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Abstract. Aggregate computing is a paradigm with over a decade of
investigation and multiple programming frameworks available, which
proved to be particularly suitable for the simulation of applications in
challenging domains such as smart cities and robot swarms. This paper
introduces a toolchain for practical multi-robot demonstrations based on
aggregate computing principles, and validates it with a live interactive
demo in an open-public event in the context of the European Researchers’
Night. More specifically, we show how we coordinated a team of mobile
robots to form spatial patterns. We discuss the practical demonstration
performed in an indoor environment, which exploits a camera system
and ArUco markers for localization.

Keywords: Aggregate computing · Field-based coordination ·
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1 Introduction

Research Context. The rapid proliferation of Internet of Things (IoT) devices,
pervasive [28] and collective [2] computing systems has created an unprecedented
challenge in programming and coordinating highly distributed systems. Tra-
ditional programming approaches struggle to handle the complexity of these
systems, where hundreds or thousands of devices need to work together seam-
lessly [20]. In particular, the coordination of robot teams is a challenging task,
as issues related to localization, communication, and actuation add on top of
the already complex problem of coordinating a group of devices. Several solu-
tions have been proposed to address this challenge, including so-called macro-
programming languages [12,22] that aim to address collective behaviour through
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meso- or macro-scopic abstractions (e.g., spatiotemporal patterns, ensembles,
collective interfaces and data structures). Examples include swarm-specific lan-
guages such as Buzz for practical swarm robot programming [26], high-level
frameworks like Voltron for team coordination [21], and logic-based approaches
like Meld for programming modular ensembles of robots [7]. In this paper, we
focus on the aggregate computing paradigm [10] which emerges as a powerful
paradigm to address this challenge, introducing computational fields [10,18] as
a key abstraction to program the collective behavior of a group of (possibly sit-
uated) devices. This paradigm now has over a decade of investigation [30], with
several programming frameworks like ScaFi [13], and FCPP [9] that provide
the necessary abstractions to program aggregate systems and also led to several
applications in smart cities and robotics [4].

Research Gap. Real-world deployment of aggregate systems faces several chal-
lenges. First, while theoretical foundations for general-purpose deployment meth-
ods exist (e.g., Pulverization [16]), practical toolchains tend to depend highly on
the specific application context, making it difficult to devise generic platforms.
This technical barrier, combined with the high costs associated with large-scale
implementations, often complicates the translation of theoretical advances into
widespread practical use. Consequently, real-world demonstrations of aggregate
computing remain limited in scope. Hence, there is a need to improve the under-
standing of the paradigm’s practical potential, possibly also positively impacting
transition from theoretical validation (Technology Readiness Level [23], TRL 3)
to system prototype demonstration in relevant environments (TRL 6).

Contribution. In this paper, we present a demonstrator for deploying aggre-
gate computing solutions in real-world robot coordination scenarios. This is an
entirely open-source tool [5], and can hence be used by anyone to run analogous
or even more advanced demonstrators. This artifact is based on the MacroSwarm
library [4] and the ScaFi programming framework [13]. Our contribution is three-
fold: (i) we propose a flexible and modular framework for deploying aggregate
programs on robot teams, addressing key requirements such as localization, pro-
gram distribution, and hardware abstraction; (ii) we implement a demonstrator
that showcases the framework’s capabilities using low-cost robots and vision-
based localization; (iii) we validate our approach through a public demonstra-
tion at the European Researchers’ Night, showing the effectiveness of aggregate
computing in coordinating robot teams through spatial formations.

