
Formalizing Errors in CCS with 3-Valued
Logic

Alessandro Aldini(B) and Claudio Antares Mezzina(B)

University of Urbino Carlo Bo, Urbino, Italy

alessandro.aldini@uniurb.it, claudio.mezzina@uniurb.it

Abstract. Concurrent and distributed systems are often prone to fail-
ures. Errors in modeling an agent’s behavior can propagate into large
interacting systems with unexpected consequences. In this paper, we
propose a theory for the process algebra CCS enriched with a formal
and explicit representation of errors based on McCarthy’s style three-
valued logic, which includes the traditional Boolean values and a third
error value. In this setting, we formally study how the emergence of local
errors may or may not result in propagation, as also emphasized in a real-
world case study modeling a distributed microservices architecture.

1 Introduction

Concurrent and distributed systems are fundamental in modern computing,
ranging from cloud-based infrastructures to safety-critical applications such
as autonomous vehicles and industrial automation. These systems frequently
encounter faults due to hardware failures, network disruptions, or software bugs.
Process algebras, such as the Calculus of Communicating Systems (CCS) [25],
the Algebra of Communicating Processes ACP [4], or .π-calculus [27], provide a
formal framework to model and reason about concurrent and distributed sys-
tems. However, they struggle to accurately represent failures. One of the reasons
is that they typically rely on standard two-valued logic .(T, F), which is insuf-
ficient for describing intermediate or indeterminate states caused by faults. For
example, in a distributed database, a node failure does not necessarily mean that
the entire system fails; some components may continue to function. Many-valued
logics have been proposed to investigate situations in which there are more than
two truth values that can have several different interpretations [11]. Kleene used
a third value to represent predicates for which no algorithm can decide whether
they are true or false [20]. Bochvar studied a logic undefined/meaningless value
to a predicate whenever any one of its components is undefined or meaning-
less [7]. McCarthy proposed an analogous logic [24] with a lazy evaluation of
those predicates that may include the third value, which is particularly attrac-
tive for computing purposes and used in several programming languages, from
Lisp to Haskell [28].

Inspired by these logic paradigms, a process-algebraic treatment of errors is
provided in [5]. In this work, ACP is extended with a conditional guard construct
c© IFIP International Federation for Information Processing 2025
Published by springer Nature Switzerland AG 2025
C. Di Giusto and A. Ravara (Eds.): COORDINATION 2025, LNCS 15731, pp. 30–49, 2025.
https://doi.org/10.1007/978-3-031-95589-1_2

Formalizing Errors in CCS with 3-Valued Logic 31

and a three-valued logic, where the third value, .M for meaningless, stands for
the error value. Additionally, the explicit error process .µ is introduced, and
axiomatized by the following axioms:

.µ · x = µ (1)
µ+ x = µ (2)
µ ‖ P = µ (3)

where .· is the sequential composition of ACP, .+ and .‖ are the nondeterminis-
tic choice and the parallel composition, respectively1. As one can see from the
above axioms, an error .µ suppresses (local) continuation and nondeterminism,
thus revealing its infectious nature that propagates also to concurrent processes.
While this interpretation is reasonable from a logic point of view (as it basically
falls into Bochvar’s three-valued logic [7]) and is well motivated in centralized
systems, it is also worth investigating alternative interpretations where errors
are local and not infectious, which is more adequate in distributed environ-
ments. More precisely, while the first axiom (1) appears indisputable – consider
a sequential C program that encounters a segmentation fault due to an unusual
pointer operation, causing the program to terminate – the other two axioms
assume that errors are global and infectious. The axiom (2) equates a program
that may fail to a failed one. The axiom (3) equates a program running in par-
allel with an error to a failed program. However, if we consider two threads or
actors running in parallel and one fails, the other should continue to exist. Addi-
tionally, in a distributed system, an error may occur in a different location from
the other process, thus not directly affecting it. Therefore, to accurately model
the behavior of concurrent and distributed programs, in this paper, we reject
axioms (2)–(3) and partially retain axiom (1) in CCS style as follows:

.µ.P = µ.0

which has, as its semantic counterpart, the rule

.µ.P
µ−→ 0

giving the intuition that the error is local, and that if a program encounters it,
then it fails. Based on these considerations, in this paper, we re-interpret the work
of [5] in the setting of CCS and revise the axioms for errors from a distributed
programming point of view, by trying to answer the following question:

How can we formally model situations where errors are local rather than global?

To achieve this, we extend CCS with .(i) a conditional guard operator .ϕ :→
P , meaning that if .ϕ holds, then the process .P is executed, and with .(ii) a

1 The axioms for error in ACP [5] are more articulated, due to the different operators
ACP has for parallel composition. Here, we have distilled the meaning of these axioms
as if they were using the CCS parallel operator.

32 A. Aldini and C. A. Mezzina

special error prefix .µ indicating a local error. In this way, we can still retain
CCS bisimulation and provide a sound axiomatization of errors. Moreover, we
maintain the classical HML-based logical interpretation of bisimulation [19].

The rest of the paper is structured as follows. In Sect. 2, we define the logic for
expressing the conditions of the guard statement .ϕ :→ P . In Sect. 3, we present
the syntax of the extended version of CCS with errors, called CCS+e, and its
axiomatization. In Sect. 4, we provide the semantics of CCS+e and we show that
the classical notion of bisimulation is a congruence, characterizes the soundness
of the axiomatization, and is logically characterized by the HML logic. In Sect. 5,
we propose a case study based on a microservices architecture. Finally, in Sect. 6,
some conclusions terminate the paper.

2 McCarthy Three-Valued Logic

Given a set of atomic propositions .Prop (ranged over by .p, q . . .) and the set of
logical values .T = {T, F,M} (true, false, and error), we adopt McCarthy’s three-
valued propositional logic, which is defined by the set of formulas generated by
the grammar:

.ϕ ::= T | F | M | p | ¬ϕ | ϕ ∧ ϕ

where .p ∈ Prop, and with the following truth tables (for clarity, we include also
disjunction, which can be defined as .p ∨ q ::= ¬(¬p ∧ ¬q)):

.p .¬p

.T .F

.F .T

.M .M

.∧ .T .F .M

.T .T .F .M

.F .F .F .F

.M .M .M .M

.∨ .T .F .M

.T .T .T .T

.F .T .F .M

.M .M .M .M

We call .L the resulting logic, and we denote with .ϕ,ψ, . . . its formulas. We
use the same definition of syntactic substitution and the excluded fourth rule as
in [5] to define a complete, inequational evaluation system implied by the truth
tables above.2 We then write .L |= ϕ = ψ to state that .ϕ = ψ can be proved in
such a system.

