
Formal Foundations for Reowolf:
Multi-party Sessions via Synchronous

Protocol Programming

Christopher A. Esterhuyse1(B) , Benjamin Lion2 , Hans-Dieter A. Hiep3,4 ,
and Farhad Arbab5

1 University of Amsterdam, Amsterdam, The Netherlands
c.a.esterhuyse@uva.nl
2 INRIA, Rennes, France
benjamin.lion@inria.fr

3 NLNet Foundation, Amsterdam, The Netherlands
hdh@nlnet.nl

4 Leiden Institute of Advanced Computer Science (LIACS),
Leiden, The Netherlands

5 CWI, Amsterdam, The Netherlands

f.arbab@cwi.nl

Abstract. The Reowolf project developed connectors as a replacement
of two-party network sockets for multi-party communication in next-
generation internet applications. Users control connectors via protocols
in the bespoke protocol description language (PDL), which is based on
synchronous languages such as Reo and Esterel. The novelty lies in the
emphasis on dynamism: users refine protocols throughout their execu-
tion.

We formalise the semantics of PDL, distinguishing dual notions of
protocol behaviour: accepted behaviour is highly (de)compositional and
specifies what communication is allowed, while constructed behaviour
arises from protocol execution and accounts for how execution steps
interdepend and interleave via messages sent and received. Toward
machine-checking the correctness of the connector runtime reference
implementation, we specify the API and correctness criteria of PDL run-
time systems.

Keywords: synchronous languages · formal specification · protocol ·
communication · composition · message passing · distributed
computing

1 Introduction

Thanks to decades of fruitful research, synchronous coordination languages like
Reo [1,3] and Esterel [7,21] enable the specification of complex, multi-party

c© IFIP International Federation for Information Processing 2025
Published by springer Nature Switzerland AG 2025
C. Di Giusto and A. Ravara (Eds.): COORDINATION 2025, LNCS 15731, pp. 3–29, 2025.
https://doi.org/10.1007/978-3-031-95589-1_1

4 C. A. Esterhuyse et al.

communication behaviour using synchronous protocols. These protocols spec-
ify essential ordering and data-dependencies of messages and computations, but
stop short of fixing the low-level implementation details. Consequently, proto-
cols are abstract and compositional, affording powerful systematic analysis and
verification against high-level properties such as fairness and deadlock freedom.
Such protocols are often applied in the coordination of communications between
software components. Extensive literature explores this usage, e.g., compiling
protocols expressed in Reo [14,32–34] and Esterel [16–18,45] into low-level ‘glue
code’ which mediates communications between software components. The result-
ing applications exhibit complex coordinated behaviour, but they can be system-
atically reasoned about via their protocols, e.g., to verify properties. Also, this
approach decouples components, making them easier to maintain and reuse.

The Reowolf project investigated the application of Reo-like synchronous pro-
tocols to the coordination of communications on the Internet [19], e.g., to express
delicate multi-party transactions as composable synchronous interactions. In this
new context, where distributed peers come and go, it is impractical to collect and
compile all peers’ requirements as a single session protocol in overview before
the session begins. Instead, the idea is that communication behaviour unfolds,
one synchronous round at a time, in between changes to the protocol. Peers can
come and go, and adjust the session protocol to reflect their changing require-
ments. This idea is implemented in the connector runtime middleware system,
whose API is the connector. Like BSD-style network sockets, each connector
maintains the user-facing abstraction of session, by automating the underlying
control communications and resource management. Unlike sockets, connectors
are extensively programmable. Users communicate entirely via Reowolf’s Proto-
col Description Language (PDL), which is based on Reo and other high-level syn-
chronous languages, but was co-designed with connectors. The Reowolf project
contributed the design, Rust implementation, and benchmarking of the connec-
tor runtime, as detailed in extensive technical documentation [20]. To frame our
present contributions, we overview the usage of connectors in Sect. 2: we lay out
the connector API and user requirements as Invariants RI1 to RI4. These char-
acterise the users’ control over communications; users can rely on the realisation
of their piece-meal specifications of stateful, synchronous data flows.

In this article, we formalise the main contributions of the Reowolf project,
and clarify their fundamental properties. Firstly, we give a definition of
PDL in Sect. 3. Fundamentally, we distinguish dual notions of (communica-
tion) behaviour: accepted behaviours specify the set of all possible behaviours,
while constructed behaviours restrict the accepted behaviours, by considering
the execution of the session at large, forcing a causal ordering of messages, and
interleaving the sending of messages with local computations. We prove key prop-
erties of PDL as Theorems 1 to 4. For example, these formalise an essential idea:
behaviours constructed from any composite protocol are accepted by each part.
Secondly, we give a specification of PDL Runtimes, in Sect. 4, as runtime
systems which let users interleave protocol execution and refinement. We define
their correctness as preserving Properties 1 to 4, which connect Invariants RI1 to

Formal Foundations for Reowolf 5

RI4 to the PDL semantics. We implement an illustrative PDL runtime, show that
it satisfies all properties but completeness (Property 4), and discuss approaches
to implementing PDL runtimes that preserve these properties. Section 5 enu-
merates lines of future work: defining and evaluating various PDL protocols and
runtimes. This includes the next steps toward verifying the correctness of the
connector runtime implementation. Finally, we compare Reowolf’s PDL and con-
nectors to related works (Sect. 6), before we conclude with a summary (Sect. 7).

All definitions and proofs in this article are formalised and machine-checked
with the Coq proof assistant. The resulting artefact is available at https://
zenodo.org/records/14936561. Please see AppendixA for a breakdown of the
artefact. This includes an explanation of its parameters (i.e., assumptions) and
a table detailing the correspondences between terms in the article vs. the arte-
fact.

2 User Communication Sessions via Connectors and PDL

Users of Reowolf connectors, physically distributed over the Internet, have a
consistent experience of a shared communication session. To each user (and
their application), the session is represented by a local, socket-like connector
object. As with sockets, users interact only indirectly, via direct actions on their
connector. The API provides users with three fundamental operations on their
connector:

1. A user can join a (possibly new) session by participating in a set of
rendezvous at chosen IP addresses. For example, Amy and Bob rendezvous
at IPv4 address 65.49.82.45 to create and join a two-party session. Each
rendezvous creates a new, persistent port, a logical place of message exchange.

2. A user can reflect on the current behaviour of the session, which fixes
the messages exchanged so far. Thus, users can read received messages.

3. A user can refine the session protocol .p by replacing it with its compo-
sition with user-provided protocol .p′. We say the user refines .p or injects .p′

into the session. Section 3 elaborates on PDL, but in short, protocols specify
behaviour: protocols are stateful, message-passing programs, whose nonde-
terministic execution constructs behaviour. Consequently, injecting protocols
is comparable to spawning new worker actors, processes, or threads.

Users are ultimately concerned with protocols and sessions via their
behaviour. We adopt the notion and nomenclature of (finite) behaviours from
Reo, e.g., in [2]: each behaviour specifies the message, if any, observed per logical
place (port) per discrete chronological instant (round), for .n : N ! {0, 1, 2, 3, ...}
rounds completed so far, i.e., rounds are what we call the indices of behaviours.
While the connector runtime defines message data as byte sequences for parity
with UDP datagrams and IP packets, instead, we model message data .D with
the natural numbers (.N). Ports .p, p′, p1, ... : P are an arbitrary data type that
users understand as shared variables. We fix the following notations; here and
henceforth, we use .! to denote the disjoint set union and we use .! to mark the
absence of messages at ports.

6 C. A. Esterhuyse et al.

.d, d′, d1, ... : D ! N ! {0, 1, 2, 3, ...} (data and natural numbers)

m,m′,m1, ... : M ! P → D ! {!} (message map or messages)

M,M ′,M1, ... : M∗! list(M) (message map lists or behaviours)

The connector API also lets users follow the conventions of the socket API:
messages can be sent and received on the fly. Precisely, these calls are transpar-
ently translated into oneshot protocols, which are injected as usual; .oneshot
is a protocol combinator, defined precisely in Fig. 1, which lets users immedi-
ately exchange messages. For example, Amy sends data 4 to Bob via port .p;
transparently, the connector injects .oneshot(send {4} ↪→ p) into the session.

Users expect their runtime to preserve InvariantsRI1 toRI4. Section 3 defines
their underlying terms (e.g., ‘accepts’) and Sect. 4 addresses their preservation.