Paper Structure. The remainder of the paper is structured as follows. Section 2
provides an overview of aggregate computing and the ScaFi framework, as well as
the MacroSwarm library. Section 3 describes the architecture of our framework
and the requirements needed to deploy an effective aggregate system in a real
team of robots. Section 4 presents the live demonstration held at the European
Researchers’ Night, detailing the setup, the execution, and the impact. Section 5
concludes the paper and outlines future work.
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2 Background

2.1 Aggregate Computing in Practice

Aggregate computing is a programming paradigm that simplifies the develop-
ment of distributed and decentralized systems by abstracting computations over
networks of interacting devices as a single collective entity. At its core, aggregate
computing introduces computational fields [10,18], mapping points in space and
time with values that can be combined functionally. This paradigm enables the
declarative specification of high-level behavior, providing robust and scalable
coordination mechanisms.

Over the years, several frameworks have been developed to support aggregate
computing, including ScaFi [13], and FCPP [9]. Each of these frameworks pro-
vides the core constructs of the higher-order computational field calculus [10],
which serves as a foundation for “building blocks” that enable information prop-
agation, retrieval, and evolution in time. These foundational building blocks
constitute the backbone of libraries containing self-stabilizing [15] higher-level
functions, including general-purpose [13] and specialized collective behaviours
for domains such as swarm robotics [4] or hierarchical coordination [25].

Recent advances in aggregate computing research have explored its deploy-
ment on resource-constrained devices [8,16], enabling real-world applications
where small embedded systems execute aggregate computations efficiently.
For instance, lightweight implementations [9] allow the execution of aggregate
programs on microcontrollers and low-power embedded boards, making the
paradigm suitable for IoT networks and robotic systems. Among the available
frameworks, ScaFi [13] stands out as a Scala-based aggregate computing envi-
ronment designed to be usable both in simulation and real-world deployment.
ScaFi provides a high-level Application Programming Interface (API) to define
aggregate computations concisely while supporting extensibility for integrating
with different execution environments.

2.2 Robot Programming with Aggregate Computing

In this paper, as a reference scenario for demonstration purposes, we select the
field of swarm robotics, as it is one of the target applications highlighted in vari-
ety of recent works, including environmental monitoring [3], search and rescue,
and, in particular, wildlife monitoring (e.g., tracking the movement of zebras in
the wild [17]).

To respond to the emergent need for aggregate computing applications in
swarm robotics, MacroSwarm [4] has been proposed as a minimal yet functional
set of building blocks for swarm behavior, ranging from pattern formation to
collective decision-making (see Fig. 1 to grasp the idea of the behavior which
can be programmed with MacroSwarm). In the following, we briefly describe the
assumptions on which the MacroSwarm library is based, to better understand
the requirements upon which the demonstrator is built.
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Fig. 1. Some of the patterns that can be programmed with MacroSwarm. From top
left to bottom right: constant movement, sink to leader, branching (multiple direction),
obstacle avoidance, flock (Reynold like), team formation, and various shapes

System Model. A MacroSwarm system consists of a collection of devices, each
equipped with sensors and actuators. Each device communicates with its neigh-
bors, defined by a neighborhood relationship, enabling inter-device interaction.
Communication is identity-based, allowing devices to uniquely recognize one
another. Moreover, every node must be capable of determining its own posi-
tion in the environment as well as the positions of its neighbors. These minimal
assumptions are essential for the effective execution of programs built upon the
MacroSwarm framework.

Execution Model. MacroSwarm is built on ScaFi and leverages an asynchronous,
atomic execution of computation rounds. Each round consists of three distinct
phases:

1. Sensing: Every device gathers data from its local state and receives infor-
mation from its neighbors, forming the context for the next computation.

2. Computation: The device evaluates the MacroSwarm program over the con-
structed context, generating messages for further communication and the
actuation intent.

3. Actuation: Based on the computed intent, the device updates its local state
and transmits the corresponding message to its neighbors.

This continuous, asynchronous evaluation of MacroSwarm scripts is key to the
emergence of complex behavior (e.g., flocking and formation patterns, see Fig. 1).
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In MacroSwarm, actuation is represented as a velocity vector sent to each robot.
The robot then converts this vector into the appropriate actuation command for
execution.