We point out that the difference from Bochvar’s semantics lies in the inter-
pretation of the role of .M , which is infectious in Bochvar’s logic. More precisely,
in Bochvar’s logic, .M ◦ p and .p ◦ M , with .◦ ∈ {∧,∨} and .p ∈ {T, F}, always
give .M (the two binary operators are commutative). Instead, note that the two
McCarthy binary operators are non-commutative whenever errors come into
play. In particular, .F ∧ M is different from .M ∧ F because in the former case,
by applying the McCarthy lazy interpretation, the evaluation of .F makes the
whole statement immediately false without making it necessary to evaluate the
following operand (we can reason symmetrically in the case of .T ∨ M).

2 A sound and complete axiomatization of the three-valued logic is still an open prob-
lem [21] and has been recently faced in [9], which provides an equational basis for
McCarthy algebras.

Formalizing Errors in CCS with 3-Valued Logic 33

Fig. 1. Syntax of CCS+e

As we will see in the next section, the three-valued logic of [5] relies mainly on
Bochvar’s operators and leverages the lazy semantics of McCarthy’s conjunction
only to model the sequential composition of conditional guards. Instead, we
completely abandon Bochvar’s semantics and the infectious behavior of the error
value, in order to give it the desired local interpretation.

3 Syntax of CCS+e

In this section, we extend CCS [25] with the special action representing error and
a conditional statement based on the three-valued logic of the previous section.
An axiomatization for such an extension is then proposed.

Let .A be a set of visible action names and .Act = A∪{a | a ∈ A}∪{τ}∪{µ},
where .τ represents an internal, unobservable action and .µ denotes the error
action. The syntax of CCS+e is represented in Fig. 1, where .L ⊆ A∪{a | a ∈ A}.
In the following, we will use .π,π′, . . . to range over .A ∪ {a | a ∈ A} ∪ {τ}.

Process terms given by the .P productions extend classical CCS with one new
process: the conditional guard .ϕ :→ . Let us explain briefly all the operators.
Term .0 represents the idle, terminated process; .α.P represents a prefixed process,
i.e., a process that has to perform the action .α before evolving into .P . As we will
see when commenting on the semantics, this is not true for the error prefixed
process .µ.P , which evolves into the terminated process .0. A prefix, or an action,
can be an input .a, an output .a, a silent or internal action .τ , and an error
action .µ. The process .P + Q represents a nondeterministic choice between .P
and .Q, that is, a process that can be .P or .Q. The process .P ‖ Q represents
the parallel composition of .P and .Q, where, as usual, actions can be executed
asynchronously by the two processes or can synchronize (generating an internal
action .τ) whenever they are an input .a and a corresponding output .a. Some
actions in a process .P can be forbidden, and this is represented by the process
.P\L, where .L is the set of restricted actions. .C represents a process constant,
and to this end, we assume the existence, for each .C, of a constant definition
.C ::= P . This is used to model recursive processes.

The intuition behind the conditional guard operator .ϕ :→ P is that it acts
like the command .if ϕ then P :

.if ϕ then P ::= ϕ :→ P

where the evaluation of .ϕ may lead to three different values. If .ϕ evaluates to
.T , then the process behaves like .P . If .ϕ evaluates to .F , then the process behaves

34 A. Aldini and C. A. Mezzina

like .0. If .ϕ evaluates to .M , then an error is generated and, again, the process
behaves like .0. Also, one can derive an if-then-else operator in this way:

.if ϕ then P else Q ::= (ϕ :→ P) + (¬ϕ :→ Q)

This is possible due to the fact that if .ϕ evaluates to .M , then, according to
McCarthy’s logic, we have that .M = ¬M .

3.1 Axiomatization of CCS+e

We base our axioms system – see Table 1 – on the classical equational theory for
CCS, by extending it with some ideas inherited from [5]. However, differently
from [5], we do not have axioms like

.µ.P +Q = µ.P (M0)

.ϕ1 :→ P + ϕ2 :→ P = (ϕ1 ∨ ϕ2) :→ P (G0)

Both of them would imply that errors suppress nondeterminism. In particu-
lar, if we accept M0, by virtue of the expansion law mapping parallel composition
to alternative choice and prefix, we would have that local errors infect (and sup-
press the continuation of) the whole global system. In other words, if .P causes
an error in .P ‖ Q, then also .Q would fail, independently of the mutual relation
between .P and .Q. In the case of G0, on the right-hand side, we have that if
.ϕ1 evaluates to .M and .ϕ2 evaluates to .T , then .(ϕ1 ∨ ϕ2) evaluates to .M , thus
suppressing .P , while on the left-hand side, the nondeterministic choice is not
expected to suppress the potential execution of .P .3

Apart from the exceptions above, most of the axioms can be inherited from
the classical axiomatization of CCS and from [5] in the case of the conditional
statement. In particular, we emphasize the axiom introducing the error action:

.M :→ P = µ.0 (G3)

to state that the error-value .M represents a guard that, in a conditional state-
ment, causes the execution of the error action and the subsequent termination.

However, errors cannot be treated as a normal prefix because of the local
interpretation we give to them. In fact, as emphasized above, errors should not
propagate in the setting of concurrent processes. We show through the following
example that the classical expansion law for parallel composition would not obey
our interpretation of local error.

3 In [5], G0 is based on Bochvar’s interpretation of .∨. Note that the suppression of
nondeterminism in this axiom occurs regardless of whether one uses Bochvar’s or
McCarthy’s semantics, or any other deterministic three-valued semantics for this
operator.

Formalizing Errors in CCS with 3-Valued Logic 35

Example 1. Consider the classical CCS expansion law and the derivation:

.µ.P ‖ a.0 = µ.(P ‖ a.0) + a.(µ.P ‖ 0) = µ.0+ a.µ.P

which ends up in a process that may fail or do an action .a and then have
an internal error. Instead, we would expect that if the left-hand process does
terminate with an error, then the right-hand one should not fail as well without
executing the action .a. Note that a local error could still have a negative impact
on other concurrent processes, e.g., in the case where the left-hand process is
.µ.ā.P , which would inhibit the synchronization between the two processes.

This example reveals that we have to consider the environment in which an
error occurs because we must guarantee the continuation of concurrent processes
even in the presence of a local error that should not affect their execution. In
particular, in the example above, the failure of the left-hand process should not
impact its environment represented by the right-hand process. To this aim, we
decorate .µ with a subscript denoting the environment in which it occurs, by
stating as default the condition

.µ.P = µ0.P (M1)

Hence, we extend the syntax of .α with the production .α ::= µP . For analogous
reasons, we also extend the conditional operator in the same way by introducing
the term .ϕ :→Q P , with the default condition

.ϕ :→ P = ϕ :→0 P (G4)

As we will see, the environment of an error will be managed when dealing with
the parallel composition operator in the expansion law, as emphasized in the
following motivating example.

Example 2. Revisiting Example 1, we would expect a derivation like the follow-
ing one:

.µ.P ‖ a.0 = µ0.P ‖ a.0 = µ0‖a.0.0+ a.µ0.P = µa.0.0+ a.µ0.P

where .µa.0.0 denotes that after the local error of the left-hand process, the envi-
ronment can still behave as .a.0, while .a.µ0.P denotes that after the local action
.a, the local error of the left-hand process occurs, suppressing any continuation,
as its reference environment is .0.

