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Abstract. Choreographies are useful for modelling systems with multi-
ple simultaneously executing and communicating participants, e.g. dis-
tributed systems. VeyMont can verify correctness of choreographies and
generate verifiably correct code that implements the choreography. Ini-
tially, it supported only fixed sets of participants. However, realistic sys-
tems are often parameterized: they scale according to some parameter N.
This paper extends VeyMont with parameterized choreographies, mak-
ing VeyMont more usable for realistic case studies. Specifically, we add
parameterized primitives such as participant families and parameterized
communication. We encode these primitives using a structured paral-
lelism primitive from the underlying verifier VerCors, and by using con-
ditionals in the endpoint projection, partially delaying projection until
run time. We illustrate the encoding with a distributed summation chore-
ography, and prove it correct with VerCors.

Keywords: Choreographies - Parameterization + Deductive
verification

1 Introduction

Distributed systems are not just ubiquitous, they are indispensable for networked
systems on a global scale. Unfortunately, guaranteeing robustness of distributed
systems is still a challenge. Consider a participant of a distributed system, wait-
ing for a message that will never be sent. Clearly, this system cannot function
reliably. This type of bug is called a communication deadlock, and ideally a dis-
tributed system would be free of deadlocks. Another aspect of robustness is that
of functional correctness: maybe the distributed system never deadlocks, but
does the system actually compute the correct result?

An approach to improve the reliable development of distributed systems is to
use the top-down formalism of choreographies [15]. In its purest form, a chore-
ography is a series of message exchanges between participants, called endpoints.
Choreographies have two primary properties [15]. The first is communication
deadlock freedom: no endpoint will be stuck waiting for a message that will
never be sent. The second is message fidelity: an endpoint will never receive a
message of a different type than it is expecting. Choreographies also support the
endpoint projection, which generates an implementation for a given endpoint.
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1 choreography summation2() { 1 choreography summationN(int N) {
2 endpoint a = Node(int()); 2 endpoints nodes[i := 0..N] = Node(i, int());
3 endpoint b = Node(int()); 3 run {
4 run { 4 while ((\endpoints nodes[i := 0..N]; nodes[i].n < N-1)) {
5 communicate a.sum -> b.in; 5 communicate nodes[i := 0..N-1].sum -> nodes[i+1].in;
6 communicate b.sum -> a.in; 6 communicate nodes[N-1].sum -> nodes[0].in;
7 a.update(); b.update(); } } 7 nodes[i := 0..N].update(); } } }
(a) For two endpoints a and b (b) Parameterized for N endpoints

Fig. 1. Distributed summation choreographies

Figure 1a shows an example of a choreography that sums the values of two
endpoints. Lines 2 and 3 declare the endpoints a and b of type Node, and initialize
their sum fields with a random integer. On lines 5 and 6 each endpoint sends their
local sum to the in field of the other. On line 7, they update their sum fields
with the sum of their initial value and the value of the in field. The sum field of
each endpoint now contains the sum of both the initial values. As an example
in Java-like syntax, the endpoint projection of Fig. 1a for endpoint b is:

b.in = chan_ab.readValue(); chan_ba.writeValue(b.sum); b.update();

To verify choreographies like Fig. 1a, VeyMont was developed, a verifier and
code generator for choreographies [2]. It supports functional correctness verifi-
cation of choreographies with contract annotations, such as pre- and postcondi-
tions and asserts. When generating code with VeyMont, verification annotations
are preserved [19], which means correctness of the generated code can be estab-
lished independently from the initial choreography. This allows safe modification
of generated code. VeyMont is built on top of VerCors, a deductive verifier for
concurrent and parallel software. Besides languages such as Java and C, VerCors
also supports the internal Prototypical Verification Language (PVL), a Java-like
language intended for rapid prototyping of verification features.

