
DACEO: Declarative Asynchronous
Choreographies with General

Data-Dependent Event-Ordering
and Objects

Tilman Zuckmantel(B) , Yongluan Zhou , Boris Düdder ,
and Thomas Hildebrandt

University of Copenhagen, Copenhagen, Denmark
tizu@di.ku.dk

Abstract. We provide a formal modeling language, DACEO, for declar-
ative asynchronous choreographies with general data-dependent mes-
sage ordering and data objects. The language is equipped with execu-
tion semantics, and thereby, it can be used to specify the semantic and
support monitoring of asynchronous distributed event-based systems in
which a total ordering of message delivery cannot be assumed. DACEO
models are graphs, which extends previous work on synchronous declar-
ative choreographies based on Dynamic Condition Response Graphs
and their operational semantics by adding asynchronous message chan-
nels with general data-dependent ordering constraints as well as general
objects and data activities. The addition of objects builds on recent
work on object-centric Dynamic Condition Response Graphs. We show
that the DACEO Graphs can be encoded as the more basic Synchronous
Object-centric Dynamic Condition Response Choreographies, preserving
the semantics. We motivate DACEO by demonstrating its applicability in
describing data-dependent ordering constraints between messages using
a running example that shows how a system with causal consistency
requirements can be specified. The marketplace is built on a benchmark
for microservices that relies on asynchronous, event-based communica-
tion.

Keywords: Formal Modeling Language · Message Ordering ·
Declarative Asynchronous Choreographies · Event-Based Systems

1 Introduction

With the rise of modern architecture styles like microservice architecture, dis-
tributed applications increasingly follow the database-per-service pattern. In this
model, each microservice maintains its own independent data store, improv-
ing scalability and modularity. Additionally, microservices rely on asynchronous

c© IFIP International Federation for Information Processing 2025
Published by springer Nature Switzerland AG 2025
C. Di Giusto and A. Ravara (Eds.): COORDINATION 2025, LNCS 15731, pp. 197–216, 2025.
https://doi.org/10.1007/978-3-031-95589-1_10

198 T. Zuckmantel et al.

communication to propagate messages between components. This communica-
tion pattern enables services to operate independently without blocking, increas-
ing system responsiveness. However, the decentralized data management and
asynchronous communication introduce new consistency challenges, especially
when transactions span multiple microservices, leading to potential cross-service
data inconsistencies [10,15,16]. Unlike traditional monolithic systems, where
database systems are responsible for ensuring data consistency via mechanisms
like ACID transactions and consistent data replications, microservice architec-
tures shift the responsibility of ensuring data consistency to the application
developer [10,16], requiring developers to be aware of cross-service dependencies
that may impact correctness.

A consistency model that can be efficiently enforced in distributed systems,
where events between microservices are processed without ordering guarantees,
is causal consistency [2,17]. It provides a good trade-off between scalability and
consistency level. Causal consistency means that operations respect causal rela-
tionships, even in the presence of concurrent updates. Unlike strong consistency
models, which enforce a total order on all operations, causal consistency ensures
that if one event causally depends on another, then all processes must observe
them in that order. However, events that are independent can be seen in differ-
ent orders by different nodes. It provides stronger consistency guarantees than
eventual consistency while still maintaining scalability.

While being a desired consistency model in microservices, it is non-trivial
to reason about causal consistency, mainly because of the asynchronous event
exchange [10,15,16]. To illustrate this challenge, Fig. 1 shows an example of a
causal inconsistency scenario in an online marketplace adopted from [15].

Product
Service

Product DB

PID SID Price
101 1 1000

PID SID Price
102 1 50

UP 1 UP 2

T1 T2

T3
PID SID SKU ... Price
101
102

...

Cart
Service

1

1

MO-3...

ER-6...

Send: UP 2

Send: UP 1

Product
View

T7
PID SID Price
101
102

...

1

1

1000

50
975

50

{PID:101,...},{PID:102,...},....
Items...

Checkout

T8

Inconsistent State

Arrival: UP 2
T5

T4

T6

Arrival: UP 2Arrival: UP 1

Fig. 1.Motivating example of a casual inconsistency scenario in a microservice oriented
market place.

DACEO 199

In this scenario, we show two microservices within an online marketplace:
the Product Service, which maintains the primary dataset of products, and the
Cart Service, which tracks customer carts. To optimize performance, the Cart
Service also maintains a partially replicated view of the product dataset, con-
taining only the fields relevant for price updates, such as product id (PID), seller
id (SID), and Price. This allows the Cart Service to perform fast look-ups of
pricing information during a checkout request without querying the full prod-
uct database. Our causal consistency requirements are that orders between price
updates targeting the same seller must be preserved between Product Service
and Cart Service. In this scenario, two price updates (UP 1 and UP 2) for
different products are requested by the same seller at global times T1 and T2,
respectively, where T1 ≺ T2, meaning UP 1 must precede UP 2. For example,
the seller wants to increase the price of the product by 101 while decreasing the
price of the product by 102 to maximize the expected profit. After updating
the Product Service database (T3), the Product Service generates and sends a
new price update event containing the same payload as the initial request, first
UP 1 (T4), followed by UP 2 (T5) to the Cart Service. However, the updates
arrive out of order, and only UP 2 reaches the Cart Service (T6) and is applied
(T7), while UP 1 is delayed. This violation of the expected order of price updates
results in an inconsistent view of the product data within the Cart Service. When
a checkout request is issued at time T8, it processes the transaction based on
inconsistent price information, leading to incorrect pricing and potential financial
losses for sellers.

This example illustrates that enforcing a strict FIFO order on all price
updates is unnecessarily restrictive, but allowing completely unordered message
processing leads to inconsistencies. Instead, what is needed is a way to precisely
specify ordering constraints that respect the required causal relationships, such
as ensuring that price updates are applied per seller without enforcing unneces-
sary global constraints. While various implementation strategies exist to handle
event ordering in practice, there is no dedicated formalism that allows specifying
such constraints in an abstract, declarative way. To explore how existing model-
ing approaches handle related challenges, we turn to formal models of distributed
processes and messaging protocols.