We now complete the discussion on the remaining axioms of Table 1. Axioms
C1-C4 are the classical axioms for the choice operator, while axioms P1-P3 are
the classical axioms for the parallel operator.

Axioms G1 and G2 specify that the conditional guard .T is transparent and
the conditional statement guarded by .F collapses to the terminated process .0.
Axiom G5, inherited from [5], states that the choice between terms guarded by
the same formula can be postponed after the evaluation of the formula. Axiom

36 A. Aldini and C. A. Mezzina

G6 is about the sequential composition of conditional guards and provides the
motivation for using McCarthy’s semantics for conjunction. In particular, if .ϕ1

turns out to be false in .ϕ1 :→ (ϕ2 :→ P), then the process terminates regardless
of the valuation of .ϕ2. The same behavior is guaranteed by .(ϕ1 ∧ ϕ2) :→ P by
virtue of McCarthy’s truth table of .∧. Hence, we can say that for the evaluation
of formulas, we adopt lazy semantics.

Example 3. By using the if-then-else construction of the previous section,
we can now show how a complex conditional statement with nesting is managed
through the axioms of CCS+e:

.

if ϕ1 then P1 else if ϕ2 then P2 else P3 ::=
(ϕ1 :→ P1) + (¬ϕ1 :→ (ϕ2 :→ P2 + ¬ϕ2 :→ P3)) =G5

ϕ1 :→ P1 + ¬ϕ1 :→ ϕ2 :→ P2 + ¬ϕ1 :→ ¬ϕ2 :→ P3 =G6

ϕ1 :→ P1 + (¬ϕ1 ∧ ϕ2) :→ P2 + (¬ϕ1 ∧ ¬ϕ2) :→ P3

We point out that a counterpart of G5 does not hold for the parallel com-
position operator, as shown in the following example.

Example 4.
.(ϕ :→ P) ‖ (ϕ :→ Q) = ϕ :→ (P ‖ Q)

is not an axiom of our system because the left-hand process would raise two
errors if .ϕ evaluates to .M , while the right-hand process would raise only one
error under the same assumption.

Axioms H1–H5 deal with the restriction operator in the classical way. Note that
H2 applies to non-error actions only and that H4 states that the restriction
operator is transparent with respect to the conditional guard in a way analogous
to the other operators.

Axiom E1 extends the classical expansion law of CCS by treating the error
prefix and the guarded statements in such a way as to consider the reference
environment properly. Note that in .P1 ‖ P2, the two processes are represented in
normal form as summations4 of conditional, prefix-guarded terms, to which any
sequential process term can be reduced.5 The rule establishes how, when expand-
ing the parallel operator, the environments associated with the error actions and
the conditional guards are updated. Note that, if an error is local to process .P1

and its own reference environment is .P ′
1k (and no matter the continuation is),

then, if executed in the context . ‖ P2, it causes local termination and changes
its environment to .P ′

1k ‖ P2. We can reason symmetrically for process .P2. An
analogous solution is adopted to manage the conditional statements, as they

4
.I,K, J,H are finite indexing sets (if empty, the summation gives .0).

5 It is sufficient to consider the following interesting cases. If .P is in normal form,
then, by virtue of axiom G1, the term .α.P can be rewritten as the term .T :→ α.P ,
which is in normal form. Analogously, by applying repeatedly G5 and G6, the term
.ϕ :→ P can be turned into normal form, similarly as seen in Example 3. Finally, the
case of the restriction operator is handled via axioms H1–H5.

Formalizing Errors in CCS with 3-Valued Logic 37

Table 1. Axioms system .A. Gray-boxed axioms represent the differences with respect
to the original CCS axiomatization [25].

M1 µ.P = µ0.P

C1 P + 0 = P

C2 P +Q = Q+ P

C3 P + (Q+R) = (P +Q) +R

C4 P + P = P

P1 P ‖ 0 = P

P2 P ‖ Q = Q ‖ P

P3 P ‖ (Q ‖ R) = (P ‖ Q) ‖ R

G1 T :→ P = P

G2 F :→ P = 0

G3 M :→ P = µ.0

G4 ϕ :→ P = ϕ :→0 P

G5 ϕ :→ P + ϕ :→ Q = ϕ :→ (P +Q)

G6 ϕ1 :→ (ϕ2 :→ P) = (ϕ1 ∧ ϕ2) :→ P

H1 0\L = 0

H2 (π.P)\L = 0 if π ∈ L

H3 (α.P)\L = α.(P\L) if α &∈ L

H4 (ϕ :→ P)\L = ϕ :→ (P\L)
H5 (P +Q)\L = (P\L) + (Q\L)

E1 P1 ‖ P2 =
∑

i∈I ϕ1i :→Q1i‖P2 π1i .(P1i ‖ P2)+∑
j∈J ϕ2j :→P1‖Q2j

π2j .(P1 ‖ P2j)+∑
i∈I,j∈J,π1i=a∧π2j=a(ϕ1i ∧ ϕ2j) :→∗ τ.(P1i ‖ P2j)+

∑
k∈K ψ1k :→Q′

1k
‖P2 µP ′

1k
‖P2 .0+

∑
h∈H ψ2h :→P1‖Q′

2h
µP1‖P ′

2h
.0

if P1 =
∑

i∈I ϕ1i :→Q1i
π1i .P1i +

∑
k∈K ψ1k :→Q′

1k
µP ′

1k
.P ′′

1k

and P2 =
∑

j∈J ϕ2j :→Q2j
π2j .P2j +

∑
h∈H ψ2h :→Q′

2h
µP ′

2h
.P ′′

2h

could generate errors that must take into account the reference environment.
The case of synchronization deserves special treatment. Indeed, the resulting .τ
action must occur if and only if the two conditions guarding the respective input
and output actions evaluate to true. In all other cases, at least one of the two
synchronizing actions is not available (due to a local error or to a false local

38 A. Aldini and C. A. Mezzina

Table 2. Transition rules of CCS+e

(Err0) µ.P
µ−→ 0 (Err) µP .Q

µ−→ P (Act) π.P
π−→ P

(Chol)
P

α−→ P ′

P +Q
α−→ P ′ (Chor)

Q
α−→ Q′

P +Q
α−→ Q′

(Parl)
P

α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

(Parr)
Q

α−→ Q′

P ‖ Q
α−→ P ‖ Q′

(Synl)
P

a−→ P ′ Q
a−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′ (Synr)

P
a−→ P ′ Q

a−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

(Res)
P

α−→ P ′

P\L α−→ P ′\L α &∈ L
(Const)

C ::= P P
α−→ P ′

C
α−→ P ′

(CondT)
[[ϕ]]w = T P

α−→ P ′

ϕ :→! P
α−→ P ′ where ! is empty, any Q ∈ P, or ∗

(CondM0)
[[ϕ]]w = M

ϕ :→ P
µ−→ 0

(CondM)
[[ϕ]]w = M

ϕ :→Q P
µ−→ Q

condition) and, therefore, the impossibility of executing the .τ action must not
produce any effect. This interpretation will be considered by the semantic rule
for the conditional statement in the special case .:→ is decorated with .∗.