To verify a choreography, VeyMont applies the choreographic projection,
which transforms a choreography into a PVL program that combines the
behaviour of all endpoints into a single program [2]. This is in contrast to the
endpoint projection, which slices a choreography in such a way that only the
parts relevant for one specific endpoint remains. The choreographic projection
has two goals: 1) to make the choreography verifiable with an off-the-shelf pro-
gram verifier like VerCors, and 2) to add annotations for correctness aspects such
as deadlock freedom and memory safety. The first goal is achieved by modelling
communication with regular assignment, and preserving composite statements
such as if and while. To illustrate, the choreographic projection for Fig. 1a is:

b.in = a.sum; a.in = b.sum; a.update(); b.update();

The second goal is achieved by encoding correctness aspects into PVL [2,19].
Then, if the projection is verified, the choreography respects its contracts [11].
However, verifying regular choreographies is not enough. Instead, realistic
case studies often scale with some parameter IV, and hence require parameter-
1zed choreographies. In Fig. 1b a distributed sum choreography is parameterized
by N (line 1). Instead of defining endpoints individually, line 2 defines an end-
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point family, which is a range of endpoints, its size determined by a symbolic
expression. The choreography in Fig. 1b generalises the approach from Fig. 1a:
for N — 1 rounds, each node will send its partial sum to a neighbouring node, as
done on lines 5 and 6. Then, each node will update its partial sum (line 7), after
which the while loop will repeat. When the while loop terminates, each node
will know the sum of all initial values.

Parameterization of both the choreographic and endpoint projection is still
an open problem. To enable verification and code generation for choreographies
like Fig. 1b, this paper discusses how to extend VeyMont with parameterization.

Contributions. We define choreographies with parameterization by adding
parameterized primitives to the choreographic language of VeyMont (Section 3).
In particular, we add endpoint families, which are ranges of endpoints with their
size defined by a symbolic expression. We also add a parameterized communi-
cation statement, which communicates a message according to a user-defined
one-to-one mapping between two possibly overlapping endpoint family ranges.

To verify parameterized choreographies, we extend the choreographic projec-
tion to use a structured parallelism primitive, the par block, to encode the seman-
tics of the parameterized communication statement (Section4). We identify a
fragment of the choreographic language for which memory safety annotations
can be automatically generated, preserving full automation of the verification
process. E.g. we limit the syntax of the parameterized communication statement
such that it may only access memory in a certain pattern. Other parameter-
ized syntax, such as endpoint families and parameterized expressions, can be
encoded using mathematical sequences and universal quantifiers. We also extend
pre-existing VeyMont features (deadlock freedom and shared memory [2,19]) to
support parameterization.

To support parameterization, the endpoint projection must generate an
implementation for an unknown but fixed amount of endpoints (Section 5). This
is important, because in a parameterized choreography, the sizes of endpoint
families are defined by symbolic expressions. We make part of the endpoint pro-
jection conditional on the runtime value of endpoint family indexing expressions,
effectively delaying projection until run-time. That way, instead of generating
one implementation per endpoint, we generate an implementation for a range
of endpoints, which behaves based on the run-time value of the current end-
point index. This encoding provides executable code with preserved verification
annotations, allowing deductive verification separate of the choreography.

We illustrate the choreographic and endpoint projection with the distributed
sum running example, which we have proven correct with VerCors in the arte-
fact [17]. Finally, we discuss related work (Sect. 6).

2 PVL

The Prototypical Verification Language (PVL) is an object-oriented program-
ming (OOP) language with contracts and assertions. It is used to prototype
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x,y,z = field, v,u,w ::= variable, m ::= method e,a,b = endpoint  F,G = endpoint family,

chor :: = K choreography(ﬂ) { Davor }
Dehor ::= endpoint e = C'(H);
| endpoint F'[v:=0.. H] = C(E);
| K run { Scpor }
r,pu=e| FLE] a,fu=r|Flv:=E .. FE]

Sechor :=1f (Hehor) Schor Schor | assert Renor;

C ::= class name
T ::=int | boolean | seq<T> |C'|---

prog ::= decl decl ::= class definition | chor
Ex=vl|r|F]|---
H:=v|r|F|---|F[H] | H.z|this
R:=H |Perm(H.z, H) |R *x R|H ==> R
K ::=requires R; ensures R;
S

| loop_invariant Rchor; while (Hchor) Schor
s=Kpar (Tv = H..H)S|---

| endpoint a: Sep
| channel_invariant Rchaen; communicate a: H -> a: H

Sep w=H.m(H); |H := H;

(a) Abbreviated OOP fragment

class Role {

1

2 int x; // Field declaration Hcpor = (\endpoint a; H) |Hcho7' && Hepor

3 requires Perm(this.x, 1); .. . .