RI1 (consistency): Users’ observations of the messages remain consistent with
some behaviour .[m1,m2, · · · ,mn], which is only extended over time, i.e.,
messages cannot change retroactively. To support PDL runtimes that are
physically distributed (discussed in Sect. 5.1), we consider consistency to
be preserved even if (a) some messages are hidden from some users, and
(b) some users have not yet observed the latest round’s messages .mn.

RI2 (acceptance): Each protocol presently injected by users accepts the future
session behaviours w.r.t. the PDL semantics. This safety property is the
basis of the users’ power to meaningfully participate in communications.

RI3 (provenance): Each sent message has a sensible provenance: it can be
traced back to some (user that injected some) protocol that sent it at some
instant. Users may be oblivious to the identities or locations of these senders
(or their peers in general). Nevertheless, provenance is desirable, because

– it enforces the role of the runtime to facilitate real user communications,
for example, rather than fabricating arbitrary messages, and

– it ensures that users can be ultimately held accountable for the messages
they send, e.g., to enforce data protection regulations.

RI4 (productivity): While it satisfies the other invariants, some next commu-
nication round is always eventually completed. Intuitively, this ensures that
the PDL runtime does not get stuck or overlook specified behaviour.

3 Protocol Description Language (PDL)

This section defines the PDL, affording the expression of composable protocols.
Ultimately, the meaning of protocols is in their two key notions of behaviour:
the behaviours each protocol accepts and the subset of those it constructs.

In practice, users rely on some syntactic protocol composition operator which
is symmetric, associative, and commutative w.r.t. the PDL semantics. For sim-
plicity, instead, we represent protocols as decomposed into sets of their con-
stituent primitive protocols. Thus, protocol composition is set union (.∪) and
empty protocol .{} is the identity element w.r.t. composition. Fortunately, our

Formal Foundations for Reowolf 7

formalism gives this protocol sensible semantics; later we show that it always
has the same behaviour as the primitive protocol .loop sync. We fix the fol-
lowing notations; here and henceforth, we use .2φ to denote the powerset of any
set .φ.

.s, s′, s1, ... : S (primitive protocol statements)

S, S′, S1, ... : 2S (composite protocols, i.e., statement sets)

constructs ⊆ accepts ⊆ 2S × M∗ (semantic protocol-behaviour relations)

3.1 PDL Syntax and Small-Step Semantics

Each primitive PDL protocol is executed as a worker : a pair of a local memory
in .Σ (persistent, local stores mapping variables to data) and a PDL statement
in .S. Like ports, variables .v, v′, v1, ... : V are arbitrary. Workers are comparable
to the usual notions of agent, thread, or process. We fix the following notations:

.σ,σ′,σ1,σ2, ... : Σ ! V → D (variable stores)

w,w′, w1, w2, ... : W ! Σ × S (workers)

Figure 1 and 2 give the precise syntax and semantics of PDL primi-
tives, respectively, which realise a granular notion of execution as a mostly-
conventional while-language. Precisely, update gives a small-step operational
semantics for PDL: update transitions between individual workers as a func-
tion of the given messages. Moreover, each update is labelled by a synchronicity
.δ : ∆ ! {!, "}.

The asynchronous (!) steps are largely conventional for while-languages.
Example 1 demonstrates a typical imperative program: asynchronous steps
implement Euclid’s algorithm for the greatest common divisor of integers in .v
and .v′, using .v′′ to swap .v and .v′, and terminating as .done with the result in .v′.

Example 1 (asynchronous local computation: greatest common divisor of.v and .v′).
.while 0 < (v % v′) do .(write (v % v′) " v′′; write v′ " v; write v′′ " v′).

Statements .send and .recv are also asynchronous, letting workers remem-
ber and react to the messages in their environment. Their roles in update are
also similar: they specialise the worker’s reaction to the value at the given port.
Later, Sect. 3.4 distinguishes their roles as one might expect: .send is the only
way to put new messages at ports. In this role, .send E expresses a nondeter-
ministic choice whose outcomes are identified by the elements of .E. Example 2
demonstrates message-passing that is simultaneously conditional, synchronous,
and non-deterministic; it synchronously forwards any number from port .p, unless
it is 21, to port .p′, but incremented by .1 or .2, chosen non-deterministically.

8 C. A. Esterhuyse et al.

Fig. 1. The syntax of primitive PDL protocol-expressions .E and -statements .S.

Fig. 2. Primitive protocol update semantics, defined via .update : M×W → ∆ ×W in
terms of the (omitted) expression evaluation function .eval : Σ × E → D.

Example 2 (message passing and non-determinism, within a synchronous
round). .recv p ↪→ v; if ′ (v &= 21) send {v + 1, v + 2} ↪→ p′.

The .sync statement is uniquely synchronous ("). Intuitively, it delimits suc-
cessive synchronous rounds. This is insignificant from the perspective of (updat-
ing) a single worker, but in Sect. 3.2, we formalise the intention: .sync also acts as
a synchronous barrier: all workers synchronise together, ‘committing’ the round’s
behaviour, and advancing to the next. Example 3 demonstrates; it accepts (and

Formal Foundations for Reowolf 9

constructs only) two rounds of behaviour: .[{p '→ 1}, {p '→ 2}]. Section 5.2 dis-
cusses a generalisation, where a subset of workers synchronise.

Example 3 (completing two rounds). .send {1} ↪→ p; sync; send {2} ↪→ p; sync.

3.2 Composite Protocols and (A)synchrony

Definition 1 generalises worker-update steps to sets of workers .W,W ′, ... : 2W .
.W m−→W ′ asynchronously updates one worker in .W , and .W m=⇒W ′ synchronously
updates each worker in .W . We omit .W , .W ′, or .m from terms of this form only
when they are arbitrary or clear in context. For example, .(W −→) denotes the
assertion that some worker in .W can perform some asynchronous update.

Definition 1 (synchronous (.=⇒) and asynchronous (.−→) worker-set steps)

.
update(m,w) = 〈!, w′〉
W ! {w} m−→ {w′} ∪ W ∅ m=⇒ ∅

W m=⇒ W ′, update(m,w) = 〈", w′〉
W ! {w} m=⇒ {w′} ∪ W ′

Lemma 1 identifies a property of the worker-set update semantics. Because
it is one of the few properties underlying our main theorems, it is one of the few
characteristics of the primitive PDL semantics that we consider to be essential.
Here, it emerges from our definition of update in Fig. 2. Section 5.2 discusses
variants of the primitive PDL semantics which preserve this property.

Intuitively, Lemma 1 asserts that asynchronous1 updates do not let workers
observe or remember the absence of messages at ports. The condition .W &=
W ′ excepts the case where adding messages unblocks the workers: removing
a blockage: an asynchronous loop .W −→ W . Example 4 demonstrates: adding
message .p '→ 1 unblocks the worker. It still takes an asynchronous step, but the
worker is changed: the new worker remembers the observed message, but not
the prior blockage.

Lemma 1 (asynchronous message-determinism). Any asynchronous step
to distinct workers is preserved by adding messages (at empty ports).

.For each W &= W ′ and m # m′, W m−→ W ′ implies W m′
−−→ W ′.

Proof. By Definition 1, .m asynchronously updates some .w ∈ W to some .w′ &= w,
and it suffices to show property .P : that .m′ does likewise. We distinguish the cases
of the first statement .s of .w. If .s = send v ↪→ p or .s = recv p ↪→ v, then because
.w &= w′, necessarily .m(p) &= !. Because .m′ ≥ m, .m′(p) = m(p), so .P holds. For
any other .s, the update of .w is independent of the messages, so .P holds. ../

1 In fact, our definition of .update affords generalising Lemma 1 to all unblocked
updates. This is included in our artefact. But Lemma 1 suffices for our main results.

10 C. A. Esterhuyse et al.

Example 4 (unblocking a worker blocked at .recv p by adding .1 : D at port .p).