Related Work: In the area of process models, there is currently a trend towards
modeling processes based on activity decisions and decisions driven by data,
leading to so-called data-aware processes [6]. As a result, extensions to BPMN
have been developed that integrate data and enable SQL-like queries [4,12].
Similarly, declarative modeling approaches such as DCR Choreograhies [13] and
Declare [18] have been extended to support data-dependent constraints, together
with a spawn relation which enables the spawning of data objects through activi-
ties [7,8]. However, these extensions still have serious limitations, such as the fact
that it is not possible to have relationships between specific spawned objects, but
only between all objects, and that values carried by objects cannot be assigned
during creation. DCR graphs are supporting The DCR Choreographies and DCR

200 T. Zuckmantel et al.

Graphs with data in general are supported by commercial design and execution
tools1 that are widely used in the public sector in Denmark. Also, a recent strand
of work on object-centricity [1,5,9,11] for process models is providing means for
specifying more complex data dependencies in process models. While these mod-
els and tools establish a foundation for integrating data-driven decisions into
processes, they primarily focus on synchronously orchestrated workflows and
do not explicitly address the challenges of asynchronous communication. More-
over, On the other hand, formal models such as multiparty asynchronous session
types [14] and choreography automata [3] ensure that distributed components
adhere to a specified messaging protocol, verifying properties such as deadlock
freedom, and liveness. These approaches assume that communication occurs over
FIFO-ordered message queues, which means that messages are received in the
order they were sent. While this assumption simplifies reasoning about protocol
correctness, real-world distributed systems often exhibit more complex message-
ordering patterns. In addition, FIFO ordering guarantees are not necessary in
many cases and are, therefore, too strict. In our example in Fig. 1, it is too strict
to guarantee FIFO semantics for all price update events. Here, it is sufficient to
order the events according to their seller id, so that for each seller, it is guaran-
teed that all price updates are seen. In fact, the exact demands on event ordering
depend on the policies of a system configuration and their causal relationships.

Contributions: Therefore, to the best of our knowledge, no existing process
model declaratively specifies event ordering constraints based on data in asyn-
chronous channels between distributed components. To fill the gap, we intro-
duce in this paper an extension of the declarative process model of Dynamic
Condition Response (DCR) Graphs with data and chorographies based on this
model, originally introduced in [13]. Intuitively, choreographies based on DCR
graphs express interactions between concurrently running processes in a declar-
ative way by stating relationships between the activities within the processes.
In addition, data values can be assigned and propagated between activities to
allow data-dependent decisions during the execution. Although being an expres-
sive model for defining data-dependent processes in a declarative way, the model
assumes synchronous communication between participants and lacks a mecha-
nism to express asynchronous communication. Beyond this limitation, database
entries in our example are being added and updated dynamically. However, DCR
choreographies, while being able to express data in activities, cannot model the
dynamic addition of data and life cycles of data objects. To overcome these
challenges, we make the following contributions:
1. We extend DCR graphs by introducing a notion of objects, hereby follow-

ing the popular approach of object-centricity [1,5,9,11] for process models.
Objects can be dynamically added during the execution of a DCR graph,
and we additionally define OC-DCR choreographies based on this model.
We call this extension Object-Centric Dynamic Condition Response Graphs
(OC-DCR graphs).

1 See http://dcrsolutions.net for tools available freely for academic use.

DACEO 201

2. Building on the OC-DCR model, we define the formal model of DACEO
Graphs as asynchronous Choreographies with asynchronous interactions
between participants having message channels and the possibility of speci-
fying high-level data-dependent ordering of messages.

3. We show that one can give a semantic preserving encoding of DACEO Graphs
as synchronous OC-DCR Choreographies.

The remainder of the paper is structured as follows. In Sect. 2, we introduce
the necessary preliminaries. We begin by presenting a DCR choreography exam-
ple, which serves as a running example. We then formally define DCR graphs
with nested groups, as well as choreographies based on this model. Section 3
introduces the two main contributions of this work: first, we define OC-DCR
graphs and choreographies; second, we demonstrate how asynchronous commu-
nication can be modeled within this framework. Section 4 concludes and outlines
promising directions for the further development of our modeling approach, as
well as the limitations of the current solution.

2 Preliminaries

Below we recall mixed DCR Choreographies with data introduced in [13], with
small changes in the presentation. Figure 1 shows a mixed DCR choreography
for our running example. The boxes denote either groups of activities (dotted
border) or activities (solid or dashed border). All activities have a participant
role illustrated at the top, which indicates the role that can execute the activity.
In this example, we have two roles ProductService and CartService. Activities
can have different functionalities, and therefore can either be input activities,
internal activities, data activities, or interactions. An input activity is an activity
that receives a value from the environment when it is executed (denoted by?).
Internal activities are without a specialized functionality, and data activities
(denoted by a papercut) are considered data containers without the possibility
to be executed. Interactions represent a message exchanged from the executing
participant role to a receiving participant role, which is depicted with white text
on black background at the bottom of the box.

The example reflects the slightly simplified semantics of the update price
request within a microservice environment presented in Fig. 1. The product
entries of the Product Service and the replicated product entries of the Cart
Service are modeled here as data containers Product and Replicated product. In
addition, the input activity Input Price offers the possibility to enter the param-
eters of the product whose price is to be changed via the environment. Update
Price is an interaction between the two services, where Product Service is the
sender and Cart Service is the receiver, and finally, on the Cart Service side, the
Update Replicated Price activity receives the data and changes the price of the
desired replicated product. The other elements of the graph, such as the colored
relationships and conditional expressions, are now explained in detail step by
step, accompanied by the formal definitions in the next section.

202 T. Zuckmantel et al.

Replicated Products

ProductService

CartService

Update Price

ProductService

Input Price

ProductService

Product

ProductService

Product

CartService

Update Replicated
Price

CartService

Replicated
Product

...

CartService

Replicated
Product

...

Products

[g]

%
[¬g]

[tgt.PID == src.PID]

src

[tgt.PID == src.PID]

src

src src

?

Fig. 2. Mixed DCR choreography with participant roles Product Service and Cart
Service showing an interaction between the two services to update a product price, and
the corresponding replicated product price of a specific product. Guard g is defined as
g = (∃α ∈ A; l(α).act = Product and α.P ID == src.PID and α.P rice #= src.Price).
Intuitively, guard g encodes whether the stored product price differs from the input
product price for a matching product activity.