To conclude, we use the notation .* P = Q to denote that .P = Q derives from
the axioms system .A of Table 1 and by following the classical rules of equational
deduction [18] and the additional rule

.
(Equiv)

L |= ϕ = ψ

A * ϕ :→ P = ψ :→ P

4 Semantics of CCS+e

In this section, we present the semantics of CCS+e together with a notion of
bisimulation and related properties. In the following, we call .P the set of process
terms generated by the grammar of CCS+e extended with the decorated versions
of .µ and .:→.

First, we introduce the interpretation function for the formulas of our three-
valued logic. Let .w range over the set .W of valuation functions of .Prop in .T .
The semantics of any formula .ϕ of the logic .L with respect to .w, denoted .[[ϕ]]w,
is defined as follows:

Formalizing Errors in CCS with 3-Valued Logic 39

.

[[c]]w = c if c ∈ {T, F,M}
[[p]]w = w(p)
[[¬ϕ]]w = ¬[[ϕ]]w
[[ϕ ∧ ψ]]w = [[ϕ]]w ∧ [[ψ]]w

Observe that if .[[ϕ]]w = [[ψ]]w for all valuation functions .w, then .L |= ϕ = ψ.
Then, the semantics of .(P,w), where .P ∈ P and .w ∈ W, is the least labeled

transition system with initial state .P that is built by using the rules of the
transition relation .→w ⊆ P × Act × P defined in Table 2 (if not ambiguous, we
usually omit .w). We now describe each rule in detail. The rule (Err.0) expresses
the blocking behavior of the error prefix, which does not allow any continua-
tion locally. The rule (Err) has the only objective of dealing properly with the
decorated versions of .µ resulting from the application of the axioms of .A. It
is at the base of the soundness of the expansion law. Basically, the error pre-
fixed process .µP .Q just terminates the local continuation .Q by producing the
error label and enabling the continuation for the reference environment .P . Rule
(Act) transforms a prefix .π into a label; rules (Cho.l) and (Cho.r) deal with
the nondeterministic choice. Rules (Par.l) and (Par.r) allow, respectively, the
left/right process of a parallel composition to execute without synchronizing
with the other process. On the other hand, rules (Syn.l) and (Syn.r) allow two
processes in parallel to synchronize. Rule (Res) deals with the restriction oper-
ator: a label can be produced provided that it is not contained in the restricted
set .L. Rule (Const) deals with process constant definition. In this way, we
can model infinite behaviors. Rule (CondT) deals with a conditional statement
with true guard, which allows the guarded process term to be executed. Note
that the context .! in .:→! is just discarded, as it is used only in case of error
in the valuation of the guard. Rules (CondM.0) and (CondM) deal with the
conditional statement in the case the guard .ϕ evaluates to .M . They are, in a
sense, the counterparts of (Err.0) and (Err), respectively, as they express how
the guarded process term can continue after the error occurring in the valua-
tion of the guard. In line with the discussion regarding the expansion law, rule
(CondM) does not cover the case .:→∗ because this case refers to the potential
execution of a .τ -action resulting from a synchronization. If such a .τ -action can-
not be executed because of an error occurring locally, it cannot be replaced by
a (global) error action, otherwise we would count twice the same error.

While in [5], the definition of bisimulation must explicitly distinguish between
the terminated process and the error process, in our setting, this distinction is
not necessary as we treat .µ as an action. Hence, we can rely on the classical CCS
bisimulation equivalence.

Definition 1 (Bisimulation). A relation .R on process terms is a bisimulation
if for every evaluation .w ∈ W, it holds that for all process terms .P,Q with .P RQ,
for all .α ∈ Act, whenever

– .P
α−→w P ′ implies that .Q

α−→w Q′ and .P ′ RQ′;
– .Q

α−→w Q′ implies that .P
α−→w P ′ and .P ′ RQ′.

The largest bisimulation is called bisimilarity and noted with .∼.

40 A. Aldini and C. A. Mezzina

In analogy with CCS, bisimulation equivalence is a congruence as stated by
the following theorem.

Theorem 1 (Congruence). Let .P,Q ∈ P. If .P ∼ Q, then the following hold:

1. .α.P ∼ α.Q for all .α ∈ Act,
2. . µP .R ∼ µQ.R′ for all R,R′ ∈ P,

3. . ϕ :→R P ∼ ϕ :→R Q for all ϕ ∈ L, and R ∈ P or empty,

4. . ϕ :→P R ∼ ϕ :→Q R for all R ∈ P,

5. .P +R ∼ Q+R for all .R ∈ P,
6. .P ‖ R ∼ Q ‖ R for all .R ∈ P,
7. .P\L ∼ Q\L for all .L ⊆ Act\{µ, τ}.

Proof. We show the gray-boxed cases, while the others derive from the standard
results for CCS. Assume .R is a bisimulation such that .(P,Q) ∈ R. Regarding
case 2, it is sufficient to consider .R′ = {(µP .R, µQ.R′) | R,R′ ∈ P} ∪ R and
observe that, by virtue of the rule Err and of .(P,Q) ∈ R, it is a bisimulation.
For case 3, the relation to consider is .R′ = {(ϕ :→R P,ϕ :→R Q)} ∪ R. Then,
if .[[ϕ]] = T , the result derives by virtue of the rule CondT and of .(P,Q) ∈ R.
If .[[ϕ]] = M then the result derives by virtue of the rules CondM.0 or CondM,
depending on .R. For case 4, we can reason analogously to the previous case by
considering .R′ = {(ϕ :→P R,ϕ :→Q R)} ∪ R. .-.

We now show that the system presented in Sect. 3.1 (Table 1) is sound with
respect to .∼ in the case of finite processes (no occurrence of constants). The
most interesting case of Table 1 is represented by the expansion law. In Fig. 2,
we show an example emphasizing that the classical expansion law would not be
sound because of the way the error is treated locally. More precisely, .µ.b.0 ‖ a.0 /∼
µ.(b.0 ‖ a.0) + a.(µ.b.0 ‖ 0) because the first sub-term of the right-hand process
causes the suppression of the whole system, while in the left-hand process, the
error is local. The same figure shows that, instead, the decorated version of .µ
allows us to manage properly any error depending on the environment in which
it occurs. To this aim, we point out that it is necessary using the rule Err.

Theorem 2 (Soundness). Let .P,Q ∈ P be finite process terms. If .* P = Q
then .P ∼ Q.