.
update(m[p := !], 〈σ, recv p ↪→ v〉) = 〈!, 〈σ, recv p ↪→ v〉〉

{〈σ, recv p ↪→ v〉} m[p:="]−−−−−→ {〈σ, recv p ↪→ v〉} (blocked)

update(m[p := 1], 〈σ, recv p ↪→ v〉) = 〈!, 〈σ[v := 1],done〉〉
{〈σ, recv p ↪→ v〉} m[p:=1]−−−−−→ {〈σ[v := 1],done〉} (unblocked)

3.3 Linear Execution Traces and Accepted Behaviour

Where Sect. 3.2 generalised the execution of one worker to several, we finally
generalise one execution step to linear traces of contiguous execution steps. We
denote traces by concatenating .−→ and .=⇒ steps. Finally, let .−→∗ denote the tran-
sitive reflexive closure of .−→. E.g., .W m−→∗ W ′ abbreviates .W m−→ m−→ . . . m−→ W ′,
i.e., a trace of asynchronous steps labelled with the same message map .m.

Definitions 2 to 6 define key concepts: traces of contiguous steps are delimited
into rounds, such that the .nth synchronous step ends the .nth round. We gener-
ally restrict our attention to growing rounds (Definition 6), where each message
persists to the end of the round. Intuitively, each growing round incrementally
collects messages in .m until . m=⇒ makes .m observable as behaviour (Definition 4).

Definition 2 (trace). A trace is a sequence of contiguous .−→ or .=⇒ steps.

Definition 3 (round). A round is a trace with only one synchronous step, at
the end. For example, round .W m1−−→ m2−−→ m3−−→ m4=⇒ W ′ consists of four steps.

Definition 4 (behaviour). The behaviour of a trace is the concatenation of its
synchronized messages. E.g., the behaviour of .

m1−−→∗ m′
1=⇒ m2−−→∗ m′

2=⇒ is .[m′
1,m

′
2].

Definition 5 (message .#). .m # m′ ! ∀p : P, m(p) ∈ {m′(p), !}.

Definition 6 (growing round). A round is growing iff .m # m′ for each .m
and .m′ labelling consecutive steps in the round.

Definition 7 defines acceptance, the first of two notions of protocol behaviour.
Acceptance is imperative in the sense that behaviour arises from traces of con-
tiguous (‘stateful’) execution steps. However, acceptance is also declarative in the
sense that messages are growing but otherwise unspecified. Acceptance treats
protocols as behaviour-recognisers or -acceptors, i.e., we check for acceptance
given protocol-behaviour pairs. Acceptance is suitable for reasoning about exe-
cution in an environment open to messages sent externally, e.g., to reason about
what executions of a known protocol are possible in an unknown system.

Definition 7 (accepted behaviour). Protocol .S accepts the behaviour of each
trace consisting of only growing rounds, starting from .{〈∅, s〉 | s ∈ S}.

Formal Foundations for Reowolf 11

Example 5 (examples of protocols accepting behaviours).

– .{loop sync} synchronises each round immediately, regardless of the mes-
sages, like the empty protocol .{}, i.e., leaving behaviour unconstrained.

– .{loop done} and .{done} perform an endlessly unproductive sequence of
asynchronous updates, so they accept only the zero-round behaviour .[].

– .{recv p ↪→ v ; sync} and .{recv p ↪→ v ; send {v} ↪→ p ; sync} accept .[]
and any .[m] as long as .m(p) &= !, i.e., there must be some message at .p.

– .{send {0, 1} ↪→ p ; recv p ↪→ v ; assert v ; sync} sends either 0 or 1 at
port .p, but then only synchronises if 1 was chosen. This demonstrates a
useful pattern: workers can process and suppress behaviour before it is
observable.

Recall Lemma 1: asynchronous steps are preserved by adding to the messages.
Lemma 2 follows: for each growing round, there is a constant round with the same
behaviour. Thus, all behaviours are sufficiently characterised by focusing only
on constant rounds. These have useful properties, namely Lemma 3: workers
in constant rounds cannot interact, because the messages are fixed, so each
workers’ updates proceed concurrently. Finally, Theorem 1 results: the change
to each worker each round is entirely determined only by its behaviour. This
has practical applications. For example, one can reliably ‘replay’ the execution
of any set of workers, arbitrarily many rounds into the future, given only the
behaviour they produced. Section 5.1 discusses how this lets (distributed) PDL
runtimes explore traces concurrently, and use behaviours to identify (desirable)
constant rounds.

Definition 8 (constant round). A round is constant in messages .m or .m-
constant iff each of its steps is labelled .m. Note that constant rounds are growing.

Lemma 2 (growing to constant). For each growing round synchronising .m,
a round exists with the same start and end workers, but which is constant in .m.

Proof. Each given step .Wk
mk−−→ Wk+1 (in black) is ignored if .Wk = Wk+1, i.e.,

it is a loop. Otherwise, as .mk # m, Lemma 1 lifts it to .Wk
m−→ Wk+1 (in blue).

W . . . W ′m1

m

m2

m

m3

m4

m

mn−2

m

mn−1

mn

m

m

../

Lemma 3 (constant confluence). For any workers .W and messages .m, all
.m-constant rounds starting from .W necessarily end in the same workers.

12 C. A. Esterhuyse et al.

Proof. We prove the confluence of rounds from .W by induction on the list of
workers in .W . The base case of .W = ∅ is trivial: the only step is .

m=⇒ ∅. In the
inductive case, rounds .W m−→∗ m=⇒ are confluent. We omit the proof that rounds
.{w} m−→∗ m=⇒ are confluent, where there is only one worker to update each step.
Take arbitrary rounds from .W to .W ′ and from .{w} to .{w′} respectively (in
black). Their steps can be arbitrarily interleaved (in blue), but must end in .W ′ ∪
{w′}. For legibility, the implicit .m is omitted from each step in the figure below.

W W1 . . . Wp W ′

w w ∪ W w ∪ W1 . . . w ∪ Wp

w1 w1 ∪ W w1 ∪ W1 . . . w1 ∪ Wp

...
...

...
...

wq wq ∪ W wq ∪ W1 . . . wq ∪ Wp

w′ w′ ∪ W ′

../
Theorem 1 (round determinism). Growing rounds with the same start .(W)
and behaviour .(m) necessarily have the same end (.W ′

1 = W ′
2).

Proof. By Lemma 2, for each given round (in black), some constant round has
the same behaviour (in blue), whose ends are the same (in red) by Lemma 3.

W1 . . . W ′
1

Wx . . . W ′
x

W
Wy . . . W ′

y

W2 . . . W ′
2

m

m m m mm

m m m m m

m

../

Finally, PDL satisfies strong (de)compositionality properties: by Theorems 2
and 3, the behaviours accepted by any protocol is the set-intersection of those
of its constituent protocols. First of all, we expect PDL programmers to per-
vasively rely on Theorem 2 to control the behaviour of their session, because
they can rely on the runtime system to avoid executions whose behaviour is not
accepted by their injected protocols. The specification of accepted behaviours
is similar to constraint programming : injecting protocols constrains the future
behaviour. Users can also exploit this (de)compositionality during reasoning and
verification, for example, to predict possible messages before the session begins.

Formal Foundations for Reowolf 13

Theorem 2 (compositionality). Given growing rounds .Wα −→∗ m=⇒ Wω and
.Wa −→∗ m=⇒ Wz, there exists a growing round .(Wα ∪ Wa) −→∗ m=⇒ (Wω ∪ Wz).

Proof. Given rounds .r1, r2 (in black), construct a new one (in blue) from the
union of all initial workers. Repeat asynchronous steps of .r1 (with the given
messages), and then .r2 (but replace messages with .m using Lemma 1). Synchro-
nise .m.

Wα Wβ . . . Wψ Wω

Wα,
Wa

Wβ ,
Wa

. . . Wψ,
Wa

Wψ,
Wb

. . . Wψ,
Wy

Wω,
Wz

Wa Wb . . . Wy Wz

m1 m2 m3 m

m1 m2 m3 m m m m

m

../

Theorem 3 (decompositionality). Given growing round .Wα ∪Wa −→∗ m=⇒ W ,
there exist worker sets .Wω and .Wz and growing rounds .(Wα −→∗ m=⇒ Wω) and
.(Wa −→∗ m=⇒ Wz), such that .W = (Wω ∪ Wz).