2.1 DCR Choreographies with Data and Nested Groups of Actions

We assume a fixed set of action names Act, ranged over by a, b, c, and a fixed
set of participant roles Roles, ranged over by r, r′, r1, r2, We then define
interactions and actions as follows.

Definition 1. An interaction label is written as (a, r → r′), in which the action
a ∈ Act is initiated by the role r ∈ Roles and received by the role r′ ∈ Roles\{r},
i.e., a role distinct from r. We denote by IntAct the set of all interactions over
action names Act. A input, local, and data activity with the name a for role r
is written as (a, ?r), (a, r) and (a,@r) respectively. We denote by InpAct, LocAct
and DataAct the sets of all input, local and data activities over action names Act
respectively.

The nodes of a DCR graph is a set of activities A labelled with an action
name belonging to a set of action labels Act. Each activity is assigned a value
by a value map Va : A → V from the set of activities to a set of typed values V
(including the null value ⊥ for all types). We refer to the type of Va(α) as the
type of the activity α. The types include basic types such as integers and strings
and we also assume record types. For that we assume an infinite set of keys K and
we further assume that A ⊂ K, i.e. the activity ids can be used as keys. Formally,
a record can be defined as a map [K → V] for any finite subset of K ⊂ K. We
will write such a record as a set of key-value pairs: p̄ = {(k1, v1), . . . , (kn, vn)},
where ki ∈ K.

DACEO 203

Given a graph G with activities A we let ExpA denote a set of expressions
evaluating to typed values in V . We let BExpA ⊆ ExpA denote the subset of
boolean expressions and let RExp[Ar],Aēi ⊆ ExpA denote the set of record expres-
sions of the form {(α1, e1), . . . , (αn, en)} where αi ∈ Ar and ei ∈ ExpA is an
expression matching the type of αi.

For each α ∈ A we assume an atomic expression α that evaluates to the cur-
rent value of the activity. Examples of composite expressions are α+1, “Hello”+
+α′ and {(PID, 42), (SID, 101), (Price,α)}, where α and α′ are activities. The
expression α + 1 evaluates to the current value of α incremented with one, the
expression “Hello” + +α′ evaluates to the string Hello followed by the string
contained in α′ and finally, the expression {(PID, 42), (SID, 101), (Price,α)}
evaluates to the record mapping PID to 42, SID to 101 and Price to the cur-
rent value of α. An exception is the usage of l(α), in which we refer to the label
of the activity within the expression.

Expressions are in the present paper always associated with an edge of the
graph. For a value map Va and an expression exp associated with an edge with
source s and target t we write [[exp]]Va,s,t for the result of evaluating the expres-
sion exp. This allows us to introduce expressions src (source) and tgt (target)
with evaluations [[src]]Va,s,t = Va(s) and [[tgt]]Va,s,t = Va(t). This is convenient
when the same expression is used for a set of relations between different pairs
of activities, which is possible using the notion of groups of activities and also
using the concept of objects introduced in the following section. In our running
example in Fig. 2, input activity Input Price expects a record containing three
entries with keys PID,SID, and Price. The expression g is then used within an
edge of the graph, to determine, whether an activity exists with action name
Product, whose product id matches the product id of the Input Price activ-
ity (src), and whose price differs to the currently stored price. Intuitively, this
expression checks, whether, for an incoming update price request, the desired
product currently has a different price in the dataset.

We are now ready to formally define DCR graphs with data and nested
groups.

Definition 2. A DCR Graph G with data and nested groups of activities is
given by a tuple (A,Ai,Ap,G,✄, R,E, L, l,M) where

1. A is a set of activities ranged over by α,
2. Ai ⊆ A is the input activities,
3. Ap ⊆ A is the parameter activities,
4. Ad ⊆ A is the data activities,
5. G is a set of activity groups ranged over by γ,
6. ✄ ⊆ A × G is a grouping relation, where a ✄ γ reads a is member of γ,

7. R = {
g

→•,
g

→(,
g

•→,
g

→+,
g

→%,
g→=e} are the relation types, for g ∈ BExpA

and e ∈ ExpA
8. E ⊆ A × R × A is the relations,
9. L is the set of labels,

10. l : A → L is a labelling function between activities and labels,

204 T. Zuckmantel et al.

11. M = (Ex,Re, In,Va) ∈ P(A) × P(A) × P(A) × [A → V] is the marking,

where A = A)G is the disjoint union of activities and activity groups. We write
> for ✄+ (the transitive closure of ✄) and require that it is irreflexive. We write
≥ for reflexive closure of > and ≤ for the inverse of ≥. We write aφa′ for φ ∈ R,
if (a′′,φ, a′′′) ∈ E.a ≥ a′′ ∧ a′′′ ≤ a′.

The initial state of G s defined by the marking M , where the last component
Va is the value map assigning values to the activities and the first three will be
explained further below. The parameter activities allow us to replace the value
assigned to these activities. Given a value of record type p̄ ∈ [Ap ⇁ V] that
assign values to a subset of the parameter activities in Ap we let the graph
G[p̄] denote the graph G with the marking M [p̄] = (Ex,Re, In,Va[p̄]), where
Va[p̄](α) = v if p̄(α) = v and otherwise Va[p](α) = Va(α).

The nested groups of activities provide a way to define relations to and from
groups of activities, e.g., a relation (a,φ, a′) where a′ ∈ G means that there
is a relation from a of type φ to all activities a′′ nested in the group a′, i.e.,
where a′′ > a′. The boolean guard g on a rule relation means that the relation
is to be disregarded, if g evaluates to false in the current marking M of the
graph. In our running example in Fig. 2, the →= relation from Input Price to the
group Products and from Update Replicated Price to group Replicated Products
is used to assign this relation to each of the Product and Replicated Product data
activities inside the groups.

Now, a mixed DCR Choreography with data is simply a DCR Graph with
data and groups of activies, where the activities are labelled with interactions,
local input actions and internal actions.

Definition 3. A triple (G,A,R) is a Mixed DCR Choreography when G is a
DCR graph with data and nested groups of activities and labels L ⊆ IntAct ∪
InpAct ∪ LocAct, and for any activity α, it holds that α ∈ Ai if and only if l(α) =
?(a, r) for some a and r.

