAS	
Honsell et al. 01	π -Calculus in (Co)Inductive Type Theory	HOAS	

... but no reversible concurrent calculi formalizations.

Table of Contents

Introduction

► CCSK^P

Beluga Formalization

Conclusions

CCS with Keys and Proof labels (CCSK^P)

CCSK: CCS with Keys

- A reversible extension of CCS
- Phillips & Ulidowski, 2007
- Processes and transitions enriched with communication keys

CCS with Keys and Proof labels (CCSK^P)

CCSK: CCS with Keys

- A reversible extension of CCS
- Phillips & Ulidowski, 2007
- Processes and transitions enriched with communication keys

CCSK^P: CCS with Keys and Proof labels

- A proved transition system for CCSK
- Aubert, 2024
- Semantics enriched with proof labels and causality relations

Example: <u>Smartphone</u>

Example: <u>Smartphone</u>

Representation in CCS:

$$\begin{array}{l} \mathsf{P}_1 \stackrel{\text{def}}{=} \mathsf{left}.\mathsf{P}_2 + \mathsf{down}.\mathsf{P}_3\\ \mathsf{P}_2 \stackrel{\text{def}}{=} \mathsf{right}.\mathsf{P}_1 + \mathsf{down}.\mathsf{P}_4\\ \mathsf{P}_3 \stackrel{\text{def}}{=} \mathsf{up}.\mathsf{P}_1\\ \mathsf{P}_4 \stackrel{\text{def}}{=} \mathsf{up}.\mathsf{P}_2 \end{array}$$

Example: <u>Smartphone</u>

Representation in CCSK^P:

$$X =$$
left.down + down

$$X \xrightarrow{\longmapsto} left[k].down + down$$

Svntax

- Infinite set of names N: a,b, ...
 Complementary names N: ā,b, ...
 Symbol for interactions τ
- Infinite set of keys: k.m. ...

Syntax

- Infinite set of names N: a,b, ...
 Complementary names N: ā,b, ...
 Symbol for interactions τ
- Infinite set of keys: k.m. ...

Definition

The set of processes is defined by the following syntax:

 $X, Y ::= \mathbf{0} \mid \alpha . X \mid \alpha [\mathbf{k}] . X \mid X + Y \mid (X \mid Y) \mid X \setminus \mathbf{a}$

Notation:

keys(X): set of keys occurring in X std(X): predicate true when X has no keys (X is said to be standard)

Semantics

Given by a Labelled Transition System (LTS). Transitions are labelled by *proof labels*.

Examples of transitions:

•
$$l.d + d \xrightarrow{+_L l[k]} l[k].d + d$$

•
$$l.d + d \xrightarrow{+_R d[m]} l.d + d[m]$$

•
$$a \mid b[m] \xrightarrow{|_{R}b[m]} a \mid b$$

• $a \mid b[m] \xrightarrow{|_{L}a[k]} a[k] \mid b[m]$

Semantics

Definition

The set of proof labels is defined by the following syntax:

$$\theta ::= \mathbf{v}\alpha[\mathbf{k}] \quad | \quad \mathbf{v}\langle|_{\mathbf{L}}\mathbf{v}_1\lambda[\mathbf{k}], |_{\mathbf{R}}\mathbf{v}_2\overline{\lambda}[\mathbf{k}]\rangle$$

where λ ranges over $N \cup \overline{N}$ and v, v_1 and v_2 range over strings of symbols $\{|_L, |_R, +_L, +_R\}$.

Semantics

Definition

Semantics is given by a combined LTS, made of the union of forward (\mapsto) and backward (\mapsto) transition rules such as the following:

$$\operatorname{std}(X) \xrightarrow{\alpha[k]} \alpha[k].X \text{ pref} \qquad \operatorname{std}(X) \xrightarrow{\alpha[k]} \alpha[k].X \xrightarrow{\alpha[k]} \alpha.X \xrightarrow{\alpha[k]} \alpha.X \xrightarrow{\alpha[k]} \alpha.X$$

$$\overset{\beta}{\not =} k \xrightarrow{X' \mapsto \alpha[k].X'} \alpha[k].X' \text{ kpref} \qquad \overset{\&(\theta) \neq k}{\not =} \frac{X' \stackrel{\theta}{\mapsto} X}{\alpha[k].X' \stackrel{\theta}{\mapsto} \alpha[k].X} \xrightarrow{\text{kpref}}$$

Notation:

Given a combined transition $t: X \xrightarrow{|\theta|} X', X$ and X' are said the *source* and *target* of t. Two transitions t_1 and t_2 are *connected* if there exists a *path* (i.e., a sequence of transitions) between the source of t_1 and the target of t_2 .