Proof. The proof is inductive, building two traces using the given round’s steps,
from the first to the last. We consider an arbitrary step from .Wψ ∪ Wy with
some .m′ to some .W , where, by the inductive hypothesis, .Wα −→∗ Wψ and .Wa −→∗

Wy are constructed so far. If the step is asynchronous, exactly one worker .w
is updated to some .w′, so .W = ((Wψ ∪ Wy) \ w) ∪ {w′}. .Wψ or .Wy must
contain .w. Let it be .Wψ; we omit the symmetric case. Construct .Wα −→∗ Wψ

m′
−−→

(Wψ \ {w}) ∪ {w′} (in black) and leave the other round intact (in blue). Indeed
.(Wψ \ {w}) ∪ {w′} ∪ Wy = W . Only the final step is synchronous; by definition
of .=⇒, there exist .Wω and .Wz updated by .Wψ

m′
=⇒ Wω and .Wy

m′
=⇒ Wz, where

.W = Wω ∪ Wz (in red).

Wα,
Wa

Wβ ,
Wa

Wβ ,
Wb

Wβ ,
Wc

. . . Wψ,
Wy

Wω,
Wz

m1

m2 m2

m

m

../

3.4 Behaviour Constructed from PDL Protocols

Recall that acceptance uses the update function to compute workers from the prior
workers, given any growingmessages. Construction (Definition 10) also introduces
offered (Definition 9), which computes messages from the prior workers.

Construction is suitable as a model for executing the system in its entirety,
notably, by PDL runtimes, in order to compute behaviour from the session pro-
tocol. Construction ensures the desired characteristics. Each observed message
has a sensible provenance (Invariant RI3). Moreover, each step is computable
from the prior step, despite the domains of port, protocol, and data being arbi-
trarily large (thus, infeasible to enumerate). Figure 3 visualises the incremental
construction of rounds, unfolding the (finite) options of each next messages and

14 C. A. Esterhuyse et al.

workers, by applying functions offered and update, in alternating fashion: the
.nth messages are selected from the .nth workers’ offers, the .(n+ 1)st workers are
selected from the .nth workers updated with the .nth messages, and so on.

Definition 9 (offered messages). .w offers to send .d at .p iff .〈p, d〉 ∈
offered(w).

.offered(〈σ, s〉 : W) : list(P × D) ! [〈p, eval(σ, e)〉 | (send E ↪→ p) = s,∀e ∈ E]

Definition 10 (constructive round). A growing round is constructive iff, for
each step from some .W labelled .m′, where .m labels the prior step if it exists and
.m = ∅ otherwise, either .m = m′ or there exist .w ∈ W and .〈p, d〉 ∈ offered(w),
such that .m[p := d] = m′, in which case we say .w sends .d at .p.

Definition 11 (constructive behaviour). Protocol .S constructs the
behaviour of each trace from .{〈∅, s〉 | s ∈ S} consisting of only constructive
rounds.

Example 6 (Examples of Protocols Constructing Behaviours).

– .{loop sync} constructs arbitrarily many rounds without any messages.
Again, this primitive protocol behaves like the trivial, empty protocol .{}.

– .{recv p ↪→ v ; sync} is stuck awaiting a message that is never sent.
– .{recv p ↪→ v ; send {v} ↪→ p ; sync} has a cyclic dependency on the

message at port .p. The .recv blocks forever for a message that is never sent.
– .{(send {0, 1} ↪→ p ; sync), (recv p ↪→ v ; send {6 + v} ↪→ p′ ; sync)}

demonstrates the propagation of a nondeterministic choice between workers,
through a message at port .p. The recipient is oblivious to the nondetermin-
ism, expressing the functional relationship .m(p) + 6 = m(p′).

Fig. 3. This shows the (search) tree of constructive rounds starting from the workers
initialised from the protocol .{(send {0, 1} ↪→ p; sync), (recv p ↪→ v; assert v; sync)},
from Example 5. Each worker is identified by the first two letters of its statement, e.g.,
worker .〈{v $→ 0}, (assert v; sync)〉 is abbreviated as ‘as’. We colour lo (for .loop done)
and sy to reveal patterns. Arrows depict (a)synchronous steps as usual, but we dash
them iff only their second worker is updated. Looping traces are truncated to .(. . .).

Formal Foundations for Reowolf 15

Because constructed rounds are growing, many prior results also apply to
construction. Rounds are still determined by their behaviour (Theorem 1), and
composing protocols preserves their constructed behaviours (Theorem 2, because
the new round is constructive if both given rounds are constructive). However,
unlike acceptance, construction is not decompositional (Theorem 3): composite
protocols construct behaviours not constructed by the constituents indepen-
dently. Example 7 demonstrates behaviour emerging from protocol interactions.

Example 7 (behaviour constructed from protocol interactions). Consider prim-
itive protocol .{(send {1} ↪→ p1 ; recv p2 ↪→ v ; sync)} where .p1 &= p2,
and the same but with .p1 and .p2 swapped. Independently, each protocol for-
ever awaits a message that is never offered. But their composition constructs
.[{p1 '→ 1, p2 '→ 1}], where each worker first sends and then receives the message
sent by its peer.

Intuitively, construction resembles (nondeterministic) actor programming :
computation and communication unfold inter-dependently. Theorem 4 precisely
relates the behaviours accepted and constructed by each protocol .S: behaviours
accepted by .S are those constructed by .S in composition with some existentially
quantified ‘oracle’ protocol, which stands in for the environment of .S, offering
whatever messages .S needs to end the round. Like accepted behaviours, a pro-
tocol’s oracles are generally not enumerable unless ports, messages, or behaviours
are finitely enumerable. This gives PDL programmers another view on acceptance:
the behaviours their protocol can construct as a part of any (composite) protocol.

Lemma 4 (round oracle). Given growing round .W −→∗ m=⇒ W ′, there exists
oracle .so : S, worker .w′

o, and constructive round .W ∪{〈∅, so〉} −→∗ m=⇒ W ′ ∪{w′
o}.

Proof. Build an oracle (in red) that sends each message in .m in some order before
a .sync statement. Build a round (in blue) in two stages. The first (vertical) stage
builds .m, one message at a time, while .W takes no steps. The second (horizontal)
stage reproduces the given round (in black), butmade.m-constant with Lemma 2.

W, {send {d1} ↪→ p1 ; send {d2} ↪→ p2 ; . . . ; sync}

W, {send {d2} ↪→ p2 ; . . . ; sync}

...

W, {sync} . . . W ′′, {sync} W ′, {done}

.W . . . W ′′ W ′

{p1 $→ d1}

{p1 $→ d1, p2 $→ d2}

m

m m m m

m1 m2 mn m

../

16 C. A. Esterhuyse et al.

Theorem 4 (acceptance vs. construction). Protocol .S accepts behaviour .M
iff (.⇔) there exists an ‘oracle’ protocol .So where .S ∪ So constructs .M .

Proof. (.⇒) By Lemma 2, a trace of constant rounds .r exists whose
behaviour .M ! [m1,m2, ...,mn] is accepted by .S. Apply Lemma 4, but gener-
alized to an .n-round oracle .(o1 ; o2 ; ... ; on) constructing .M . (.⇐) By definition,
a trace of constructive rounds .r with behaviour .M from .S∪So exists. By Defini-
tion 10, .S ∪ So accepts .M . Finally, by Theorem 3, .S accepts .M , i.e., removing
.So preserves acceptance. ../

Acceptance and construction provide useful, dual views on behaviour. Their
differences reflect their different assumptions about the execution environment.
Acceptance reflects ignorance of the environment. This view is useful to users,
who reason about the behaviour of known protocols as parts of unknown com-
posite (session) protocols. Construction is holistic, in the sense that it closes
the system, only considering messages as they are sent, interleaved with worker
updates. This view is appropriate for reasoning about systems at large, which
users will do some of the time, but which PDL runtimes do all of the time.

4 PDL Runtimes

Section 3 defined the PDL syntax and semantics. In these terms, we specify and
demonstrate the user interface and correctness properties of PDL runtimes.

4.1 A Specification of PDL Runtimes

A PDL runtime is an interactive system that realises a communication session.
Each runtime configuration .c, c1, c′, ... : C has a current (session) protocol. Users
communicate indirectly, by directly and arbitrarily interleaving user actions:

1. Some user injects a chosen input protocol into the current protocol.
2. Users observe the behaviour that results from running the system.

Precisely, a PDL runtime provides four user-facing operators:

.start : C run : C → M∗ × C proto : C → 2S inject : C → 2S → C

where, as introduced earlier, .S is the domain of PDL programs, .M is the domain
of message maps, and .M∗ is the domain of message map lists, i.e., behaviours.