1 catures Peum(this a. 1) Renor ::= (\endpoint a; R) | Renor ** Renor | Henor
5 this.x == \old(this.x) + 1; Rehan := Inline R | \msg | \sender | \receiver

6 void incrX() {

7 x +=1; } }

(b) Role class definition example (c) Choreographic fragment

Fig. 2. Formal syntax of PVL

verification features in VerCors. We use it to formalize a semantics for chore-
ographies by defining transformations from choreographies to PVL.

The syntax of PVL is shown in Fig. 2a; this description follows the order in
the figure. We first define names for several types of declarations, including some
typical elements for each declaration type. E.g. the names z, y and z will always
refer to a field of a class. PVL supports several built-in types, such as integers,
booleans, and sequences. Each class C is also a distinct type. A PVL program
consists of zero or more classes or choreographies. The syntax of classes C' and
statements S is similar to Java, except for the par block statement, discussed
later. A more complete syntax can be found in [18]. Here, we show an example
in Fig. 2b. The choreography syntax from Fig. 2c is discussed in Sect. 3.

Figure 2a defines several kinds of expressions. Pure expressions E only use
local variables, endpoints and immutable value constructors (e.g. sequences).
Endpoints, written as r, are choreography participants, and further explained in
Sect. 3. A heap-dependent expression H extends E with field dereferencing.

A resource expression R is a heap-dependent expression, a permission expres-
sion using Perm, a resource-combining operator ** or a conditional resource using
the implication operator ==>. A permission consists of a field access expression
together with a fraction between 0 and 1 inclusive, where 1 indicates a read-write
permission, and a fraction between 0 and 1 exclusive a read-only permission. The
separating conjunction (**) can compose resource expressions when the sum of
fractions per field do not exceed 1. E.g. writing Perm(o.x, 1) is identical to
Perm(o.x, 1/2) **x Perm(o.x, 1/2). For boolean expressions, ** behaves as
&&. We define the footprint of an expression or statement as the permissions
required to evaluate or execute it. E.g. for some positive fraction f, a possible
footprint of o.x would be Perm(o.x, f).The statement o.x = o.y would have
footprint Perm(o.x, 1) ** Perm(o.y, f).

Two statements manipulate permissions directly. The inhale R statement
adds the permissions R to the current thread. The exhale R statement first
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checks if the current thread actually has all the permissions R, and then removes
them from the current thread. Verification fails if the permissions are not avail-
able. These statements are verification primitives for encoding programming
language semantics. E.g. acquiring a lock that guards write permission to the
field o.x can be modelled with the statement inhale Perm(o.x, 1). When used
with plain boolean expressions, inhale/exhale behave as assume/assert.

The kinds of expressions F, H and R distinguish expression capabilities.
Specifically, expressions E will only refer to local variables and endpoints, H
can mention heap locations, and R can mention permissions. VerCors then uses
annotations in the form of R to check memory safety of expressions H.

Contracts K are written using the requires and ensures keywords, and
can be added to methods, choreographies and par blocks. The par block is an
important concurrency primitive in PVL [6]. The first part of the par block is
the contract, which specifies behaviour from the perspective of one thread. Then
follows a binder that will contain the index of each thread, followed by a range
that determines the number of threads. The body of a par block consists of
standard imperative statements, such as if, while, etc. The semantics of a par
is as follows: when reaching a par block, N subthreads execute the par block
body in parallel. The parent thread waits until the subthreads finish.

3 Choreographies

We will next define the syntax for parameterized choreographies, as well as give
an intuition for the semantics (Sect.3.1). The parameterization extension also
requires integration with existing deadlock freedom [2] and shared memory [19]
support of VeyMont (Sects. 3.2 and 3.3). Finally, we introduce the full distributed
summation running example (Sect. 3.4).

3.1 Syntax

The syntax for choreographies in VeyMont is shown in Fig. 2¢; again, the descrip-
tion in this section follows the order in this figure. We also informally describe
its semantics. Sections4 and 5 describe the actual semantics of choreographies
by defining two transformations into the OOP fragment of PVL.