2.2 Execution Semantics

Whether an activity α is enabled for execution depends on the marking M and
the condition and milestone rules pointing to α. Intuitively, the set Ex con-
tains the previously executed activities, the set Re of pending responses denotes
the activities that must eventually be executed (or excluded) for the execution
sequence to be completed and the set In denotes the activities that currently
are included in the process. Only included activities may be executed and only
included activities are considered in the relations. If α→•α′ we say α is a con-
dition for α′ and it denotes that the activity α′ can only be executed if α has
previously been executed, i.e. α ∈ Ex, or a is not included, i.e., α .∈ In If α→(α′

we say α is a milestone for α′ and it denotes that the activity α′ can only be
executed if α is not a pending response or not included, i.e., α .∈ Re ∩ In.

We formally define when an event is enabled as follows.

DACEO 205

Definition 4. Let G be a DCR graph with data and groups of activities, having
the set of activities A and marking M = (Ex,Re, In,Va). An activity α is enabled,
which we will write enabled(G,α), iff:

1. α ∈ In\Ad,
2. ∀α′ ∈ In. α′ g

→•α ∧ [[g]]M,α′,α =⇒ α′ ∈ Ex,
3. ∀α′ ∈ In. α′ g

→(α ∧ [[g]]M,α′,α =⇒ α′ .∈ Re.

When an enabled activity α in a graph G with marking M is executed, the
marking is changed according to the current marking and the response, include,
exclude and set value relations having the activity α as source. If α ∈ Ai, i.e. it
is an input activity, the result also depends on an input value v provided by the
environment. We let Execute(M,α) denote the new marking if α .∈ Ai and let
Execute(M,α, v) denote the new marking if α ∈ Ai .

Definition 5. Let G = (A,Ai,Ap,Ad,G,✄, R,E, L, l,M) be a DCR graph with
data and groups of activities, with M = (Ex,Re, In,Va). For a value v, let
Execute(M,α, v) = (Ex′,Re′, In′,Va′) for

1. Ex′ = Ex ∪ {α}
2. Re′ = (Re\{α}) ∪ {α′ | α

g
•→α′ ∧ [[g]]Mv,α,α′}

3. In′ = (In\{α′ | α
g

→%α′ ∧ [[g]]Mv,α,α′}) ∪ {α′ | α
g

→+α′ ∧ [[g]]Mv,α,α′}
4. Va′(α′) = [[exp]]Mv,α,α′ if α

g→=exp ∧ [[g]]Mv,α,α′

5. Va′(α′) = Vav(α′) if not α
g→=expα′ ∧ [[g]]Mv,α,α′

6. Mv = (Ex,Re, In,Vav) for Vav(α) = v and Vav(α′) = Va(α) for α′ .= α.

The effect of executing α is then the graph G′ = (A,Ai,Ap,AdG,✄, R,E, L, l,
M ′), where M ′ = Execute(M,α, v) if α ∈ Ai and v is the input value provided
by the environment, and M ′ = Execute(M,α,Va(α)) if α .∈ Ai. In the first case
we write G

α,v→ G′ and in the latter we write G
α→ G′.

If α•→α′ we say α′ is a response to α and it denotes that if α is executed,
then α′ is included in the set Re of pending responses. If α→+α′ we say α
includes α′ and it denotes that if α is executed, then α′ is included in the set
In. If α→%α′ we say α excludes α′ and it denotes that if α is executed, then
α′ is removed from the set In (if there is both an include and exclude relation
between two activities, then the inclusion takes precedence). If α→=eα′ we say
α sets the value of α′ and it denotes that if α is executed, then the expression
e is computed and the resulting value is assigned to the activity α in the value
map V a : A → V . Finally, when an activity α is executed, it is removed from
the set Re, unless it is a response to itself, i.e., α•→α.

Our example in Fig. 2 shows the application of these relations within the
DCR choreography. After the previously described record consisting of the keys
PID, SID and Price of the activity Input Price has been given by the environ-
ment and the activity has been executed, the product price of the product that
has the corresponding PID is changed using the tgt.PID==src.PID→= src relation.

206 T. Zuckmantel et al.

The use of the
¬g

→% and
g

→+ relations between Input Price and Update Price
here expresses that we only execute the interaction between ProductService and
CartService, if the price of a product has changed. If the new price does not
differ from the price of the old product price, the Update Price interaction is
excluded. It is important to note that the order in which the relations are exe-
cuted is decisive here. The inclusion or exclusion of activities is executed first
and then the values are set using the →= relation. Furthermore, in the case
of inclusion, Update Price is a response (•→) to Input Price and Input Price
is in turn a condition (→•) for Update Price. This guarantees both that Input
Price must be executed before Update Price and that Update Price is set to the
pending state after execution. Additionally we guarantee, that Update Product
Price can not be executed again, before the interaction Update Price between
the two services has been executed, and therefore is not pending anymore, by
using the milestone (→() relation. This example choreography shows how DCR
graphs can be used to model event-based distributed processes with data, but
also highlights two serious limitations. Firstly, the set of product activities in
the choreography is fixed because there is no mechanism to dynamically add
new activities to the graph during execution. Secondly, the interaction between
ProductService and CartService is assumed to be synchronous. However, in real-
world microservice environments, communication between services is typically
asynchronous. Therefore, we will address these limitations in the next section
by enabling the dynamic creation of new activities as objects and supporting
asynchronous interactions with configurable ordering guarantees.

3 Declarative Asynchronous Choreographies with
General Data-Dependent Event-Ordering and Objects

Below, we first define an extension of DCR Graphs in Sect. 3.1, called Object-
centric DCR (OC-DCR) Graphs, allowing dynamic instantiation of new sub
graphs with relations between them, referred to as objects. We then extend
the DCR choreographies to asynchronous choreographies with general data-
dependent event-ordering and objects in Sect. 3.2.

3.1 Object-Centric Dynamic Condition Response Graphs

An Object-centric DCR Graph is a DCR graph with data and nested groups of
activities, extended with a new relation that allows for a dynamical extension
of the graph by instantiating objects from a finite set C (of classes), that are
themselves object centric DCR Graphs.