The PDL runtime preserves the users’ basic expectations of the current pro-
tocol by preserving Properties 1 and 2.

Property 1 (initially trivial protocol). .proto(start) = {}.

Property 2 (injection composes). .proto(inject(c, S : 2S)) = proto(c) ∪ S.

Formal Foundations for Reowolf 17

Additionally, PDL runtimes must ultimately preserve each of the runtime
invariants defined in Sect. 2. Each behaviour must be observed consistently
between users (Invariant RI1), accepted by each component of the current pro-
tocol (Invariant RI2), the result of a round if it exists (Invariant RI4), and such
that each message must have been sent by a user-injected protocol (Invariant
RI3).

Because constructed behaviours are accepted by each injected part of the
session protocol, it suffices for the PDL runtime to preserve Properties 3 and 4.

Property 3 (soundness). Each .run(c) = 〈M, c′〉 implies .proto(c) con-
structs .M .

Property 4 (completeness). For all .c : C, if any .M &= [] exists that is con-
structed by .proto(c), after some finite run-steps from .c, any .M ′ &= [] is observed.

4.2 Example: The Silent PDL Runtime

To demonstrate our PDL runtime specification, we consider the silent PDL run-
time. Its implementation is comprised of the following function definitions, fixing
its configurations as the composite PDL protocols .C ! 2S :

.start ! {}. run(S) ! 〈[], S〉. proto(S) ! S. inject(S, S′) ! S ∪ S′.

It is easy to see why this implementation satisfies Properties 1 to 3: it simply
collects injected protocols, and always produces zero-round behaviour .[], which
every protocol constructs, by definition. Our artefact includes a simple proof
of each of these properties. But clearly this implementation is not complete
(Property 4). We use protocol .{} constructing .{} ∅=⇒ {} as witnesses for our
proof of incompleteness: while .{} constructs .[∅], run steps only ever observe .[].

Hopefully, this demonstrates that the preservation of completeness is the first
major challenge in implementing correct PDL runtimes. The difficulty arises
from the fact that rounds may complete after arbitrarily many (finite) steps.
Indeed, it is generally undecidable whether given workers can synchronise; it
is analogous to the halting problem. Fortunately, because finite protocols offer
finitely many messages, the tree of traces rooted at any finite workers .W is
finite per depth. Figure 3 visualises how offers and updates guide these searches.
Of course, typical search optimisations can improve efficiency drastically. For
example, by caching visited workers, many transpositions (the same workers
reached via distinct traces) are avoided. We expect the properties of PDL to
afford even more optimisations. For example, because of determinism (Theorem
1), we expect completeness to be preserved if W m[p:="]−−−−−→ W ′ stays unexplored
once a constructive W m[p:=d]−−−−−→ W ′ is discovered. But presently, rigorous proofs
of these claims are still future work.

18 C. A. Esterhuyse et al.

5 Future Work

5.1 Formalising the Rest of the Connector Runtime

We strive to recreate the existing Rust implementation of the connector runtime
as a PDL runtime, atop our present specification, such that we can check its
correctness. Here, we overview its facets which remain to be formalised.

Round Search. We conjecture that it is decidable whether given workers syn-
chronise after a bounded number of asynchronous (.−→) steps. Such a proof
lays the groundwork for terminating search algorithms that are correct up to
a .fuel : N bound. For example, we imagine modelling the timeout mechanism
of the connector runtime as run fuel. Many round-search algorithms are con-
ceivable. Which of them are correct and efficient? We also hope to model the
algorithm underlying the connector runtime and (ideally) verify its correctness.

During the formalisation of the semantics of PDL, we also discovered an
elegant relation between the description of a protocol as a proposition and the
runtime implementation of a protocol as a proof. In proof terms, a protocol
states the existence of a round (or an .n-round trace), and the runtime works to
find a proof of that proposition. We aim to explore this relation further in the
future, to discriminate runtime algorithms from a proof theoretic perspective.

Distributed Workers. Distributed PDL runtimes partition the workers in
each configuration .C over a network of processes .π,π′,π1, ... : Π. Processes only
interact by passing asynchronous control messages. The processes cooperate to
simulate a search (see Round Search, above). The execution of all workers sharing
(data) messages is simulated: each process .π isolates its subset of workers in a
local message environment .m, and then .π explicitly informs its peers of newly-
sent message .〈p, d〉 via a control message .〈sent, n,m, p, d〉, where .n : N identifies
the current round, to avoid confusion if control messages arrive late.

The processes realise a synchronised round .W −→∗ m=⇒ W ′ through explicit
coordination. Each round, an elected process selects and announces an arbi-
trarily chosen .m after learning that, for each process .π (including itself), there
exists some .mπ ⊆ m, where, locally, .Wπ

m−→∗ m=⇒ W ′
π. This information is commu-

nicated to the leader from .π via the control message .〈ready, n,mπ〉. To minimise
the burden on the leader, the connector runtime lets processes aggregate this
information toward the leader. A sink tree is overlaid atop the network, with
the leader at the root. With .〈ready, n,m〉, a child process .π informs its par-
ent that each process in the subtree rooted at .π is ready to synchronise with
some .mπ ⊆ m.

Restricted Ports. Users of the connector runtime define access as a process-
port relation, such that each process .π can send and receive messages at port .p
only if .access(π, p). Port messages are only ever observed by accessors. For
example, .〈sent, n,m, p, d〉 is sent only to .p-accessors, and .m omits messages of

Formal Foundations for Reowolf 19

ports not accessed by the recipient. Users of the connector runtime also define
which process determines.: Pd → Π each deterministic port .Pd ⊆ P. Whenever
.π = determines(p), only workers at .π may execute .send E ↪→ p where .|E| # 1,
i.e., the nondeterministic choice is trivial. The benefit of deterministic ports is
that their values can be omitted from control communications while preserving
determinism: all growing rounds that start from the same .W with the same
messages at ports .P \ Pd necessarily have the same messages at port .Pd.

Access and determinism give users greater control over how the PDL runtime
communicates port data via control messages. For example, users can restrict the
observation of messages at particular ports to (the users at) particular processes.

Channel API. The connector runtime lets users express access and determines
(see Restricted Ports, above) implicitly via its API, which is a restriction of that
described in Sect. 2: sets of users rendezvous at sets of IP addresses; each ren-
dezvous includes only a sender and receiver process, and creates a new channel
comprised of ports .p and .pd. The latter is accessed only by this sender and
receiver and is determined by the sender. Users understand .pd as carrying user
data across the channel from the sender to the receiver only, while .p is used in
session-wide control communications, e.g., to discriminate values sent at .pd.

As users never read values at .p, these act purely as discriminators and can
be chosen arbitrarily by the connector runtime. In fact, it suffices if the values
at .p are restricted to .{0, 1}, such that control messages can be densely packed
into bit vectors. Each .p is split into multiple ports if more bits are necessary.

5.2 Exploring Variations of the PDL

We intentionally minimise the coupling between the syntax and semantics of
PDL primitives (Sect. 3.1) and the rest of the language (Sects. 3.3 and 3.4) to
ease future experimentation with variants of PDL.

Ports as Data. If PDL is changed such that .P ⊆ D (ports are data), protocols
become significantly more expressive and flexible. For example, .send {ed} ↪→ ep
sends dynamic data (.ed) at a dynamic port (.ep). However, this would make
protocols more difficult to reason about; e.g., generally, we could not statically
check which workers or processes access given ports (see Restricted Ports, above).

N-Round Lookahead. We consider definitions of productivity (Invariant RI4)
which change the role of synchronisation. For example, we consider a general-
isation where PDL runtimes must always maximise the number of completed
rounds up to a lookahead bound which is currently implicitly 1. Consider Exam-
ple 8, which synchronises .N rounds before blocking forever, where .N is the data
at port .pN in the first round. With 1-lookahead, the PDL runtime is correct to
complete the first round with behaviour .{pN '→ 1}. But with 3-lookahead, this
would be incorrect, because it would not produce the maximal number of rounds

20 C. A. Esterhuyse et al.

up to the end of round 3, e.g., where .{pN '→ 3} and .{pN '→ 182} are maximal
instead.

Example 8 (N-Sync). .recv pN ↪→ v ; while v do (write v − 1 ↪→ v ; sync).