Declarations. A choreography consists of a contract, a series of arguments, and
a series of choreographic declarations, which can be an endpoint, an endpoint
family, or a run declaration. A single endpoint has a name (e, a, or b), a class
type C' and an argument list. The argument list is passed to the constructor at
run-time, which creates an instance of C' to represent the endpoint.

A parameterized endpoint is an endpoint family, which additionally has a
size parameter. Note that this parameter can be symbolic. Therefore, to verify
or generate code for parameterized choreographies, one must either use e.g. an
SMT solver that can do so symbolically, or somehow delay inspection of this size
until run-time, when the symbolic parameter is instantiated. The parameter is



Parameterized Choreographies 55

also allowed to depend on the heap. This is because the parameter is evaluated
before the endpoint family is initialized. When each member of an endpoint
family is constructed at run-time, the binder v is also in scope, which contains
the index of the current endpoint within the endpoint family. The endpoint
family is represented at run-time as a sequence of instances of C. An example
of a parameterized endpoint is shown in Fig. 1b on line 2.

The run declaration has a contract and a series of choreographic statements.
Essentially, each endpoint executes the run declaration by only executing the
choreographic statements related to the endpoint. The contract of the run dec-
laration differs from the choreography contract as follows: the choreography pre-
condition holds before endpoint initialization, the run precondition holds after
initialization and before run is executed. Conversely, the run postcondition holds
when an endpoint finishes, the choreography postcondition holds after all end-
points have finished. Examples of run declarations are in Figs. 1 and 3.

Endpoint References. There are two notations for endpoint references: r and a.
The notation r refers to a particular endpoint, which can be be either a singular
endpoint e, or a family F' indexed by a pure expression. E.g. F'[N-1] selects the
last endpoint of a family F' of size N. The notation « extends r with ranges of
endpoint families as follows: F'[i := E; .. E,], for a family F', a binder 7, and
a half-open range [E;, E}). E.g. F[tid := N/2..N] refers to all endpoints of F
with index € [%, N). In this case, the family has to have at least size N. The
binder ¢ is also used in endpoint expressions, explained later. This notation is
inspired by related work of Ng et al. [16], as discussed in Sect. 6.

Indexing into endpoint families using « is only allowed with pure expressions
E. This is deliberate, as it ensures any indexing operation is heap independent,
meaning no permission annotations are necessary for endpoint family indexing.
This also ensures any indexing operation can be executed by any endpoint of
a choreography. This allows evaluating indexing expressions in any endpoint
context, which is important for communication statements, discussed later.

Statements. Branches, asserts and loops are choreographically transparent: they
are only executed by the endpoints that occur within them. If an endpoint is not
mentioned in a choreographically transparent statement, the endpoint skips it.

An endpoint statement is a local action of an endpoint. It requires an «,
meaning the action can apply to a singular endpoint or a family range. We
allow method calls and assignments on endpoints. For example, in the statement
“endpoint e: e.m()” the method call e.m () will be executed by endpoint e.
The formal syntax for endpoint statements is slightly more general than what the
choreographic and endpoint projection can handle. For example, parameterized
endpoint statements can only do method calls directly on endpoints. We enforce
these restrictions syntactically, and further discuss them in Sect. 4.

A communicate statement specifies communication. Through the a nota-
tion, communication can either be between two singular endpoints, or between
two family ranges with an injective mapping. Injectivity is ensured by both the
choreographic and endpoint projection through explicit checks. Communication
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statements consists of a channel invariant, a sending endpoint, the message to
be sent, the receiving endpoint, and the destination in which the message will
be received. The channel invariant specifies a property over the message, i.e. an
invariant over values in the channel. The endpoint projection (Sect.5) creates a
channel for each communicate [2,19]. The primitives \sender, \receiver and
\msg may be used to refer to the sender, receiver, and message respectively in
the channel invariant. For example, channel_invariant \msg > 2 specifies all
messages sent over the channel must be bigger than 2. Examples of singular and
parameterized communicate statements are shown in Fig. 1.

For both endpoint and communication statements, whenever the endpoint
annotations are obvious, they are omitted. E.g. in communicate a.x -> b.y,
we omit the a: and b: annotations.