Proof. Case M1: show that the relation .R = {(µ.P, µ0.P) | P ∈ P} ∪ Id , where
Id is the identity relation, is a bisimulation. Since .µ.P

µ−→ 0 (by rule Err.0) and
.µ0.P

µ−→ 0 (by rule Err), then the thesis follows immediately.
Case G1: the construction of .R is given similarly as above, with the result

deriving immediately by virtue of the rule CondT.
Case G2: similarly as above; note that .F :→ P does not enable any transition.
Case G3: similarly as above, with the result deriving immediately by virtue

of the rule CondM.0.
Case G4: show that the relation .R = {(ϕ :→ P,ϕ :→0 P) | P ∈ P} ∪ Id is a

bisimulation. For both processes, if .[[ϕ]]w = T , then by virtue of the rule CondT

Formalizing Errors in CCS with 3-Valued Logic 41

Fig. 2. Wrong (top) and right (bottom) interpretation of expansion law for error pre-
fixes.

the possible transitions are those of .P , while if .[[ϕ]]w = M , then by virtue of the
rules CondM.0 and CondM the unique enabled transition executes .µ leading
to .0. The case .[[ϕ]]w = F is trivial. Hence, the thesis follows immediately.

Case G5: similarly as above; the unique interesting case is whenever .ϕ holds.
Note that, by virtue of the semantics of the choice operator, the left-hand process
executes an .α-labeled transition enabled in .P (resp., .Q) and leading to .P ′ (resp.,
.Q′) if and only if the right-hand process so does.

Case G6: similarly as above; there are 9 possible cases when considering the
truth values of .ϕ1 and .ϕ2 sequentially. For instance, if both evaluate to true, then
by virtue of the rule CondT, the left-hand process enables all the transitions
enabled by .P , and the same holds for the right-hand process by virtue of the
semantics of .ϕ1 ∧ϕ2 and the same rule CondT. All the remaining cases hold as
well by virtue of the McCarthy semantics of .∧.

Case H4: take the relation .R = {((ϕ :→ P)\L,ϕ :→ (P\L)) | P ∈ P} ∪ Id
and follow an analogous line of reasoning as in case G4.

Case E1: let us start by considering the behavior of the left-hand process of
axiom E1. Given a process term .R and the finite set of all transitions outgoing
from .R, i.e., .{(R,αo, Ro) ∈→w | αo ∈ Act , Ro ∈ P,with o ∈ O} for any finite
indexing set .O, we use the observation stating that .R ∼

∑
o∈O ϕo :→R̃′

o
α̃o.R̃o,

where, for each .o ∈ O, we have that one of the following cases holds:

1. .αo is a local non-error action, in .R it is guarded by .ϕo such that .[[ϕo]]w = T ,
.α̃o = αo, .R̃o = Ro, and .R̃′

o does not play any role;

42 A. Aldini and C. A. Mezzina

2. .αo = τ , in .R it is generated by a synchronization between an action guarded
by .ψ1 and by an action guarded by .ψ2 such that .[[ψ1]]w = [[ψ2]]w = T , .ϕo =
ψ1 ∧ ψ2, .α̃o = αo, .R̃o = Ro, and .R̃′

o = ∗;
3. .αo = µ, in .R it is generated by an error action guarded by .ϕo such that

.[[ϕo]]w = T , .α̃o = µRo , .R̃o = 0, and .R̃′
o does not play any role;

4. .αo = µ, in .R it is generated by an action guarded by .ϕo such that .[[ϕo]]w = M ,
.R̃′

o = Ro and .α̃o.R̃o does not play any role.

Now, we sketch the proof by noting that in the right-hand process of axiom E1:

– the first two summands cover case 1. (by virtue of the CCS parallel compo-
sition semantics and rule CondT) and case 4. (by virtue of the CCS parallel
composition semantics and rule CondM), depending on the valuation of the
conditional guard;

– the third summand covers case 2. by virtue of the CCS synchronization rules
and rule CondT in the case the related conditional guard is true (and does
not produce any effect otherwise);

– the fourth and fifth summands cover case 3. (by virtue of the CCS parallel
composition semantics and rule Err) and case 4. (by virtue of the CCS
parallel composition semantics and rule CondM), depending on the valuation
of the conditional guard.

Hence, for each valuation .w, the five summands cover all the possible cases, from
which the thesis follows.

The result for the rule Equiv is straightforward. All the remaining cases are
standard and derive from the soundness result for CCS. .-.

4.1 Logical Characterization of Bisimulation

Since at the semantics level, the error is represented explicitly by the special
action .µ, we have seen that a classical notion of bisimulation is sufficient to
establish a soundness result for the axiomatization of CCS+e. Similarly, we
now show that a slight variant of the Hennessy-Milner logic, denoted HML+e,
represents the logical characterization of bisimulation. We point out that the
logic we are considering is a standard modal logic.

Definition 2 (HML+e). The language .LHM of HML+e is defined by the fol-
lowing grammar:

.φ ::= 1 | ¬φ | φ ∧ φ | 〈π〉φ | Mφ

with the satisfaction relation .|=HM (for any finite process term .P ∈ P and any
valuation function .w) defined as follows:

– .P,w |=HM 1,
– .P,w |=HM ¬φ if .P,w /|= φ,
– .P,w |=HM φ1 ∧ φ2 if .P,w |= φ1 and .P,w |= φ2,
– .P,w |=HM 〈π〉φ if there exists .P ′ such that .P

π−→w P ′ and .P ′, w |= φ,
– .P,w |=HM Mφ if there exists .P ′ such that .P

µ−→w P ′ and .P ′, w |= φ.

Formalizing Errors in CCS with 3-Valued Logic 43

The correspondence theorem relates bisimilar processes and modal equivalent
processes, i.e., processes that satisfy the same set of HML+e formulas. We limit
the following result to processes that are finite and image-finite (the image of
.P,α under the transition relation .→w is finite for each .w).

Theorem 3 (Logical characterization of .∼). Let .P,Q ∈ P be finite and
image-finite process terms. Then:

.P ∼ Q iff for every w ∈ W and for every φ ∈ LHM. P, w |= φ ⇔ Q,w |= φ.

Proof. Case (.⇒). Let .R be a bisimulation including the pair .(P,Q). We show the
result by induction on the structure of the formulas. The base case is trivial. The
only interesting cases are .〈π〉φ and .Mφ. Take an arbitrary valuation .w. Suppose
that .P,w |=HM 〈π〉φ because .∃P ′ such that .P

π−→w P ′ and .P ′, w |=HM φ. Hence,
by hypothesis, .∃Q′ such that .Q

π−→w Q′ and .P ′ ∼ Q′. By applying the induction
hypothesis, .Q′, w |=HM φ, and, therefore, .Q,w |=HM 〈π〉φ. Hence, no HML+e
formula .〈π〉φ can distinguish .P from .Q. By replacing .π with .µ in the proof, we
obtain the result for the case .Mφ.