Local Synchronisation. We consider decoupling different workers’ synchroni-
sations, e.g., as in the Reo semantics. Precisely, an unspecified subset of workers
stutter each round: maintaining their states and not interacting. Intuitively, this
change empowers the PDL runtime to make more decisions at the cost of weak-
ening the meaning of .sync. In practice, this change prevents slow workers from
impeding productivity, but it introduces threats of unfairness and starvation,
unless they are prevented, e.g., by users specifying how workers are prioritised.
This change affords the concurrent synchronisation of local synchronous regions
of the system, as is done with Reo in [2], and with Dreams in [46].

5.3 Definition, Analysis, and Optimisation of PDL Protocols

PDL is designed to afford (de)compositional reasoning about protocols and their
properties. We see benefit in future work that develops a corpus of PDL protocols
that solve useful problems, or have desirable properties.

We are particularly interested in letting PDL runtimes transparently opti-
mise execution by recognising protocols and exploiting their known properties.
Most interestingly, these may include opportunities that are unknowable to the
users, because users lack the overview of the session protocol, e.g., in ad-hoc ses-
sions between strangers over the Internet. For example, if Amy in Helsinki routes
outgoing messages to Bob in Tokyo, and Bob filters incoming messages before
forwarding them to Dan in Helsinki, the runtime can transparently re-configure
the session to filter Amy’s messages before routing them to Dan, i.e., avoid-
ing the inter-continental round-trip. These kinds of session optimisations are
already supported by (and benchmarked with) the connector runtime [20], but
currently, they must be recognised and triggered manually. The Reowolf project
documentation [20] highlights the potential of systematic protocol analysis and
transformation via existing tools. For example, can we encode PDL protocols
as annotated port-graphs and protocol transformations as graph-rewriting rules,
e.g., using the PBPO.

+ graph-rewriting formalism and tools [44]?

6 Related Work

6.1 Related to Behavioural Specification with the Reowolf PDL

Here, we compare PDL to well-researched synchronous languages Reo, Esterel,
and Lustre. We leave out of scope the comparisons to the many other (syn-
chronous) languages such as Signal [6,22], ARx [47], and HipHop.js [8].

Formal Foundations for Reowolf 21

Reo. PDL is directly inspired by Reo, so the languages have many simi-
larities. Reo is also used to specify and coordinate synchronous and multi-
party communications [1,2] in interactive systems, regulating the interactions
between software components as constraints on their messages. Notably, the
compiler [15] of textual Reo [14] with constraint automata semantics [4] gener-
ates executable coordinators that interface with users. Reo is more declarative,
easing static protocol verification and transformation, and top-down coordinator
re-configuration [36–39].

However, there is less emphasis on the dynamic composition of Reo protocols,
or their application to distributed systems. For example, Reo coordinators are
centralised, and cannot interface with other coordinators. In contrast, Reowolf is
designed around its dynamic and distributed applications: the protocol unfolds
dynamically as users inject new protocol components on the fly.

Esterel. PDL and Esterel have similar syntax, and the same control flow:
sequential, but punctuated by synchronous message passing [7,17,21].

Esterel reflects its design for a different use case: real-time reactive systems,
which emphasise timely reactions to external events. Hence, notably, Esterel
and PDL have very different relationships with nondeterminism: both embrace
it for program composition, but only in PDL are nondeterministic programs exe-
cutable. Esterel programmers are responsible for ensuring determinism, whereas
PDL programmers rely on the behaviour being determined at runtime. In fact,
nondeterminism is desirable in PDL protocols, because it affords flexibility to
later protocol composition and refinement. Effectively, PDL programmers enjoy
ignorance of their environment, at the cost of complexity in the runtime system.

Lustre. Lustre [25,26] semantically separates synchronous computations
(within a logical instant) and sequences of computation (over consecutive
instants). Lustre has operators calculating (arithmetic) functions and opera-
tors ‘scheduling’ functions over time. Composition of synchronous programs is
done per instant, on a shared memory machine. Lustre provides some meaning-
ful primitives to specify these functions constructively, which requires them to
be deterministic.

In comparison, PDL has nondeterministic and synchronous primitives.
Agents interpret PDL programs and interact with other agents. Agents explic-
itly delineate instants with the .sync statement, whose semantics guarantees the
consistent values at variables shared between agents (i.e., ports).

6.2 Related to Network Programming with Reowolf Connectors
Dreams. Like the connector runtime, the engine of the Dreams framework [46]
translates Reo-like synchronous protocols into networks of automated, message-
passing agents, coordinated via distributed consensus algorithms. The works
focus on different features. Dreams statically partitions the system into syn-
chronous regions, enabling (only) region-local synchronisation and reconfigura-
tion. In contrast, Reowolf has global synchronisation (i.e., the trivial case of

22 C. A. Esterhuyse et al.

Dreams), but lets users change the protocol on the fly. We see the best features
of Dreams and Reowolf as complementary, and we see promise in combining
their strengths, e.g., by relaxing the meaning of our .sync statement, as dis-
cussed in Sect. 5.2. Can future sessions have synchronous regions (as in Dreams),
while allowing users to change protocols in synchronous regions on the fly (as in
Reowolf)?

Bulk Synchronous Processing (BSP). BSP is an abstract model of paral-
lel computation [50]. The main idea is to break time into sequential supersteps,
within which, processors compute in parallel, and between which, processors
pass messages and synchronisation barriers. Literature has developed software
and hardware for BSP, typically for the purpose of high performance comput-
ing, maximising program portability [10,23] and performance [48,51,52]. Many
BSP ideas are also evident in Reo(wolf), e.g., in emphasising the separation of
computation from communication. Reowolf takes it further: like BSP supersteps,
rounds of PDL communication behaviour are separated by synchronisation bar-
riers. Which BSP hardware/runtime environments are suitable PDL runtimes?

Message Passing Interface (MPI). The MPI standard [12] eases and decou-
ples the tasks of 1. library developers of general-purpose languages, and 2. their
users implementing data-parallelism in general, and large simulations in partic-
ular [24].

Reowolf and MPI have in common that they augment host applications with
high-level abstractions for coordinated, multiparty message passing. MPI-2 in
particular overlaps with Reowolf in expressing task-parallelism via workers.

While Reowolf and MPI differ considerably in the details of their program-
ming abstraction, more fundamentally, they have different consequences on run-
time behaviour. Reowolf focuses on internet programming, so PDL affords a
distributed and continuous refinement of the session protocol. In contrast, MPI
affords the abstract specification of task- and data-parallelism in programs at
compile-time, such that programmers can reason about run-time performance.

Software Defined Networks (SDN). Like Reowolf, SDNs [30] provide an
abstraction over distributed systems. For example, the OpenFlow [40] control
protocol is used for remote administration of network switch packet-forwarding
tables. Rules can be made on a controller, and dynamically pushed to the network
switches, e.g., to change the routing algorithm [42]. Tools such as NorthStar [35]
and Khathará [9] deploy and manage containerised applications atop SDNs.

SDNs and Reowolf provide abstractions over different layers in the OSI stack.
SDNs are suited to network administrators, while PDL isolates coordination
logic typical to applications. As such, we see potential for their combination. Can
connectors efficiently route messages (via transparent usage of SDN technologies)
within the bounds of what users accept (as users specify via PDL protocols)?

Formal Foundations for Reowolf 23

Multi Party Session Types (MPST). Dyadic session types specified the
communication behaviour of message channels [27]. MPSTs generalised these to
multiparty sessions; each global MPST (specifying the session at large) is pro-
jected onto each peer, yielding local MPSTs (specifying roles in the session) [28].
MPST variants are embedded in host languages such as Rust [11], Scala3 [13],
Haskell [41], and OCaml [31], reducing the verification of (dynamic) session prop-
erties, such as deadlock freedom, to (static) type-checking of host programs.

Both MPST and Reowolf’s PDL specify communications via nondeterminis-
tic, message-passing programs. Both paradigms also let (control) messages keep
peers’ nondeterministic choices aligned: senders choose and recipients follow. But
where MPSTs usually specify asynchronous messaging, and are statically decom-
posed from a global specification, PDL protocols specify synchronous messag-
ing, and are dynamically composed throughout the session. Reowolf has more
similarities to variants of MPSTs which explore these features. For example,
[43] dynamically coordinates (untyped) Python programs, and [5] adopts syn-
chronous coordination. We expect MPST to inspire applications of PDL in the
future, particularly for common uses of MPST: static program analysis, genera-
tion, and transformation.