Ezxpressions. We distinguish two kinds of choreographic expressions. The first
expression type is H.por, which is essentially a list of endpoint expressions, com-
posed using &&. An endpoint expression is an expression tagged with the end-
point that should evaluate it. If the endpoint expression introduces a binder, this
binder can appear inside the tagged expression. E.g. consider this expression:

(\endpoint F[i := 0 .. N1; F[i].x == 1)

This states that endpoints in family F' have a field x equal to the endpoint
index. In addition, when an endpoint evaluates the endpoint expression, it must
do so using only its own memory. This is further explained in Sect.3.3. The
second expression type is Rcpor, Which is similar to H.po except that Repo- can

also introduce permissions, and compose them with the separating conjunction
kk

3.2 Deadlock Freedom

Deadlocks occur if an endpoint is waiting for a message that will never be
sent. This can happen when branches are involved. Consider the choreography
communicate a.x -> b.y; ..., which is just a series of communications and
local actions. Because of the simple structure of this choreography, each send
is guaranteed to be paired with a receive, and hence it cannot deadlock. Now
consider the choreography if (a.x && b.x) communicate a.y -> b.y, which
consists of one branch and one communicate. Here, a deadlock is possible: when
la.x && b.x holds, b will enter the body of the if statement, and a will skip
it. This is because of the semantics of choreographic expressions, where a will
only execute expressions relevant to a, and vice versa for b. This will result in b
waiting for a message, even though it will never be sent, because a skipped it.
To prevent deadlocks, choreographies need branch unanimity [2]. A branch is
unanimous if the condition of a branch evaluates to the same value for each par-
ticipating endpoint. In other words, all endpoints have to agree “unanimously”
on the condition of the branch. VeyMont checks this automatically [2]. Tak-
ing the previous example, the branch is unanimous if a.x == b.x always holds
before the if. Branch unanimity also applies to while loops, and hence ensures
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that either both endpoints encounter the communicate statement, or they both
skip it, and not something in between. For a finite set of endpoints, a verifica-
tion condition for branch unanimity is straightforward to generate, following the
example above. We extend branch unanimity for endpoint families in Sect. 4.5.

3.3 Shared Memory

Supporting shared memory in choreographies requires memory safety annota-
tions. For example, the statement endpoint a: b.x := y (a assigns y to b.x)
is safe if and only if endpoint a has write permission for b.x.

VeyMont supports endpoint ownership annotations to bind a permission to
an endpoint [19]. E.g. (\endpoint a; Perm(b.x, 1)) states that a needs write
permission for b.x. VeyMont checks if endpoints in a choreography do not use
memory that they do not own by transforming the endpoint ownership anno-
tations into PVL permissions. This is done as part of the choreographic pro-
jection [19]. Summarizing, the permission from the previous example would be
transformed into Perm(b.x, 1, a), using a special encoding to put the endpoint
owner as metadata in the permission. The transformation also guards all field
accesses as follows. First, the transformation generates the function read_f£:

requires Perm(o.f, 1, e); int read_f(endpoint e, object o) = o.f;

The precondition of read_f forces permission with proper metadata to be
available at every field access. The transformation also replaces every field access
with an invocation of read_f. E.g. the expression (\endpoint a; b.f > 0) is
transformed into read_f(a, b) > 0.

The shared memory support of VeyMont is straightforward to integrate with
parameterization, because parameterized permissions can be encoded using uni-
versal quantifiers. This is sufficient, as quantifiers are natively supported by
the underlying verifier VerCors. The only integration required is for the choreo-
graphic projection to explicitly apply the shared memory encoding. This is done
by using the confined memory mode operator, introduced in Sect. 4.

3.4 Running Example: Distributed Summation

We now formulate a ring-based distributed summation algorithm as a choreog-
raphy. It will also be used to illustrate the choreographic projections.