We assume an infinite set of class names Class and let c range over class
names. We also assume that every activity of an OC-DCR Graph is of the form
a@id, where id is a unique identifier for the object it belongs to, created when
it is instantiated, or the identifier top for activities initially belonging to the
top-level graph. We then formally define object centric DCR Graphs as follows.

DACEO 207

Definition 6. An Object-centric DCR (OC-DCR) Graph is a tuple (G#,→∗#,
C,φ), where C ⊂fin Class is a finite set of classes and φ is the class definition
function, assigning a class graph (Gc,→∗c) to each class in C, where

1. Gζ = (Aζ ,Ai
ζ ,A

p
ζ ,Ad

ζ ,Gζ ,✄ζ , R,Eζ , Lζ , lζ ,Mζ), where ζ ∈ C){3} are DCR
graphs with data and nested groups of activities and Aζ ∩ Aζ′ = ∅ for ζ .= ζ ′

2. →∗ζ ⊆ Aζ ×BExpAζ ×
⋃

c∈Class(RExp[Ap
c],Aζ ēi × {c}) for ζ ∈ C) {3} are the

instantiation relations, where we write a
g

→∗c p̄c′ for (a, g, (p̄, c′)) ∈ →∗c,
3. G# = A∀ ∪ G, where A∀ =

⋃
c∈C{a∀ | a ∈ Ac}

The DCR graph G# defines the top level graph, which corresponds to the
initial process. Each graph Gc for c ∈ C defines the graph that will be merged
into the top level graph when a new object of class c is instantiated.

Only activities in the top level graph G# of and OC-DCR Graph can be
executed, and the enabledness is defined exactly as for DCR graphs with data
and nested groups of activities. When it comes to defining the results of exe-
cuting activities, we need to take into account instantiation of new objects. The
meaning of the instantiation relation α→∗cp̄c′ is that activity α in the graph Gc

instantiates a fresh object defined by the class c′ with parameters p̄, i.e. a graph
Gc′ [v̄] is merged into the current graph, where v̄ is the evaluation of p̄.

We formalize the execution of the instantiation as follows. To make the pre-
sentation simpler, we assume that any activity α instantiates at most one object.
The general case would just merge in the union of all the object graphs.

Definition 7. Let Goc = (G,→ ∗, C,φ) be an OC-DCR graph with marking
M = (Ex,Re, In,Va) and class graphs (Gc,→ ∗c) for c ∈ C. For α ∈ A an
enabled activity of G such that α

g
→∗ p̄c and [[g]]M,α,c = tt and v̄ = [[ē]]M,α,c is

the value obtained by evaluating the parameter expression p̄ in the marking M ,
let G# = (A#,Ai

#,A
p
#, A

d
#,G#,✄#, R,E#, L#, l#,M#) denote the OC-DCR

graph obtained from Gc[v̄] by replacing each activity or activity group a of Gc[v̄]
with a@id for id a fresh object identifier.

The effect of executing α is then the OC-DCR Graph G′
oc = (G′,→∗, C,φ),

where G′ =

(A∪A#,Ai∪Ai
#,Ap∪Ap

#,A
d∪Ad

#,G∪G#,✄
′∪✄#, R,E∪E#, L∪L#, l∪l#,M ′),

for ✄′ = ✄ ∪ {(a, a∀ | a ∈ A#} and M ′ = Execute(M ∪ M#,α, v) if α ∈ Ai
#

(where Execute is the function defined in Definition 5) and v is the input value
provided by the environment and M ′ = Execute(M ∪ M#,α) if α .∈ Ai

#. In the
first case we write Goc

α,v→ G′
oc and in the latter we write Goc

α→ G′
oc.

Note that the execution semantics defined above includes the execution
semantics for activities that do not instantiate new objects as defined for DCR
graphs with data and nested groups of activities, by updating the marking using
the function defined in Definition 5. That is, if no objects are spawned only
the marking is updated according to the effects of the other relations. for DCR

208 T. Zuckmantel et al.

graphs with data and nested groups of activities, by updating the marking using
the function Execute defined in Definition 5. That is, if no objects are spawned
only the marking is updated according to the effects of the other relations.

Definition 8. Let Goc = (G,→ ∗, C,φ) be an OC-DCR graph with marking
M = (Ex,Re, In,Va) and class graphs (Gc,→∗c) for c ∈ C. For α ∈ A an activity
of G such that it is not the case that α

g
→∗ p̄c and [[g]]M,α,c = tt, then the effect

of executing an enabled activity α is the OC-DCR Graph G′
oc = (G′,→∗, C,φ),

if G ψ→ G′ for ψ = (α, v) or ψ = α, which we write Goc
ψ→ G′

oc.

Definition 9. A triple (Goc, A,R) is a Mixed OC-DCR Choreography when G
is an OC-DCR graph with both top level and class graphs having labels being
subsets of IntAct ∪ InpAct ∪ LocAct, and for any activity α, it holds that α ∈ Ai

ζ if
and only if l(α) =?(a, r) for some a and r.

3.2 Asynchronous Choreographies with Data-Dependent
Event-Ordering

We now introduce asynchronous interactions with general data-dependent order-
ing constraints, written as labels (a, r ! r′, ord). We assume activities that are
asynchronous interactions always have a record data type [K → V]. The value of
the activity at the time of execution of the activity by r is sent as a message
that is eventually received by r′. The extra component ord in the label is an
ordering constraint, which is a subset ord ⊆ K of the keys in the record type of
the messages. The meaning is that any two messages m1 and m2 that agree on
the values of the keys in ord, i.e. ∀k ∈ ord.m1.k = m2.k, will be received in the
order they are sent. In particular, this means that the empty ordering constraint
∅ declare a FIFO ordering of messages, since every message is received in the
order sent, while the ordering constraint K essentially corresponds to declaring
an unordered communication, since only fully identical messages will be received
in order (and thus might as well have been out of order). In between the two
extremes, we can order messages by a non-empty but true subset of keys, e.g.
in the running example for the update price interaction we can define that only
messages pertaining to the same product will be received in the order they are
sent by using the ordering constraint {PID}. Finally, we introduce for each
asynchronous interaction activity α a group of activities "α. The intuition is
that this group represents the reception of asynchronous messages. We can then
express rules constraining or reacting to the reception of a message by adding
relations to an from these groups.