Publish/Subscribe Protocols. The publish/subscribe paradigm charac-
terises a family of decentralised network protocols (such as XMPP [29] or
MQTT [49]) intended for lightweight communications between IoT devices. For
instance, in MQTT, users can (un)subscribe to topics, or publish data to a
topic, which persistent, distributed, automated broker agents disseminate to
subscribers. Likewise, PDL runtimes coordinate user communications. However,
because PDL specifies the synchronous inter-dependencies of messages, PDL
affords users specifying the ordering and data inter-dependencies between multi-
ple parties’ messages; e.g., PDL affords the definition of distributed transactions.

7 Conclusion

In this article, we formalised the essential contributions of the Reowolf project,
and demonstrated the promise of Reowolf connectors as a network API for multi-
party internet applications. Like the classic BSD-style sockets, connectors pass
messages between users over the network. Unlike sockets, users control session
behaviour by continuously refining the session protocol, which is expressed in
Reowolf’s Protocol Description Language (PDL). Consequently, two concepts
coincide in PDL protocols: (1) user specifications of the session behaviour, and
(2) executable programs delegated by users to the runtime system.

Our article contributes formal definitions of (key properties of) PDL, spec-
ifies (key requirements on) the implementation of the connector runtime, and
explains their connection. We show how PDL’s dual semantic notions of proto-
col behaviour support the complex requirements on connectors. PDL is declara-
tive, as it lets users (de)compositionally express and reason about the behaviour

24 C. A. Esterhuyse et al.

accepted by (their own) parts of the session protocol. But PDL is also impera-
tive, as PDL-runtime systems can construct behaviour one synchronous round
at a time, by executing the session protocol, throughout its refinement by the
users.

These contributions lay the groundwork for future work to (re)define partic-
ular PDL protocols and runtimes, and to rigorously formalise and prove their
properties. We identified particularly promising future directions. For example,
to verify the correctness of the connector runtime, we must first verify the cor-
rectness of its underlying round-search algorithm. These efforts contribute to the
greater vision of extending the rigour and programmability of formal protocol
languages to the decentralised and dynamic world of internet programming.

Acknowledgments. Benjamin Lion was part of the Cert-T project, funded by the
European MSCA-PF grant agreement 101153247. Christopher Esterhuyse was funded
by the projects AMdEX-fieldlab (Kansen Voor West EFRO grant KVW00309) and
AMdEX-DMI (Dutch Metropolitan Innovations ecosystem for smart and sustainable
cities, made possible by the Nationaal Groeifonds).

A PDL (Runtime) Formalisation in Coq vs. This Article

The definitions in this article correspond to those of our artefact, which is
machine-checked with the Coq proof assistant. The repository at https://zenodo.
org/records/14936561 includes the Coq file itself reowolf formalism.v, as well
as instructions for installing Coq locally or via a Docker image.

Figure 4 shows the parameters of our formalisation. As our definitions are oth-
erwise constructive, these separate our specification from an (executable) imple-
mentation. The parametrisation of .P and .V is desirable, affording the choice of
any concrete port- and variable-types. The remaining three parameters can be
understood as assumptions, scoping our formalism. Equivalently, these proper-
ties are assumed but have no proofs yet. The first two assumptions constrain
the choice of .P and .V; they must form setoids, because our proofs rely on being
able to decide (in)equality of port pairs and variable pairs. The final assumption
requires the refinement of the memory-storage to some finite map structure, for
example, implemented via Coq’s inbuilt association lists or AVL trees.

Figure 5 shows the correspondences between the definitions in this article to
those in the artefact, e.g., to help readers inspect the relevant Coq definitions.

Fig. 4. Parameters or assumptions of the formalism in our artefact at https://zenodo.
org/records/14936561. Each occurs in the artefact with the Parameter keyword.

Formal Foundations for Reowolf 25

Fig. 5. Correspondences between the terms in this article and the definitions and the-
orems in the artefact at https://zenodo.org/records/14936561.

26 C. A. Esterhuyse et al.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composi-
tion. Math. Struct. Comput. Sci. 14(3), 329–366 (2004). https://doi.org/10.1017/
S0960129504004153

2. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp.
169–206. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24933-
4 9

3. Arbab, F.: Proper protocol. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.)
Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 65–87. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30734-3 7

4. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006). https://
doi.org/10.1016/j.scico.2005.10.008

5. Bejleri, A., Yoshida, N.: Synchronous multiparty session types. In: Vasconce-
los, V.T., Yoshida, N. (eds.) Proceedings of the First Workshop on Program-
ming Language Approaches to Concurrency and Communication-cEntric Software,
PLACES@DisCoTec 2008, Oslo, Norway, 7 June 2008. Electronic Notes in Theo-
retical Computer Science, vol. 241, pp. 3–33. Elsevier (2008). https://doi.org/10.
1016/J.ENTCS.2009.06.002

6. Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous programming with
events and relations: the signal language and its semantics. Sci. Comput. Program.
16(2), 103–149 (1991)

7. Berry, G., Gonthier, G.: The esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992). https://
doi.org/10.1016/0167-6423(92)90005-V

8. Berry, G., Serrano, M.: Hiphop.js:(a) synchronous reactive web programming. In:
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 533–545 (2020)

9. Bonofiglio, G., Iovinella, V., Lospoto, G., Battista, G.D.: Kathará: a container-
based framework for implementing network function virtualization and software
defined networks. In: 2018 IEEE/IFIP Network Operations and Management Sym-
posium, NOMS 2018, Taipei, Taiwan, 23–27 April 2018, pp. 1–9. IEEE (2018).
https://doi.org/10.1109/NOMS.2018.8406267

10. Cheatham, T.E., Fahmy, A.F., Stefanescu, D.C., Valiant, L.G.: Bulk synchronous
parallel computing-a paradigm for transportable software. In: 28th Annual Hawaii
International Conference on System Sciences (HICSS-28), Kihei, Maui, Hawaii,
USA, 3–6 January 1995, pp. 268–275. IEEE Computer Society (1995). https://doi.
org/10.1109/HICSS.1995.375451

11. Chen, R., Balzer, S., Toninho, B.: Ferrite: a judgmental embedding of session types
in rust. In: Ali, K., Vitek, J. (eds.) 36th European Conference on Object-Oriented
Programming, ECOOP 2022, Berlin, Germany, 6–10 June 2022. LIPIcs, vol. 222,
pp. 22:1–22:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://
doi.org/10.4230/LIPICS.ECOOP.2022.22

12. Clarke, L., Glendinning, I., Hempel, R.: The MPI message passing interface stan-
dard. In: Programming Environments for Massively Parallel Distributed Systems:
Working Conference of the IFIP WG 10.3, 25–29 April 1994, pp. 213–218. Springer,
Cham (1994)

Formal Foundations for Reowolf 27

13. Cledou, G., Edixhoven, L., Jongmans, S., Proença, J.: API generation for mul-
tiparty session types, revisited and revised using scala 3. In: Ali, K., Vitek,
J. (eds.) 36th European Conference on Object-Oriented Programming, ECOOP
2022, Berlin, Germany, 6–10 June 2022. LIPIcs, vol. 222, pp. 27:1–27:28.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.
4230/LIPICS.ECOOP.2022.27

14. Dokter, K., Arbab, F.: Treo: textual syntax for Reo connectors. In: Bliudze, S.,
Bensalem, S. (eds.) Proceedings of the 1st International Workshop on Methods and
Tools for Rigorous System Design, MeTRiD@ETAPS 2018, Thessaloniki, Greece,
15th April 2018. EPTCS, vol. 272, pp. 121–135 (2018). https://doi.org/10.4204/
EPTCS.272.10

15. Dokter, K., Lion, B., Arbab, F., Smeyers, M., Mirlou, A., Esterhuyse, C.A.: Reo
Language Compiler (2018). https://github.com/ReoLanguage/Reo

16. Edwards, S.: ESUIF: an open esterel compiler. In: Maraninchi, F., Girault, A.,
Rutten, É. (eds.) Synchronous Languages, Applications, and Programming, SLAP
2002, Satellite Event of ETAPS 2002, Grenoble, France, 13 April 2002. Electronic
Notes in Theoretical Computer Science, vol. 65, p. 79. Elsevier (2002). https://doi.
org/10.1016/S1571-0661(05)80442-6