Deployment Model. As described in the system model section, MacroSwarm
adopts a peer-to-peer architecture. Nonetheless, several deployment approaches
have been explored over the years, enabling the system to operate in a central-
ized, distributed, or hybrid manner. Early studies focused on general architec-
tures, which eventually evolved into a more complex deployment model known
as pulverization [16]. In this model, each node is conceptualized as comprising
five main components: sensors, actuators, state, behavior (where the program is
actually executed), and communication (which defines the neighborhood poli-
cies). In conclusion, this flexibility allows for deployment in both fully decen-
tralized setups and centralized server-based configurations, thus broadening the
range of possible applications and solutions.

2.3 Related Works

The challenge of programming and coordinating teams of robots has spurred the
development of diverse methodologies and tools. Traditional approaches often
require low-level control with C/C++ for hardware interfacing, while simulation
environments typically leverage high-level languages like Java and Python [6,21,
26].

Numerous frameworks and architectures aim to simplify this development
process. The Robot Operating System (ROS) serves as a widely adopted foun-
dation, providing a rich set of tools and libraries that can be extended for
multi-robot coordination [1]. Domain-specific solutions include ALLIANCE for
heterogeneous swarm control [24], actor-based frameworks for cooperative task
programming [31], and specialized languages like Buzz designed specifically for
practical swarm robotics programming [26]. Frameworks such as Voltron focus on
team coordination [21], while logic-based approaches like Meld enable program-
ming for modular robot ensembles [7]. Simulation environments play a crucial
role in robotics development, with tools enabling large-scale testing before physi-
cal deployment [19,27,29]. However, bridging the persistent simulation-to-reality
gap remains a critical challenge, necessitating practical validation on physical
hardware [14].

Our work contributes to this landscape by providing a practical demonstrator
toolchain for robot team coordination that bridges the gap between simulation
and physical deployment. The toolchain enables accessible execution of aggregate
programs on real robots, making it possible to create effective demonstrations of
aggregate computing concepts for both technical and non-technical audiences.
Moreover our demonstrator prioritizes hardware abstraction and extensibility
through a modular architecture that accommodates diverse localization methods
and robot platforms.
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3 Demonstrator Description

In this section, we first describe the requirements needed to deploy an effective
aggregate system in a real team of robots for a demonstration based on the sys-
tem model of MacroSwarm. Then, we present the architecture of our framework,
which is designed to be flexible and adaptable to different deployment scenar-
ios, ranging from centralized to fully distributed, thanks to the flexibility of
the deployment model of MacroSwarm. The framework, based on ScaFi, is free,
open-source, and publicly available on GitHub [5] under a permissive license.

3.1 Requirements

An aggregate program for a team of robots must satisfy several requirements to
be effective in coordinating robots. In the development of our demonstrator, we
identified the following requirements:

R1 : Robot Positioning System. Several aggregate computing algorithms rely on
the knowledge of the relative position of the robots in the team, like the gradient
computation (used to shared information) or several spatial formation pattern
(like the circle or the line) discussed in MacroSwarm. To satisfy this requirement,
it should exist a way to localize the robots in the environment, e.g., using GPS
in the case of outdoor environments or using a camera system and marker in the
case of indoor environments. These positions should also consider the orientation
of the robots, as it is essential for the correct execution of the formation patterns,
and the identifier, since the robots should be able to recognize each other.

R2 : Homogenous Aggregate Program Loading. Typically, in aggregate comput-
ing, all robots in the team compute the same program. This is due to the inher-
ent nature of macro-programming, which encodes the collective behavior, letting
the interpreter/compiler break it down into the local behavior of each robot. To
satisfy this requirement, the framework must provide a mechanism to deploy
the same program across all robots in the team. This deployment should sup-
port runtime updates without requiring system shutdown, enabling seamless
program evolution during operation. While transient states may occur during
updates where robots temporarily execute different program versions, the aggre-
gate abstraction handles this by treating robots running older versions as exter-
nal entities until synchronization completes.