We formally define the notation of asynchronous interactions with data-
dependent ordering as follows.

Definition 10. An asynchronous interaction with data-dependent ordering is a
tuple (a, r ! r′, ord), where a ∈ Act is the action name, ord ⊂fin K is the order-
ing constraint, r is the sending participant role and r′ is the receiving participant
role and r .= r′. We denote by AIntAct the set of all asynchronous interactions
over action names Act.

DACEO 209

We can now define our model DACEO, of Declarative Asynchronous Chore-
ographies with general data-dependent Event-Ordering, as DCR Choreographies
over OC-DCR Graphs and asynchronous interactions and local actions and data
actions as labels.

Definition 11. A triple (G,A,R, P) is a Declarative Asynchronous Chore-
ography with Data-dependent ordering (DACEO) Graph when G is an OC-
DCR graph with labels L ⊆ AIntAct ∪ InpAct ∪ LocAct, for some set of activ-
ity names A and for any activity α, it holds that α ∈ Ai if and only if
l(α) =?(a, r) for some a and r. We also require that there are groups of activities
{"α | l(α) ∈ AIntAct} ⊆ G, i.e. there is an activity group for each asynchronous
interaction activity. Moreover, there can be no condition or milestone relations
having a group "α as source, nor can there be any response, include, exclude or
setvalue relation having a group "α as target. Finally, if l(α) = (a, r ! r′, ord)
then the type of α is a record type [K → V] and ord ⊆ K and P (α) = (Pα, nα),
where nα ≥ 0 is an integer (representing the number of messages sent), Pα

is a set of pairs (v̄, i), where i ∈ [1 . . . nα] denote the message number and
v̄ ∈ [K → V] is a record value (of the send message) that is waiting to be received,
such that (v̄, i), (v̄′, i) ∈ Pα implies v̄ = v̄′, i.e. the message numbers are unique.

src

src.Price

[greplexists ∧ gPrice]

[gPrice]

[gPrice]

src.Price

[gPrice]

ProductService

CartService

Update Price

CartService

Update
Replicated Price

ProductService

Update Product
Price

Product
∀Price∀PID∀SID

[g]

%
[¬g]

src src

[¬greplexists]

src.Price

ProductService

Add Product

{SID}

?

?
®

src

PID

ProdutService

SID

ProdutService

Price

ProdutService

src.Price

Replicated Product
∀Price∀PID∀SID

PID

CartService

SID Price

CartService CartService

c

c

Fig. 3. A DACEO Graph expressing asynchronous update price request between Prod-
uct Service and Cart Service.

Figure 3 shows an extension of the DCR graph from Fig. 2 with the elements
introduced in this section. The relationships between Update Product Price and

210 T. Zuckmantel et al.

Update Price, as well as Update Price and Update Replicated Price are already
known from the previous example. The following two things have fundamentally
changed in the choreography.

Firstly, instead of having a fixed set of products and replicated products,
we use objects with class ids Product and Replicated Product, illustrated with a
small c, for allowing dynamic spawning of these objects. Both classes have three
members PID, SID and Price in this example, which are represented in the
illustration by showing the data activities, together with the corresponding ∀-
groups. When a new product is spawned, the three members SID, PID and Price
are instantiated accordingly with the values of the record value in the Create
Product activity. The record is directly accessible by using the src keyword
and can be passed for instantiation. For example, if activity Create Product is
executed with record p = {(SID, 1), (PID, 101), (Price, 1000)}, then p can be
accessed in the spawn relation with the src-keyword as instantiation, and the
three activities SID containing value 1, PID containing value 101, and Price
containing value 1000, are sorted into the three ∀-groups together with a fresh
unique object id. The guard gprice is used here to find the price activity that is
linked to the desired product to be changed.

gprice = ∃α ∈ A.l(α) == PID ∧ α == src.PID ∧ α.oid == src.oid

It expresses that we only change the value of the price for the Price activity that
is assigned to the correct PID activity, using the object identifier (oid) to link
the two activities together.

Secondly, the previously synchronous interaction Update Price from Fig. 2 is
now an asynchronous interaction. The order of the messages to be sent is dis-
played graphically in the top right-hand corner. In our example, the order of
incoming messages must be maintained according to their causality in relation
to the seller identification. The group labelled " next to the asynchronous inter-
action is a container that graphically contains the messages that have been sent
but not yet received. We show an example of this in the next section.

Last, the Update Replicated Price activity activates the spawning of a new
replicated product if the product whose price is to be changed is not yet con-
tained in the set of replicated product objects. This occurs when the price of a
product is changed for the first time, as the addition of a new product within the
ProductService does not automatically lead to an addition in the CartService. If
the product already exists, the price of the desired replicated product is changed
in the same way as before int the ProductService. The guard greplexists is used
here as a negated guard to check for non existence of the replicated product
on the →∗ relation and in on the →= relation to verify the existence of the
replicated product.

greplexists = ∃α ∈ A.l(α) == PID ∧ α == src.PID

DACEO 211

3.3 Semantics

The semantic of DACEO Graphs extends the semantics of mixed OC-DCR
Choreographies to take into account the messages waiting to be received. This
is done by considering the graph obtained by extending the graph with pending
activities corresponding to the messages pending to be received. Figure 4 shows
a graphical representation of a part of the DACEO Graph for the running exam-
ple consisting of only the Update Price asynchronous interaction and the local
Update Replicated Price activity of the Cart Service. The sub Fig. 4a

to the left shows the state of the message channel after the sending of three
messages and the order that can be derived from the order constraint {SID}
is shown by an arrow from message number 1 to message number 2. The sub
Fig. 4b

to the right shows the updated state after the execution of the reception of
message number 3. Note that due to the response relation •→, the local activity
Update Replicated Price is now pending (indicated with an exclamation mark in
the top left corner), i.e. it is in the Re set of the marking. The milestone relation
→(will now block the reception of further messages until Update Replicated
Price has been executed. Finally, due to the →= relation, the value of the local
activity Update Replicated Price has been set to the value of the message.

Fig. 4. .