17. Edwards, S.A.: An esterel compiler for large control-dominated systems. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 21(2), 169–183 (2002). https://
doi.org/10.1109/43.980257

18. Edwards, S.A., Zeng, J.: Code generation in the Columbia esterel compiler.
EURASIP J. Embed. Syst. 2007 (2007). https://doi.org/10.1155/2007/52651

19. Esterhuyse, C.A., Hiep, H.-D.A.: Reowolf: synchronous multi-party communication
over the Internet. In: Arbab, F., Jongmans, S.-S. (eds.) FACS 2019. LNCS, vol.
12018, pp. 235–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
40914-2 12

20. Esterhuyse, C.A., Hiep, H.D.A.: Reowolf 1.0 project deliverables. Record on Zenodo
(2024). https://zenodo.org/records/10838450

21. Florence, S.P., You, S., Tov, J.A., Findler, R.B.: A calculus for esterel: if can, can. if
no can, no can. Proc. ACM Program. Lang. 3(POPL), 61:1–61:29 (2019). https://
doi.org/10.1145/3290374

22. Gautier, T., Le Guernic, P., Besnard, L.: Signal: A Declarative Language for Syn-
chronous Programming of Real-Time Systems. Springer, Cham (1987)

23. Gerbessiotis, A.V., Valiant, L.G.: Direct bulk-synchronous parallel algorithms. J.
Parallel Distrib. Comput. 22(2), 251–267 (1994). https://doi.org/10.1006/JPDC.
1994.1085

24. Gropp, W.: MPI (message passing interface). In: Padua, D.A. (ed.) Encyclopedia
of Parallel Computing, pp. 1184–1190. Springer, Cham (2011). https://doi.org/10.
1007/978-0-387-09766-4 222

25. Halbwachs, N.: A synchronous language at work: the story of lustre. In: 3rd ACM
& IEEE International Conference on Formal Methods and Models for Co-Design
(MEMOCODE 2005), Verona, Italy, 11–14 July 2005, pp. 3–11. IEEE Computer
Society (2005). https://doi.org/10.1109/MEMCOD.2005.1487884

26. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991). https://
doi.org/10.1109/5.97300

27. Honda, K.: Types for dyadic interaction. In: International Conference on Concur-
rency Theory, pp. 509–523. Springer, Cham (1993)

28 C. A. Esterhuyse et al.

28. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, 7–12 January 2008, pp. 273–284. ACM (2008). https://doi.org/
10.1145/1328438.1328472

29. Hornsby, A., Walsh, R.: From instant messaging to cloud computing, an XMPP
review. In: IEEE International Symposium on Consumer Electronics (ISCE 2010),
pp. 1–6. IEEE (2010)

30. Hu, F., Hao, Q., Bao, K.: A survey on software-defined network and openflow:
from concept to implementation. IEEE Commun. Surv. Tutor. 16(4), 2181–2206
(2014). https://doi.org/10.1109/COMST.2014.2326417

31. Imai, K., Lange, J., Neykova, R.: Kmclib: automated inference and verification of
session types from OCaml programs. In: Fisman, D., Rosu, G. (eds.) TACAS 2022.
LNCS, vol. 13243, pp. 379–386. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-99524-9 20

32. Jongmans, S., Arbab, F.: Can high throughput atone for high latency in compiler-
generated protocol code? In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS,
vol. 9392, pp. 238–258. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24644-4 17

33. Jongmans, S., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Automatic
code generation for the orchestration of web services with Reo. In: De Paoli,
F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 1–16.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33427-6 1

34. Jongmans, S., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Orchestrat-
ing web services using Reo: from circuits and behaviors to automatically gener-
ated code. Serv. Oriented Comput. Appl. 8(4), 277–297 (2014). https://doi.org/
10.1007/S11761-013-0147-1

35. Kraska, T.: Northstar: an interactive data science system. Proc. VLDB Endow.
11(12), 2150–2164 (2018). https://doi.org/10.14778/3229863.3240493

36. Krause, C., Giese, H., de Vink, E.: Compositional and behavior-preserving recon-
figuration of component connectors in Reo. J. Vis. Lang. Comput. 24(3), 153–168
(2013). https://doi.org/10.1016/j.jvlc.2012.09.002

37. Krause, C.: Reconfigurable component connectors. Ph.D. thesis, Leiden University
(2011)

38. Krause, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of Reo connectors
triggered by dataflow. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 10
(2008)

39. Krause, C., Maraikar, Z., Lazovik, A., Arbab, F.: Modeling dynamic reconfigura-
tions in Reo using high-level replacement systems. Sci. Comput. Program. 76(1),
23–36 (2011). https://doi.org/10.1016/j.scico.2009.10.006

40. Lara, A., Kolasani, A., Ramamurthy, B.: Network innovation using openflow: a
survey. IEEE Commun. Surv. Tutor. 16(1), 493–512 (2013)

41. Lindley, S., Morris, J.G.: Embedding session types in haskell. In: Mainland, G.
(ed.) Proceedings of the 9th International Symposium on Haskell, Haskell 2016,
Nara, Japan, 22–23 September 2016, pp. 133–145. ACM (2016). https://doi.org/
10.1145/2976002.2976018,

42. McKeown, N., et al.: Openflow: enabling innovation in campus networks. Comput.
Commun. Rev. 38(2), 69–74 (2008). https://doi.org/10.1145/1355734.1355746

43. Neykova, R.: Session types go dynamic or how to verify your python conversa-
tions. In: Yoshida, N., Vanderbauwhede, W. (eds.) Proceedings 6th Workshop on

Formal Foundations for Reowolf 29

Programming Language Approaches to Concurrency and Communication-cEntric
Software, PLACES 2013, Rome, Italy, 23rd March 2013. EPTCS, vol. 137, pp.
95–102 (2013). https://doi.org/10.4204/EPTCS.137.8

44. Overbeek, R., Endrullis, J., Rosset, A.: Graph rewriting and relabeling with
PBPO.

+: a unifying theory for quasitoposes. J. Log. Algebraic Methods Program.
133, 100873 (2023). https://doi.org/10.1016/J.JLAMP.2023.100873

45. Potop-Butucaru, D., Edwards, S.A., Berry, G.: Compiling Esterel, vol. 86. Springer,
Cham (2007)

46. Proença, J., Clarke, D., de Vink, E.P., Arbab, F.: Dreams: a framework for dis-
tributed synchronous coordination. In: Ossowski, S., Lecca, P. (eds.) Proceedings
of the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy,
26–30 March 2012, pp. 1510–1515. ACM (2012). https://doi.org/10.1145/2245276.
2232017

47. Proença, J., Cledou, G.: ARx: reactive programming for synchronous connectors.
In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp.
39–56. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50029-0 3

48. da Rosa Righi, R., de Quadros Gomes, R., Rodrigues, V.F., da Costa, C.A., Alberti,
A.M.: MIGBSP++: improving process rescheduling on bulk-synchronous paral-
lel applications. In: 12th IEEE/ACS International Conference of Computer Sys-
tems and Applications, AICCSA 2015, Marrakech, Morocco, 17–20 November 2015,
pp. 1–8. IEEE Computer Society (2015). https://doi.org/10.1109/AICCSA.2015.
7507256

49. Soni, D., Makwana, A.: A survey on MQTT: a protocol of Internet of Things
(IoT). In: International Conference on Telecommunication, Power Analysis and
Computing Techniques (ICTPACT 2017), vol. 20, pp. 173–177 (2017)

50. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990). https://doi.org/10.1145/79173.79181

51. Wang, E., Barve, Y., Gokhale, A., Sun, H.: Dynamic resource management for
cloud-native bulk synchronous parallel applications. In: 2023 IEEE 26th Interna-
tional Symposium on Real-Time Distributed Computing (ISORC), pp. 152–157
(2023). https://doi.org/10.1109/ISORC58943.2023.00028

52. Zhao, X., Papagelis, M., An, A., Chen, B.X., Liu, J., Hu, Y.: Zipline: an optimized
algorithm for the elastic bulk synchronous parallel model. Mach. Learn. 110(10),
2867–2903 (2021). https://doi.org/10.1007/S10994-021-06064-W