R3 : Neighborhood Policy. Another fundamental concept in aggregate comput-
ing is the definition of a neighborhood, namely, the set of robots a robot can
communicate directly with. To support aggregate computations, the framework
must define the neighborhood relationship between robots. It may be based on
spatial distance, connectivity, or other criteria.

R4 : Actuation Agnosticism. The aggregate computing evaluation should not be
tied to a specific actuation system or robot. Instead, the same aggregate program
should be able to run on different robots with different actuation systems. In
MacroSwarm, the actuation system is abstracted away: the idea is to output
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Fig. 2. Framework architecture showing the system workflow. Steps 1–3 represent the
information processing pipeline: from environment detection through program evalua-
tion to command execution, while step 4 illustrates the physical actuation that modifies
the environment state.

an “actuation intent”–say, just a velocity vector–that is then sent to the robot,
which is responsible for executing it by converting it into the actual actuation.

R5 : Platform Agnosticism. Any robot should be able to join the team and exe-
cute the aggregate program, regardless of its harware platform and software
configuration. This requirement is an extension and generalization of R4. The
framework should support both robot-local and remote execution of the aggre-
gate program, and robots must be allowed to join and leave the team at any
time.

3.2 Architecture

To satisfy the requirements introduced in Sect. 3.1, the proposed architecture
provides the following main abstractions: Environment, Robot, Orchestrator,
EnvironmentProvider, and EnvironmentUpdate. In the following, we describe
each of these abstractions and their role in the framework.



A Demonstrator for Self-organizing Robot Teams 237

Environment. This abstraction provides a digital representation of the deploy-
ment context, encompassing all information required for aggregate program eval-
uation and context creation. Specifically, it maintains the state of the robot team
(R2), their neighborhood relationships (R3), and additional metadata essential
for program execution.

Robot. The Robot abstraction encapsulates the digital identity of each robot
in the Environment, along with communication-related metadata required for
system operation. For centralized deployments, this includes network parameters
such as IP addresses. This representation maintains hardware independence,
adhering to requirement R5.

EnvironmentProvider. This component addresses requirement R1 by gener-
ating and maintaining the Environment representation of the robot collective.
The implementation may leverage various robot localization technologies, from
camera-based systems to GPS. Additionally, it handles neighborhood policy def-
inition (R3), which may be based on physical distance or alternative criteria.

Orchestrator. Following requirement R2, this component manages program
distribution and execution across the robot collective. In centralized deploy-
ments, it handles program loading and evaluation on the server for the entire
team. Starting from the Environment representation, the Orchestrator cre-
ates the context for each robot, and then it computes velocity vectors for robot
actuation. The architecture also supports message passing to enable distributed
scenarios.

EnvironmentUpdate. This component implements requirement R4 by managing
actuation. It translates the computed velocity vector into robot-specific com-
mands, ensuring compatibility across heterogeneous robot platforms.

Centralized Versus Distributed Deployment. While our demonstrator is based
on a centralized implementation, the architecture supports distributed execu-
tion, where each robot can host its own Orchestrator, EnvironmentProvider
and EnvironmentUpdate instances. Indeed, it is crucial to distinguish between
(i) the deployment and execution implementation of the aggregate system and
(ii) the logically decentralized computation implied by the aggregate program,
which is conceptually the same despite a centralized Orchestrator is used in
place of robot-to-robot communication and local program evaluation. The coor-
dination patterns, spatial formations and self-healing behaviors, arise from field-
based computations where each robot’s actions derive from neighbor interactions
encoded in the program. The aggregate computing abstraction ensures these
coordination mechanisms remain consistent whether executed centrally or in a
distributed manner [12,16].