Definition 12. Let (G,A,R, P) be a DACEO Graph having the set of activities
A and marking M . Let the graph G! be the graph obtained from G by extending

212 T. Zuckmantel et al.

the activities to A! = A∪P, the grouping relation to ✄! = ✄ ∪ {((α,m),"α) |
(α,m) ∈ P} and extending the marking to M! = (Ex,Re∪P, In∪P,Va!), where
P =

⋃
α∈A{(α,m) | m ∈ P (α)} is the union of all the message sets defined

by P (guaranteed to be disjoint by adding the activity id to each message) and
Va!(α) = v̄, if α = (α′, (v̄, j)) ∈ P and Va!(α) = Va(α) for α ∈ A.

We can now define when activities and message reception is enabled by using
the standard definition of enabledness for the graph extended with explicit mes-
sages and taking the ordering constraint on messages into account.

Definition 13. Let Gaoc = (G,A,R, P) be a DACEO Graph having the set of
activities A and marking M . An activity or reception of a message α ∈ A∪P is
enabled in Gaoc, which we write enabled(Gaoc,α), if and only if enabled(G!,α)
and if α = (α′, (v̄, i)) and l(α′) = (a, r ! r′, ord) then ∀(v̄′, i′) ∈ P (α′).((∀k ∈
ord.v̄.k = v̄′.k) =⇒ i ≤ i′).

The execution of asynchronous interactions α is extended to also adding a
new message to the set P (α) of messages waiting to be received.

Definition 14. Let Gaoc = (G,A,R, P) be a DACEO Graph having the set of
activities A and marking M = (Ex,Re, In,Va). If enabled(Gaoc,α) and l(α) =
(a, r ! r′, ord) then the effect of executing α is G′

occ = (G′, A,R, P ′) if G α→ G′

and P ′(α) = (Pα ∪ {(Va(α), n)}, n + 1) if P (α) = (Pα, n) and P ′(α′) = P (α′)
for α′ .= α.

Dually, the execution (i.e. reception) of an enabled messagem in P (α) waiting
to be received removes the message from the set P (α), formally defined as follows.

Definition 15. Let Gaoc = (G,A,R, P) be a DACEO Graph. If enabled(G, (α,
m)) for (α,m) ∈ P then the effect of executing the reception of (α,m) is G′

occ =

(G′, A,R, P ′) if G! (α,m)→ G′′ and P ′(α) = (Pα\{m}, n) if P (α) = (Pα, n) and
P ′(α′) = P (α′) for α′ .= α, and G′ is the graph obtained from G′′ by removing
all the explicit message activities from the set of activities, the nesting relation
and the marking.

3.4 Encoding DACEO Graphs as OC-DCR Choreographies

We now describe how a DACEO Graph Gaoc can be encoded as a semantically
equivalent OC-DCR Choreography enc(Gaoc). Figure 5 illustrates the encoding
of the asynchronous interaction activity and the local activity in the CartService,
shown in the state after three messages have been sent as illustrated in Fig. 4a.

DACEO 213

®Update Price

®UP Nr

% %
ProductService

UP Channel

Update Price
UP Channel UP Channel

UP Channel

Counter

=3

tgt + 1

{(®UP,src),(Nr,Counter+1)}

c

®UP@2
={(PID,102),(SID,1),(Price,50)}

∀®UP

∀Nr

®UP@1
={(PID,101),(SID,1),(Price,1000)}

®UP@3
={(PID,52),(SID,4),(Price,233)}

%

Nr@1

Nr@2

Nr@3

=1

=2

=3

CartService

Update
Replicated Price

src

= {(PID,52),(SID,4),(Price,233)}

!

[gord]

%

UP Channel

UP Channel

UP Channel

UP Channel

UP Channel

UP Channel

!

!!
CartService

CartService

CartService

CartService

Fig. 5. Encoding of the example in Fig. 4 as OC-DCR Graph.

The idea of the encoding is to explicitly model the messages as objects instan-
tiated at a channel. Firstly, for each asynchronous interaction activity α labelled
(a, r ! r′, ord) we introduce a message channel αChannel as a new partici-
pant role and a class "α representing the messages. The class "α is defined
as an OC-DCR Choreography containing one interaction activity "α with label
("a,αChannel → r′) (encoding the message delivery) and one data activity Nr
with label (Nr,@aChannel) (encoding the message numbering). The interac-
tion activity "α has an exclude relation to itself (modelling that the message
can only be received once) and is pending, i.e. it is in the response set of the
marking of the class, modelling that the message must eventually be received.
Finally, we model the message ordering by a condition relation from the activity
group ∀"α to itself, which is guarded by an expression gord that encodes the
ordering constraint. The expression consists of two parts gord = g′

ord∧gsent, where
g′
ord = ∀k ∈ ord.tgt.k = src.k encodes the messages that must be ordered, and
the second part gsent = ∃αs,αt.l(αs) = l(αt) = (Nr,@αChannel) ∧ αs.oid =
src.oid ∧ αt.oid = tgt.oid ∧ αs < αt encodes the order in which these messages
were sent. (The expression ∃αs,αt.l(αs) = l(αt) = (Nr,@αChannel)∧ αs.oid =
src.oid ∧ αt.oid = tgt.oid encodes that αs and αt are the Nr activities in the
objects of, respectively, the source and target message activities for the condition
relation).

Then, we replace the asynchronous interaction activity by a synchronous
interaction (a, r → aChannel) that instantiate a message object from the message
class "a, containing the original message as an activity and a sequence number

214 T. Zuckmantel et al.

data activity, in the Ether. The message activities are pending synchronous
interactions from the Ether to the role r′ that excludes themselves, i.e., they
have an exclusion relation from themselves to themselves. Finally, the delivery
ordering of the messages is encoded by a condition relation from all the messages
of instantiated objects to themselves, guarded by the ordering constraint. In
order to encode the increasing order numbering of messages, we introduce a
counter data object with the role αChannel which initially contains the integer
value 0. We then add a set value relation from the interaction activity α labelled
(a, r ! r′, ord) (encoding the sending of the message) to the counter data object,
which has the expression tgt+ 1, i.e. it evaluates to the increment of the value of
the target activity. We can then use the value of this data activity as a parameter
when we instantiate a new message object.