Causality Relations

We can define three binary relations on proof labels characterizing causality of transitions:

- Dependence (×)
- Independence (*i*)
- Connectivity (γ)

Introduced by Aubert et al. in "Independence and Causality in the Reversible Concurrent Setting" (2025). (*)

Causality Relations

Examples:

• $+_{\mathrm{L}} l[k] \times +_{\mathrm{L}} d[m]$:

• $|_{\mathbf{L}}a[k] \iota |_{\mathbf{R}}b[m]$:

Properties of Causality Relations

Main results proven in Section 3-4 of (*):

Theorem 1 (Characterization of connectivity of proof labels)

(*i*) If $t_1 : X_1 \xrightarrow{\theta_1} X'_1$ and $t_2 : X_2 \xrightarrow{\theta_2} X'_2$ are connected, then $\theta_1 \Upsilon \theta_2$. (*ii*) If $\theta_1 \Upsilon \theta_2$, then there exist $t_1 : X_1 \xrightarrow{\theta_1} X'_1$ and $t_2 : X_2 \xrightarrow{\theta_2} X'_2$ such that t_1 and t_2 are connected.

Theorem 2 (Complementarity of dependence and independence)

- (*i*) If $\theta_1 \iota \theta_2$ then $\theta_1 \Upsilon \theta_2$.
- (*ii*) If $\theta_1 \times \theta_2$ then $\theta_1 \Upsilon \theta_2$.
- (*iii*) If $\theta_1 \Upsilon \theta_2$ then either $\theta_1 \iota \theta_2$ or $\theta_1 \times \theta_2$, but not both.

Properties of Causality Relations

- Soundness of the causality relations
- Dependence and independence are usually *defined by complementarity*.
 Separate axioms → easier to deal with them

Table of Contents

Introduction

► CCSK^P

► Beluga Formalization

Conclusions

Beluga

Developed at the Complogic group at McGill University, Canada

 \rightarrow Two-level system (LF level, computation level)

 \rightarrow Encoding of object-level binding constructs through Higher-Order Abstract Syntax (HOAS)

ightarrow Terms are paired with the *contexts* that give them meaning

 \rightarrow Curry-Howard isomorphism: proofs as recursive functional programs, propositions as types

Higher-Order Abstract Syntax (HOAS)

Bound variables of the object language as arguments of meta-language functions

 $\rightarrow \alpha$ -renaming and capture-avoiding substitutions managed by the meta-language \rightarrow Focus on the development of the target system, no technical details of names handling

Useful for encoding systems with a complex binders infrastructure (e.g., $\pi\text{-calculus})$

Encoding of Syntax

Names, Keys, Labels and Processes

```
LF names: type =;

LF keys: type =

| z: keys

| s: keys \rightarrow keys;

LF labels: type =

| inp: names \rightarrow labels

| out: names \rightarrow labels

| tau: labels;
```

LF proc: type =		
null: proc	%	0
pref: labels $ ightarrow$ proc $ ightarrow$ proc	%	A.X
kpref: labels $ ightarrow$ keys $ ightarrow$ proc $ ightarrow$ proc	%	A[k].X
sum: proc $ ightarrow$ proc $ ightarrow$ proc	%	X+Y
par: proc $ ightarrow$ proc $ ightarrow$ proc	%	X Y
nu: (names $ ightarrow$ proc) $ ightarrow$ proc;	%	X\a

Examples:

• $l.d + d \rightarrow \text{sum (pref l (pref d zero)) (pref d zero)}$ • $a \mid b[m] \rightarrow \text{par (pref a zero) (kpref b m zero)}$ • $(\overline{a}.b) \setminus b \rightarrow \text{nu } \setminus b. (\text{pref (out a) (pref (inp b) zero)})$ 16/25

Encoding of Syntax

Terms are paired with contexts, containing assumptions. Contexts are classified through schemas

We need a context of the form "x:names":

Context declaration

schema ctx = names;

<u>Consequence</u>: we can define *contextual* processes $[g \vdash X]$, where g contains the free variables occurring in the open process X.

Encoding of Semantics

Proof	Labels
-------	--------

LF pr_lab: t	ype =	
pr_base:	$\texttt{labels} o \texttt{keys} o \texttt{pr_lab}$	$\% lpha[{m k}]$
pr_suml:	$\texttt{pr_lab} o \texttt{pr_lab}$	$\% + \mathbf{b} \theta$
pr_sumr:	$\texttt{pr_lab} ightarrow \texttt{pr_lab}$	$\% +_{R} \theta$
pr_parl:	$\texttt{pr_lab} o \texttt{pr_lab}$	$\% _{L} heta$
pr_parr:	$\texttt{pr_lab} \ ightarrow \ \texttt{pr_lab}$	$\% _{R} \theta$
pr_sync:	pr_lab $ ightarrow$ pr_lab $ ightarrow$ pr_lab;	$\% \langle _{L} heta_{1}, _{R} heta_{2} angle$