3.3 Behavior and Interaction

In this demonstrator, we leverage a centralized deployment, where a server per-
forms the core computation and robots are responsible for performing actua-
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tion. In particular, the computation is divided into three main steps (depicted
in Fig. 2):

1. The EnvironmentProvider creates the Environment representation of the
robots in the team, using a camera system to localize them in the environment.

2. The Orchestrator loads the aggregate program on the central server and
evaluates that program for all the robots in the team.

3. The EnvironmentUpdate translates the velocity vectors resulting from the
aggregate program into robot-specific commands.

Although these macroscopic steps are conceptually divided into sequential
phases, in general their practical execution happens concurrently—sometimes
necessarily. For instance, in our case, the EnvironmentProvider must execute
in parallel with the Orchestrator, as the cameras provide a continuous stream
of data flowing in faster than the Orchestrator and EnvironmentUpdate can
process (mostly because of network-related latencies). Executing the components
sequentially would force us to skip frames, losing valuable information about the
system state (for instance, hindering noise detection).

4 Live Demo at the European Researchers’ Night

We showcase the effectiveness of our demonstrator during the European
Researchers’ Night1. In the following, we describe the demo objectives (Sect. 4.1),
setup (Sect. 4.2), implementation details (Sect. 4.3) and the results (Sect. 4.4).

4.1 Objectives

In addition to satisfying the technical requirements outlined in Sect. 3.1, this
demonstration aims to make the topics of aggregate computing accessible and
easy to understand. By showcasing an engaging solution for coordinating robot
teams, we illustrate the practical potential of the paradigm, demonstrating how
intuitive spatial formations and self-healing behavior emerges from simple, col-
lective computations. In particular, we aim to highlight the following properties
of aggregate computing:

G1–Spatial formation: among the patterns available in MacroSwarm, we chose
to showcase spatial formation because it is a non-trivial, visually appealing
behavior requiring coordination among robots easily understood by a general
audience.

G2–Self-healing ; aggregate programming is inherently robust to disturbances
and node failures—see recent work on quasi-static approximation [4]. To
check this property in a real-world scenario, we introduced controlled
perturbations–such as unplanned robot movements or temporary node
removals– and observed whether the system could autonomously reconfigure

1 https://www.nottedeiricercatori-society.eu/eventi/ecosistemi-coordinati-di-robot-
programmabili, archived for future reference at https://archive.is/yixcd.
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Fig. 3. Setup for the researchers’ night. A camera system was used to localize the
robots in the environment with the ArUco marker system. The central server was
responsible for the computation, while the robots executed the commands sent by the
EnvironmentUpdate component.

to restore the intended formation. To make this part interactive and engag-
ing, we invited the audience (including children) to cause perturbations to
the system.

G3–Scalability and Topology independence: Aggregate programs should perform
effectively regardless of team size or configuration. The demonstrator high-
lights this adaptability by dynamically varying the number of robots, thereby
confirming that the coordination logic remains robust and consistent even as
the network topology changes.

4.2 Setup

For this demonstration, we used a centralized setup (see Fig. 3) in which the
primary computations were executed on a central server. The robots, with lim-
ited computation capabilities, were instead responsible for the execution of the
commands sent by the EnvironmentUpdate component. Specifically, the demo
was performed with a team of five Rover Wave robots2, based on the ESP32
microcontroller—a low-cost device with Wi-Fi capabilities.

The EnvironmentProvider used a camera system to localize the robots in
the environment (R1), leveraging the ArUco marker system for detecting mark-

2 https://archive.is/D3j0T.
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ers in images3, in conjunction with the computer vision library OpenCV [11].
Additionally, the EnvironmentProvider defined the neighborhood policy based
on the detected robot positions. For our demo, we approximated the camera field
of view (1920× 1080 pixels) as an equirectangular projection of the arena floor,
then computed distances based on the pixel coordinates of the markers, consid-
ering as neighbors those within 200 pixels of each robot. Although imprecise as
a general-purpose indoor localization system, this approach was precise enough
for the demonstration’s purposes (R3).