The final step is to replace all the relations from the activity group "α in
Gaoc with relations from the activity group ∀"α representing all the message
activities in the class "α.

We are now ready to state the semantic correspondence. In lack of space we
only provide the proof idea.

Theorem 1. For a DACEO Graph Gaoc, the OC-DCR Choreography enc(Gaoc)
has equivalent transition semantics.

Proof Idea: The correspondence follows by inspecting the semantics of DACEO
and OC-DCR Grahps. In order to formally specify the correspondence, we first
extend DACEO graphs with an extra set RM(α) of received messages for each
asynchronous interaction activity α and extend Definition 15 such that the
received messages are added to this set. We can now define the corresponding syn-
chronous OC-DCR Choreography by the above mapping and mapping the received
messages to message objects with excluded message data objects.

4 Conclusion and Future Work

In this paper, we introduced DACEO, a formal modeling language designed for
declarative asynchronous choreographies with data-dependent message order-
ing and data objects. By equipping DACEO with an execution semantic, we
enable effective modeling of asynchronous distributed event-based systems where
total message delivery ordering cannot be assumed. Our model builds upon
and extends the prior work on synchronous declarative choreography models
based on DCR Graphs with object-centric Dynamic Condition Response Graphs,
ensuring compatibility and semantic preservation. We demonstrated its practical
applicability through a running example of an online marketplace, showcasing
how it enforces causal consistency constraints in an asynchronous, event-based
microservices architecture. This example highlights the potential of DACEO in
real-world scenarios, providing a robust framework for managing complex data-
dependent interactions. Overall, DACEO represents a significant advancement
in the modeling of asynchronous choreographies.

DACEO 215

In future work, we aim to explore the potential of endpoint projection, which,
while not necessary for monitoring, can facilitate the creation of individual pro-
cesses for each participant based on the global specification. This approach could
enhance the flexibility and scalability of our model. Additionally, we plan to
extend our framework to support more than binary message exchanges between
participants, thereby enriching the interaction patterns. By incorporating asyn-
chronous semantics into the executable DCR model, we can achieve an exe-
cutable model that enforces event ordering, further strengthening the robustness
and applicability of our approach in distributed systems.

References

1. Aalst, W.: Object-centric process mining: dealing with divergence and convergence
in event data. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS, vol. 11724,
pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30446-1_1

2. Bailis, P., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Bolt-on causal consistency. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’13, pp. 761–772. Association for Computing Machinery, New
York (2013). https://doi.org/10.1145/2463676.2465279

3. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In: Bliudze, S.,
Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50029-0_6

4. Calvanese, D., Montali, M., Patrizi, F., Rivkin, A.: Modeling and in-database
management of relational, data-aware processes. In: Giorgini, P., Weber, B. (eds.)
CAiSE 2019. LNCS, vol. 11483, pp. 328–345. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-21290-2_21

5. Christfort, A., Rivkin, A., Fahland, D., Hildebrandt, T., Slaats, T.: Discovery of
object-centric declarative models. In: Proceedings of 6th International Conference
on Process Mining ICPM (2024)

6. Ciccio, C.D., Marrella, A., Russo, A.: Knowledge-intensive processes: characteris-
tics, requirements and analysis of contemporary approaches. J. Data Semant. 4,
29–57 (2015). https://api.semanticscholar.org/CorpusID:16082882

7. Costa Seco, J., Debois, S., Hildebrandt, T., Slaats, T.: Reseda: declaring live event-
driven computations as reactive semi-structured data. In: 2018 IEEE 22nd Inter-
national Enterprise Distributed Object Computing Conference (EDOC), pp. 75–84
(2018). https://doi.org/10.1109/EDOC.2018.00020

8. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachability:
complexity in dynamic condition-response graphs. Acta Informatica 55(6), 489–520
(2017). https://doi.org/10.1007/s00236-017-0303-8

9. Dezani-Ciancaglini, M., Drossopoulou, S., Mostrous, D., Yoshida, N.: Objects
and session types. Inf. Comput. 207(5), 595–641 (2009). https://doi.
org/10.1016/j.ic.2008.03.028. https://www.sciencedirect.com/science/article/pii/
S0890540109000261

10. Ferreira Loff, J.a., Porto, D., Garcia, J.a., Mace, J., Rodrigues, R.: Antipode:
enforcing cross-service causal consistency in distributed applications. In: Proceed-
ings of the 29th Symposium on Operating Systems Principles, SOSP ’23, pp. 298–
313. Association for Computing Machinery, New York (2023). https://doi.org/10.
1145/3600006.3613176

216 T. Zuckmantel et al.

11. Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular
session types for distributed object-oriented programming. In: Proceedings of the
37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’10, pp. 299–312. Association for Computing Machinery, New
York (2010). https://doi.org/10.1145/1706299.1706335, https://doi.org/10.1145/
1706299.1706335

12. Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Delta-BPMN: a concrete lan-
guage and verifier for data-aware BPMN. In: Polyvyanyy, A., Wynn, M.T., Van
Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 179–196. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_13

13. Hildebrandt, T.T., López, H.A., Slaats, T.: Declarative choreographies with time
and data. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds.)
Business Process Management Forum, vol. 490, pp. 73–89. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-41623-1_5

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1) (2016). https://doi.org/10.1145/2827695

15. Laigner, R., Zhang, Z., Liu, Y., Gomes, L.F., Zhou, Y.: Online marketplace: a
benchmark for data management in microservices. Proc. ACM Manag. Data 3(1)
(2025). https://doi.org/10.1145/3709653

16. Laigner, R., Zhou, Y., Salles, M.A.V., Liu, Y., Kalinowski, M.: Data manage-
ment in microservices: state of the practice, challenges, and research directions.
Proc. VLDB Endow. 14(13), 3348–3361 (2021). https://doi.org/10.14778/3484224.
3484232

17. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: scalable causal consistency for wide-area storage with cops. In: Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11,
pp. 401–416. Association for Computing Machinery, New York (2011). https://doi.
org/10.1145/2043556.2043593

18. Maggi, F.M., Marrella, A., Patrizi, F., Skydanienko, V.: Data-aware declarative
process mining with sat. ACM Trans. Intell. Syst. Technol. 14(4) (2023). https://
doi.org/10.1145/3600106