Examples:

- $+_{\mathrm{L}} l[k] \rightarrow \mathrm{pr_suml}$ (pr_base l k)
- $\bullet \ |_{\mathrm{R}} b[m] \ \ \rightarrow \ \ \mathsf{pr}_\mathsf{parr} \ (\mathsf{pr}_\mathsf{base} \ \mathsf{b} \ \mathsf{m})$

Encoding of Semantics

Forward and Backward Transitions (and auxiliary predicates)

```
LF key: pr_lab \rightarrow keys \rightarrow type = ...

LF std: proc \rightarrow type = ...

LF fstep: proc \rightarrow pr_lab \rightarrow proc \rightarrow type =

| fs_pref: std X \rightarrow fstep (pref A X) (pr_base A K) (kpref A K X)

...

LF bstep: proc \rightarrow pr_lab \rightarrow proc \rightarrow type =

| bs_pref: std X \rightarrow bstep (kpref A K X) (pr_base A K) (pref A X)

...

Idea: X \stackrel{\theta}{\rightarrow} Y holds \Leftrightarrow (fstep X T Y) is inhabited
```

Analogously, causality relations are encoded by three type families conn, dep and indep.

Writing proofs in Beluga

Proofs in Beluga:

- Total (recursive) functions
- Proof term written by the user, without tactics: interactivity through computation holes
- Lack of syntactic sugar for existentials and conjunctions
 → additional type families to encode proof statements

Proof of Theorems 1 and 2: key insights and findings

• Basic properties of keys, proof labels and transitions to be encoded \rightarrow 15 additional lemmas

<u>Examples:</u> decidability of equality of keys, standard processes have no keys, loop lemma (each transition can be reversed), ...

• Theorem 2 (complementarity): direct and uneventful encoding

Proof of Theorems 1 and 2: key insights and findings

Theorem 1 (connectivity):

- Some auxiliary lemmas are not required
- Some statements have been slightly refined
- Lengthy proofs, due to many nested pattern matchings
- Low-level details to fill out $\,
 ightarrow\,$ 20 additional lemmas
- Non-constructive subcase \rightarrow new proof strategy (+ 500 lines of code)

Example of proof in Beluga

Lemma: for all keys K, K does not occur in a standard process

rec no_key_in_std: (g:ctx) {K: [
$$\vdash$$
 keys]} [g \vdash std X] \rightarrow [g \vdash notin K[] X] =
 / total d (no_key_in_std _ _ _ d) /
mlam K \Rightarrow fn d \Rightarrow case d of
 | [g \vdash std_null] \Rightarrow [g \vdash not_null]
 | [g \vdash std_pref D] \Rightarrow let [g \vdash N] = no_key_in_std [\vdash K] [g \vdash D] in
 [g \vdash not_pref N]
 | [g \vdash std_sum D1 D2] \Rightarrow let [g \vdash N1] = no_key_in_std [\vdash K] [g \vdash D1] in
 let [g \vdash N2] = no_key_in_std [\vdash K] [g \vdash D2] in [g \vdash not_sum N1 N2]
 | [g \vdash std_par D1 D2] \Rightarrow let [g \vdash N1] = no_key_in_std [\vdash K] [g \vdash D1] in
 let [g \vdash N2] = no_key_in_std [\vdash K] [g \vdash D2] in [g \vdash not_par N1 N2]
 | [g \vdash std_nu \a.D] \Rightarrow
 let [g,a:names \vdash N] = no_key_in_std [\vdash K] [g,a:names \vdash D] in
 [g \vdash not_nu \a.N];

Table of Contents

Introduction

► CCSK^P

Beluga Formalization

► Conclusions

Evaluation

Technical overview:

- Size of the encoding: \sim 2000 lines of code
- Informal theorems and lemmas covered: 13
- Technical and auxiliary lemmas: 36

Evaluation

Benefits of using Beluga:

- HOAS \rightarrow no handling of bound names
- Proof term matches the informal proof

Drawbacks of using Beluga:

- Lack of syntactic sugar for existentials and conjunctions
- Limited support for custom notation
- No abstraction mechanism for repeated proof patterns

Overall, other proof assistants might be a better fit for this system.

Conclusions

Results:

- First formalization of a reversible concurrent calculus
- Verified the correctness of Sections 3-4 of (*): causality relations are sound
- Filled out details and provided a new proof strategy

Future Work

- Journal paper version of (*), with more results formalized
- Covering subsystems of CCSK^P (CCS, CCSK)
- Formalizing other (results about) reversible concurrent calculi, such as: "An Axiomatic Theory for Reversible Computation" by Lanese et al.

Thank you for listening! Any questions?