Subsequently, the Orchestrator loaded the aggregate program on the cen-
tral server (R2) and evaluated the program for all robots following the execution
model described in Sect. 2. Finally, the EnvironmentUpdate component trans-
mitted the respecting command to each robot. In this context, the velocity vector
is translated from Cartesian coordinates into polar coordinates (Euclidean norm
and angle relative to the camera horizontal axis), then sent to robots, satisfying
requirements R4 and R5.

4.3 Implementation Details

For this demonstration, we utilize the circle and line formations. The circle pat-
tern arranges robots equidistantly around a central leader node, while the line
formation positions robots sequentially along a straight path. The code in Fig. 4
will produce a circle or line formation based on the effective implementation of
computeFormation. The computeFormation function calculates the target posi-
tions for each robot based on the selected formation (circle or line) and the
robots’ relative positions. The leader robot acts as the center of the formation,
and the other robots move to their assigned positions around it—see Fig. 5 for
the circle formation.

4.4 Results

The experimental results are depicted in Fig. 5, 6 and 7. As shown, the robots
effectively converged to the desired circle or line formation, demonstrating the
framework’s ability to coordinate the team (G1). To verify the topology inde-
pendence property, we conducted experiments with varying team sizes (from 3
to 5 robots), observing consistent formation behavior across different configura-
tions (G3). Finally, we tested the self-healing capabilities (G2) by introducing
controlled failures (moving robots as in Fig. 6 and changing the robot team size
as in Fig. 7) during formation, confirming the system’s ability to automatically
reconfigure and maintain the desired geometric pattern.

As an additional challenge for the system, we let the audience perturb the
robots by moving them around, finding that, if given enough time, the swarm
was able to recover the formation even after significant disturbances. Having
children interact with the system was particularly engaging: they tended to play

3 https://archive.is/lpTB2.



A Demonstrator for Self-organizing Robot Teams 241

Fig. 4. Programming a robot formation in MacroSwarm.

Fig. 5. Example of the circle formation performed by the robots. On the left there is
the computation performed in simulation, in the middle the robots start in a random
position, and then they converge to the circle formation (right).

Fig. 6. Example of self-healing in a line formation: one robot in the middle (green
circle) is perturbed (i.e., moved towards) and then eventually come back to a line
formation (right). (Color figure online)

with the robots, disturbing them continually and preventing the pattern forma-
tion completion, a condition that was not foreseen in the initial design of the
demonstration. This kind of interaction, however, was beneficial for the demon-
stration, as we could also observe how the system reacted to continuous noise: the
swarm approximated the formation without diverging, showing that the system
converges to stability even with continued perturbations.
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Fig. 7. Example of self-healing in a circle-formation: a new robot is added to the team
(middle, green circle), and the other robots reconfigure to maintain the circle formation.
(Color figure online)

5 Conclusion and Future Work

In this paper, we presented a demonstrator for self-organizing robot teams
based on aggregate computing principles. Our artefact, built upon ScaFi and
MacroSwarm, bridges the gap between theoretical foundations and practical
implementations, providing a flexible and modular architecture that satisfies
key requirements for real-world deployments. Through our demonstration at the
European Researchers’ Night, we validated the effectiveness of our approach,
successfully showcasing fundamental aggregate computing properties including
self-healing capabilities, topology independence, and spatial formation patterns.
Additionally, the demonstration engaged a broad audience, including families
and children.

Future work will focus on expanding the framework’s capabilities in several
directions: (i) supporting heterogeneous robot teams including ground robots
and UAVs, (ii) implementing more complex spatial formations and coordina-
tion patterns, (iii) supporting mixed reality to show high-density scenarios in a
more effective way, (iv) developing user-friendly interfaces for programming and
monitoring aggregate systems, (v) investigating robustness against adversarial
moving obstacles that may disrupt coordination and pattern formation.
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