Algorithm Encoding. In the choreography in Fig. 3, each endpoint only commu-
nicates with its two neighbouring endpoints (resp. predecessor and successor),
simulating a ring topology of size N. An endpoint initially knows only its own
value. The goal is that each endpoint eventually knows the sum of the values of
all endpoints. The sum is calculated using the sum function, with parameters:
a sequence of nodes, the starting index and the number of indices to include
in the sum. At each iteration, the endpoints send the current partial total to
their successor. Then, they receive a partial total from their predecessor, and
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1 requires N >= 2;

2 choreography summation(int N) {

3 endpoints ns[i := 0..N] = Node(i, int());

4 requires (\endpoints ns[i := 0..N]; ns[i].sum == ns[i].v);

5 ensures (\endpoints ns[i := 0..N]; ns[i].sum == sum(ns, O, ns[i].n));
6 run {

7 invariant (\endpoints ns[i := 0..N]; ns[i].total == sum(ms, ns[il]l.i, ns[i]l.n));
8 while ((\endpoints ns[i := 0..N]; ns[i]l.n < N-1)) {

9 channel_invariant \msg == sum(ns, \sender.i, \sender.n);

10 communicate ns[i := 0..N-1].sum -> ns[i+1].in;

11 channel_invariant \msg == sum(ns, \sender.i, \sender.n);

12 communicate ns[N-1].sum -> ns[0].in;

13 ns[i := 0..N].update(); } } }

Fig. 3. Distributed summation choreography

add their own local value to it. This yields a new total. After looping N — 1
times, each endpoint knows the network total.

A key difference between the algorithm and the choreographic encoding is
how the network structure is encoded. Instead of using the modulo operator, we
apply an insight from previous work and “linearize” the ring communication into
two separate communications [7,16]. One is parameterized over the range 0 to
N — 1, and the other communication is from N — 1 to 0, closing the loop. This
shows that circular topologies can be encoded using simpler linear structures.

Verification Outline. The choreography contains several verification annotations,
which give an outline of the correctness proof. Essentially, as partial sums are
communicated between endpoints, the partial sum of each endpoint converges
towards the true total in N — 1 iterations.

Permission annotations, ghost state and proof steps necessary to verify Fig. 3
are omitted for ease of presentation. In particular, verification requires a lemma
that uses the symmetry of addition to show that a sum starting at endpoint ns [¢]
equals the sum starting at endpoint ns[j]. The version with full verification
annotations is available in the artefact [17]. In particular, we verified that each
endpoint computes the same network total.

4 Choreographic Projection

We will now discuss the choreographic projection operator {{«]}. Its purpose is
to encode the choreography into a PVL program that VerCors can verify. This
way, if the PVL program verifies, the choreography is correct. Otherwise, there
might be a bug, either in the choreography, or in its specification.

To encode parameterized constructs, we use two primitives from the under-
lying verifier VerCors: the par block for structured parallelism and universal
quantifiers. We impose restrictions on the allowed syntax to ensure the required
annotations can be generated automatically. For non-parameterized constructs,
the encoding transforms all communicate statements into plain assignments, and
keeps other primitives, i.e. if, while, assignments and method calls. Effectively,
the choreographic projection picks a representative interleaving of all possible
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1 communicate a: a.balance > a.n -> b: b.ok; 1 b.ok = a.balance > a.n;

2 2 assert a.balance > a.n == b.ok;
3 if (a.balance > a.n && b.ok) { 3 if (a.balance > a.n && b.ok) {

4 communicate a.n -> b.n 4 b.n = a.n;

5 a: a.balance := a.balance - a.n; 5 a.balance = a.balance - a.n;

6 b: b.balance := b.balance + b.n; } 6 b.balance = b.balance + b.n; }

(a) Input choreography. (b) Output PVL.

Fig. 4. Encoding of a choreography that models a bank transfer.

interleavings of choreography, and then encodes it in plain PVL. This is sound,
as each endpoint is also verified to be memory safe. Memory safety guarantees
non-interference, and therefore the behaviours of all interleavings are equivalent.

The choreographic projection operator has two modes. The plain mode, writ-
ten as {«[}, encodes the choreography as a sequential object-oriented PVL pro-
gram, while adding additional checks for deadlocks. The confined memory mode,
written as {{«[},, ensures the argument is encoded such that only memory of end-
point 7 is used (see Sect. 3.3). The confined memory mode is used by the plain
mode when an endpoint context annotation occurs.