Case (.⇐). Let .≡ be the modal equivalence relation. We show (by contra-
diction) that .≡ is a bisimulation itself. By hypothesis, .P ≡ Q. Take arbitrary
action .α and valuation .w. Assume .α is a non-error action .π and that there exists
.P ′ such that .P

π−→w P ′, but there does not exist .Q′ such that .Q
π−→w Q′, with

.P ′ ≡ Q′. Let .Q be the finite set of processes accessible from .Q through a .π-
labeled transition. .Q is non-empty otherwise .〈π〉1 would distinguish .P from .Q.
By assumption, for each .Q′′ ∈ Q, .1 ≤ j ≤ |Q|, there exists .φj such that .P ′ |= φj

and .Q′′ /|= φj . Hence, it holds that .P |= 〈π〉
∧

j φj (since there is .P ′ such that
.P

π−→w P ′ and satisfying .
∧

j φj), and .Q /|= 〈π〉
∧

j φj , thus contradicting the
hypothesis. The same kind of reasoning applies to the symmetric case. Now, if
we assume .α = µ, the proof is similar to that above. .-.

5 Case Study: Microservices Architecture

To demonstrate the effectiveness of CCS+e, we apply it to a microservices-based
distributed system, where services interact with a load balancer and a database.
We show that local failures (e.g., a single server crash) do not force the entire
system to fail. The microservice architecture is written in Erlang. It consists
of three main components: a load balancer (LB, lines 11–36), two servers able
to satisfy the client’s requests (.S1 and .S2, lines 38–68), and a database (DB,
lines 70–86). Some components may fail in different ways: LB can encounter a
network error and stop functioning (lines 28–31); one of the two servers may
crash (lines 64–66); the database may corrupt data, impacting clients’ requests
(lines 81–83). The system behavior is as follows.

The client sends a request to the LB. The LB checks the availability of the
network (by querying formula .ϕN) and then either forwards the request to a
chosen server (true), or informs the client of a failure so the client can retry
the request (false), or there is a network error and the LB cannot forward the

44 A. Aldini and C. A. Mezzina

request (M). A server, upon receiving a request, checks its state with the formula
.ϕS . The outcome can be either that it can satisfy the client and connect to the
database (true), or it rejects the request, maybe due to too many connections
(false) or to an internal crash .(M). Depending on the messages received, the
client can decide to retry the request. As we can see, if one of the two servers
crashes (evaluates to .M), the system still keeps working, and the client can
still retry its request to the other server. For the sake of simplicity, we are not
considering cases in which DB may fail (e.g., .ϕDB = M).

1 −module (coo rd ina t i on) .

2 −export ([s t a r t /0 , l oad ba l ance r /1 , s e r v e r /2 , database /1 , c l i e n t /2]) .

3

4 s t a r t () −> % Spawn system components

5 DB = spawn (?MODULE, database , [hea l thy]) ,

6 S1 = spawn (?MODULE, server , [db , DB]) ,

7 S2 = spawn (?MODULE, server , [db , DB]) ,

8 LB = spawn (?MODULE, load ba lance r , [[S1 , S2]]) ,

9 spawn (?MODULE, c l i e n t , [LB, ” data r eque s t ”]) .

10

11 l o ad ba l ance r (Se rve r s) −>% LOAD BALANCER

12 r e c e i v e

13 { request , C l i en t } −>

14 % Simulate network cond i t i on s us ing a three−valued l o g i c

15 Phi N = case rand : uniform (3) o f

16 1 −> e r r o r ; %Network f a i l u r e M −> LB cannot forward r eque s t s

17 2 −> f a l s e ; %Connection f a i l e d −> The c l i e n t can r e t r y

18 3 −> t rue %Connection suc c e s s −> Forward reques t to a s e r v e r

19 end ,

20 case Phi N o f

21 t rue −>

22 Server = l i s t s : nth (rand : uniform (length (Serve r s)) , Se rve r s) ,

23 Server ! {process , C l i en t } ,

24 l o ad ba l ance r (Se rve r s) ;

25 f a l s e −>

26 Cl i ent ! {network down} , % Cl i ent i s informed and may r e t r y

27 l o ad ba l ance r (Se rve r s) ;

28 e r r o r −>

29 % Network e r r o r : Load ba lancer cont inues , but cannot forward

30 i o : format (” [LB] Network er ror , but system remains ope ra t i ona l . ˜ n

”) ,

31 l o ad ba l ance r (Se rve r s)

32 end ;

33 { er ror , Reason} −>

34 i o : format (” [LB] Error : ˜p . Continuing ope ra t i on s . ˜ n” , [Reason]) ,

35 l o ad ba l ance r (Se rve r s)

36 end .

37

38 s e r v e r (Type , DB) −>% SERVER

39 r e c e i v e

40 {process , C l i en t } −>

41 % Simulate s e r v e r f a i l u r e us ing three−valued l o g i c

42 Phi S = case rand : uniform (3) o f

43 1 −> e r r o r ; % Server c ra she s

44 2 −> f a l s e ; % Server r e j e c t s r eques t (too busy)

45 3 −> t rue % Server p ro c e s s e s r eques t

46 end ,

47 case Phi S o f

48 t rue −>

49 DB ! {query , s e l f () } ,

50 r e c e i v e

51 { response , Data} −>

52 i o : format (” [Server] Received response : ˜p˜n” , [Data]) ,

53 Cl i ent ! {ok , Data} ,

54 s e r v e r (Type , DB) ;

55 { f a i l , corrupted} −>

Formalizing Errors in CCS with 3-Valued Logic 45

56 i o : format (” [Server] DB corrupted . Returning f a l l b a c k response . ˜ n

”) ,

57 Cl i ent ! { s e r v i c e un av a i l a b l e } ,

58 s e r v e r (Type , DB)

59 end ;

60 f a l s e −>

61 i o : format (” [Server] Request r e j e c t e d (too busy) . ˜ n”) ,

62 Cl i ent ! { s e r v i c e un av a i l a b l e } ,

63 s e r v e r (Type , DB) ;

64 e r r o r −>

65 i o : format (” [Server] Unexpected crash . Terminating . ˜ n”) ,

66 e x i t (s e r v e r f a i l u r e)

67 end

68 end .

69

70 database (Status) −>% DB

71 r e c e i v e

72 {query , Server } −>

73 Phi DB = case Status o f % Simulate database s t a t e

74 healthy −> t rue ;

75 corrupted −> f a l s e % database corrupted need to r ecove r

76 end ,

77 case Phi DB of

78 t rue −>

79 Server ! { response , ”Data from DB”} ,

80 database (Status) ;

81 f a l s e −>

82 Server ! { f a i l , corrupted} ,

83 database (Status)

84 end ;

85 { s e t s t a t u s , NewStatus} −> database (NewStatus)

86 end .

87

88 c l i e n t (LB, Request) −>% CLIENT

89 i o : format (” [C l i en t] Sending reques t : ˜p˜n” , [Request]) ,

90 LB ! { request , s e l f () } ,

91 r e c e i v e

92 {ok , Response} −>

93 i o : format (” [C l i en t] Received response : ˜p˜n” , [Response]) ;

94 {network down} −>

95 i o : format (” [C l i en t] Network i s down . Retrying . . . ˜ n”) ,

96 t imer : s l e ep (100) ,

97 c l i e n t (LB, Request) ;

98 { s e r v i c e un av a i l a b l e } −>

99 i o : format (” [C l i en t] Server unava i l ab l e . Retrying . . . ˜ n”) ,

100 t imer : s l e ep (100) ,

101 c l i e n t (LB, Request)

102 end .

The above Erlang code is modeled as the following CCS+e process:

.Sys = (C ‖ LB ‖ S1 ‖ S2 ‖ DB)\L
LB = lb.(if (ϕN)LB then s1.LB+ s2.LB else nd.LB)

Si = si.(if (ϕS) then db.(ok.resp.Si + crash.su.Si) else su.Si)

DB = db.(if (ϕDB) then ok.DB else crash.DB)

C = lb.(nd.C+ su.C+ resp.done.0)

such that if (ϕ)R then P else Q ::= (ϕ :→R P) + (¬ϕ :→R Q)

where .L includes all the actions of the specification above but .done. LB takes
a request from the client and, depending on condition .ϕN , it acts as follows: if

46 A. Aldini and C. A. Mezzina

.ϕN = T , it forwards the request to one of the servers .(s1 + s2); if .ϕN = F , it
tells the client that the network is down (action .nd); if .ϕN = M , it crashes and
starts over, while the request is lost. Once one of the servers receives a request
from LB, depending on the condition .ϕS it acts as follows: if .ϕS = T , it contacts
DB, awaits a response, and then forwards it to the client; if .ϕS = F , it tells the
client that the service is temporarily unavailable (action .su); if .ϕS = M , the
server crashes locally, not affecting the other processes.

Let us consider a computation in which the contacted server fails (.ϕN is true
while .ϕS for the chosen server evaluates to .M):

.Sys
τ−→

(
(nd.C+ su.C+ resp.done.0) ‖ if (ϕN)LB · · · ‖ S1 ‖ S2 ‖ DB

)
\L

τ−→
(
(nd.C+ su.C+ resp.done.0) ‖ LB ‖ if (ϕS) · · · ‖ S2 ‖ DB

)
\L

µ−→
(
(nd.C+ su.C+ resp.done.0) ‖ LB ‖ 0 ‖ S2 ‖ DB

)
\L

Note that now the client deadlocks (the same would also hold in the case the local
condition .ϕN evaluates to .M) because, as an intended feature, the server’s local
error does not propagate by causing the client’s failure. Usually, in distributed
systems, this kind of situation is faced using timeouts6. Anyhow, the above
behavior does not prevent the system from operating with other clients. For
example, in the following version of the system:

.Sys′ = (C1 ‖ C2 ‖ LB ‖ S1 ‖ S2 ‖ DB)\L

with .C1 = C2 = C, and by reproducing the execution from above, we have:

.Sys′ τ−→ τ−→ µ−→
(
(nd.C1 + su.C1 + resp.done.0) ‖ C2 ‖ LB ‖ 0 ‖ S2 ‖ DB

)
\L

The reached system, call it .Syse, can still operate because .C2 request can be
accepted by LB and S.27, assuming that all the conditions are evaluated to true.
In particular, from .Syse, we can have the following reduction:

.Syse
τ−→ τ−→ τ−→ τ−→ τ−→

(
(nd.C1 + su.C1 + resp.done.0) ‖ done.0 ‖ LB ‖ 0 ‖ S2 ‖ DB

)
\L

done−−−→
(
(nd.C1 + su.C1 + resp.done.0) ‖ 0 ‖ LB ‖ 0 ‖ S2 ‖ DB

)
\L

We can also describe the above computation via the following .LHM formula:

.Sys′, w |=HM 〈τ〉〈τ〉M〈τ〉〈τ〉〈τ〉〈τ〉〈τ〉〈done〉1

.where .w is the valuation respecting the conditions described above. Regarding
the behavior of LB, we can verify the property that if it fails (.[[ϕN]]w = M), it
starts over again:

.LB, w |=HM 〈lb〉M〈lb〉1
6 In the Erlang code of the Client, it is sufficient to add the after T clause in the
receive statement.

7 For the sake of simplicity, we have chosen .C1 = C2 hence there could be a case in
which the deadlocked .C1 intercepts the response for .C2. This can be easily avoided
by using indexed channels, like .ndi, .respi, and .nui, where .i is the index of the client.

Formalizing Errors in CCS with 3-Valued Logic 47

6 Conclusions

In this paper, we have investigated the addition of an explicit error action to the
theory of CCS. To this end, we employed a three-valued logic for the valuation
of conditional statements. This work is inspired by previous work on ACP [5]
and differs from it in the interpretation of the infectious behavior of the error,
which in our setting is intended to be local. The effects of our assumptions can
be viewed on the axioms that characterize CCS+e. In particular, we recall the
importance of the expansion law for the parallel composition operator, as it is
compliant with the idea that exploring any possible interleaving is the most
adequate approach for testing [6] and that the occurrence of errors should not
prune any of the significant branches.

As a future work, we plan to investigate an alternative interpretation of the
error between our approach and [5]. The idea is to model errors that are causally
infectious, i.e., an error should infect just those processes causally related to
it. This would require devising a causal semantics for CCS+e in line with the
semantics for causal-consistent reversibility [22,26]. It is also worth comparing
our approach with alternative ways of dealing with failures. Indeed, there are
several works explicitly modeling and handling errors in process algebras [1,8,12,
23]. Basically, we differ from them by the fact that we model the error via a three-
valued logic and that, in many cases, they do not provide any axiomatization.

The lazy treatment of errors we have adopted recalls McCarthy’s operator of
ambiguous choice [24], which is formalized, e.g., in the setting of .π-calculus for
different interpretations of divergence [10]. We will further investigate this rela-
tionship in future works. Additionally, McCarthy’s lazy evaluation of conjunc-
tion may be used to model sequential composition in functional programming
languages with lazy evaluation (e.g., Haskell). To this end, we plan to extend
our framework to a lambda calculus with lazy evaluation and actor-based con-
currency (e.g., mailboxes) like Haskell cloud [13]. Once we get such semantics,
one could think of reversing it in order to obtain a reversible debugger [17] for
an actor-based language with a proper axiomatization of errors. Also, a three-
valued characterization of errors for actor languages could be used to synthesize
run-time monitors [16] to react to such errors. Other interesting research devel-
opments within our framework are the study of the noninterference approach
to information flow analysis [14,15], as well as exploring extensions in quantita-
tive settings [2], which would allow us to model and verify the relation between
failure of trusted components, error propagation, and performance degradation.

Finally, another important direction for future work involves establishing the
completeness result for our axiomatization, specifically that bisimilar processes
in normal form can be equated through the axioms of the system .A. However,
this result requires an axiom like G0 for aggregation purposes [5]. As motivated
in Sect. 3.1, we reject the relation induced by G0 between the nondeterministic
choice .+ and the disjunction connective .∨, as no deterministic interpretation
of .∨ in the three-valued logic (neither in the McCarthy semantics nor in the
Bochvar semantics) can capture the fact that the error is not supposed to sup-
press nondeterminism (in essence, .M ∨ T and .T ∨M should output both .T and

48 A. Aldini and C. A. Mezzina

.M , nondeterministically). An operator .∨̃ obeying such nondeterministic seman-
tics is investigated in the setting of a sequent calculus [3], where .∨̃ results from
the combination of McCarthy logic and Kleene logic with the aim of model-
ing critical and non-critical errors. The study of the algebraic properties of this
operator and its integration in our framework is left for future work. Together
with an equational theory for the three-valued logic, it could pave the way for a
sound and complete axiomatization of full CCS+e.

Acknowledgement. This work has been funded by the European Union - NextGen-
erationEU within the framework of PNRR Mission 4 - Component 2 - Investment 1.1
under the Italian Ministry of University and Research programme PRIN 2022 - grant
number 2022SM4XC8 - DeKLA - CUP: F53D23004840006.

References

1. Aceto, L., Hennessy, M.: Termination, deadlock, and divergence. J. ACM 39(1),
147–187 (1992). https://doi.org/10.1145/147508.147527

2. Aldini, A.: Modeling and verification of trust and reputation systems. Secur. Com-
mun. Netw. 8(16), 2933–2946 (2015). https://doi.org/10.1002/sec.1220

3. Avron, A., Konikowska, B.: Proof systems for reasoning about computation errors.
Stud. Log.: Int. J. Symb. Log. 91, 273–293 (2009). http://www.jstor.org/stable/
40269036

4. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Control 60(1–3), 109–137 (1984). https://doi.org/10.1016/S0019-9958(84)80025-
X

5. Bergstra, J.A., Ponse, A.: Bochvar-McCarthy logic and process algebra. Notre
Dame J. Formal Log. 39(4), 464–484 (1998). https://doi.org/10.1305/NDJFL/
1039118863

6. Bianchi, F.A., Margara, A., Pezzè, M.: A survey of recent trends in testing concur-
rent software systems. IEEE Trans. Softw. Eng. 44(8), 747–783 (2018). https://
doi.org/10.1109/TSE.2017.2707089

7. Bochvar, D.A., Bergmann, M.: On a three-valued logical calculus and its appli-
cation to the analysis of the paradoxes of the classical extended functional
calculus. Hist. Philos. Log. 2(1–2), 87–112 (1981). https://doi.org/10.1080/
01445348108837023

8. de Boer, F.S., Coenen, J., Gerth, R.: Exception handling in process algebra. In:
Purushothaman, S., Zwarico, A.E. (eds.) NAPAW92. Workshops in Computing,
pp. 86–100. Springer, London (1992). https://doi.org/10.1007/978-1-4471-3217-
2 6

9. Bonzio, S., John, G.S.: On the structure and theory of McCarthy algebras (2025).
https://arxiv.org/abs/2503.10816

10. Carayol, A., Hirschkoff, D., Sangiorgi, D.: On the representation of McCarthy’s
amb in the .π-calculus. Theoret. Comput. Sci. 330(3), 439–473 (2005). https://doi.
org/10.1016/j.tcs.2004.10.005

11. Cobreros, P., Égré, P., Ripley, D., van Rooij, R.: Foreword: three-valued logics and
their applications. J. Appl. Non-Classical Log. 24(1–2), 1–11 (2014). https://doi.
org/10.1080/11663081.2014.909631

Formalizing Errors in CCS with 3-Valued Logic 49

12. Dragoni, N., Gaspari, M.: An object based algebra for specifying a fault tolerant
software architecture. J. Log. Algebraic Methods Program. 63(2), 271–297 (2005).
https://doi.org/10.1016/J.JLAP.2004.05.006

13. Epstein, J., Black, A.P., Jones, S.L.P.: Towards Haskell in the cloud. In: Claessen,
K. (ed.) Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, pp. 118–
129. ACM (2011). https://doi.org/10.1145/2034675.2034690

14. Esposito, A., Aldini, A., Bernardo, M.: Branching bisimulation semantics enables
noninterference analysis of reversible systems. In: Huisman, M., Ravara, A. (eds.)
FORTE 2023. LNCS, vol. 13910, pp. 57–74. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-35355-0 5

15. Esposito, A., Aldini, A., Bernardo, M., Rossi, S.: Noninterference analysis of
reversible systems: An approach based on branching bisimilarity. Log. Methods
Comput. Sci. 21(1) (2025). https://doi.org/10.46298/lmcs-21(1:6)2025

16. Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible choreographies via moni-
toring in erlang. In: Bonomi, S., Rivière, E. (eds.) DAIS 2018. LNCS, vol. 10853,
pp. 75–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93767-0 6

17. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 26

18. Gorrieri, R., Versari, C.: Introduction to Concurrency Theory - Transition systems
and CCS. Texts in Theoretical Computer Science. An EATCS Series. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-21491-7

19. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de
Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 79

20. Kleene, S.C.: Introduction to Metamathematics. D. van Nostrand (1952)
21. Konikowska, B.: McCarthy algebras: a model of McCarthy’s logical calculus. Fund.

Inform. 26(2), 167–203 (1996). https://doi.org/10.3233/FI-1996-26205
22. Lanese, I., Mezzina, C.A., Stefani, J.: Reversibility in the higher-order .π-calculus.

Theor. Comput. Sci. 625, 25–84 (2016). https://doi.org/10.1016/J.TCS.2016.02.
019

23. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compen-
sation handling. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 366–386.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6 20

24. McCarthy, J.: A basis for a mathematical theory of computation. In: Braffort,
P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, Studies in
Logic and the Foundations of Mathematics, vol. 26, pp. 33–70. Elsevier (1959).
https://doi.org/10.1016/S0049-237X(09)70099-0

25. Milner, R. (ed.): A Calculus of Communicating Systems. Lecture Notes in Com-
puter Science, vol. 92. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-
10235-3

26. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebraic
Methods Program. 73(1–2), 70–96 (2007). https://doi.org/10.1016/J.JLAP.2006.
11.002

27. Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes. Cam-
bridge University Press (2001)

28. Turner, D.A.: Some history of functional programming languages. In: Loidl, H.-W.,
Peña, R. (eds.) TFP 2012. LNCS, vol. 7829, pp. 1–20. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40447-4 1