We only list the rules that are key to transforming the examples. The full
listing can be found in [18]. Note that the choreographic projection results in a
program intended for verification. The resulting program is an abstracted version
of the choreography, which behaves as if all endpoints are sharing one thread,
yet does not exclude any concurrent behaviours. Transformation for the purpose
of execution is done by the endpoint projection explained in Sect. 5.

4.1 Non-parameterized Example

To give an intuition for the choreographic projection, we first show a concrete
example. Figure4a shows the input choreographic code. Figure 4b shows the
output PVL code, created using the choreographic projection {«[}. There is a
close correspondence between the left and the right listing: each statement is
encoded using the corresponding rule from Fig 5. The only new statement is the
assert, added by rule CpIF, which checks deadlock freedom (see Sect. 3.2).

4.2 Non-parameterized Projection Rules

We will now discuss the rules required to transform the example in Fig. 4, shown
in Fig. 5. Rule CPASSIGN pattern matches on the subparts of the choreographic
assignment statement on the left side of =, and shows how to construct the
projected statement on the right. In this case, the choreographic projection is
applied to H;,. and H,, removing the endpoint labels from the resulting state-
ment. Within rules, subscripts such as loc and v are only to clarify intention.
However, for {+[} , and later [[+], the subscript s significant: {{+[},. enables the con-
fined memory mode, confining the expressions to the memory owned by r. Note
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CPIF CPASSIGN

. _{ assert unanimous(H); . L o _ .
{[lf (H) Strue Sfalse]}— if (ﬂHﬂ) {[Strue]} {[Sfalsel} } {[’f'. Hlaz_' . Hﬂ;]}*{[Hlou]}T {[HU]}T’

CpCoMM
channel_invariant R;(\msg, \sender, \receiver); || { T v = {Hmsgl,; exhale {Rr(v, 7, p)],;
communicate r: Hpmsg => p: Hast; " inhale {R;(v, r, p)]}p; {[Hdst]}p =v; }

Fig. 5. Non-parameterized choreographic projection rules

that this rule is only applicable for any endpoint r, meaning singular endpoints
e as well as an indexed family F'[].

The rule CpIF adds a deadlock freedom assert, and then forwards the chore-
ographic projection to the subexpression and sub-statements. The unanimous
transformation function, which computes a verification condition for deadlock
freedom, is further discussed in Sect.4.5. As there is no endpoint context on the
sub-statements, the confinement memory mode is not used here.

Rule CPCoMM encodes the sending of message H,,s4 to location H gy, while
transferring the channel invariant R; from r to p. This is done as follows. First,
the message value v is computed, confined to the memory of r. Then, the per-
missions in the channel invariant are removed using exhale, using the confined
memory mode to ensure only permissions of r are removed. To determine the
permissions to be exhaled, a substitution operation is applied. The notation
Ri(v, r, p) replaces, in Rj, every occurrence of \msg with v, \sender with r
and \receiver with p. E.g. \msg > 0 would become v > 0 after substitution.
This substituted invariant is added to the state of p using inhale, and then the
value is written to the destination location.

4.3 Parameterized Example

Figure 6 shows an example application of rule CPCOMMRANGE ((Fig. 7). Note
the use of the three-argument Perm predicate to indicate permissions with addi-
tional metadata (see Sect.3.3). The inhale/exhale statements respectively
repeat the requires/ensures expressions, and are hence abbreviated in this
figure.

4.4 Parameterized Projection Rules

The transformation rules for parameterized choreographies are shown in Fig. 7.
Rule CPCOMMRANGE encodes a parameterized communication between two
endpoint families. It is essentially a regular communication, wrapped in a par
block. This is crucial: if all message transfers can happen independently in par-
allel, they can be safely split up into separate threads, as is done by the endpoint
projection. Before the par block, an assert is generated which checks injectivity
of the expression d over the given range [F;, E},) of the communicate. This assert
ensures the sender-receiver relation is injective, i.e. for each sender there must
be exactly one receiver, and vice versa.
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channel_invariant

\msg == sum(ns, \sender.tid, \sender.n);
communicate

nodes[i := 0..N-1].sum -> nodes[i+1].in;

assert (\forall int i, j = 0..N-1; i+l == j+1 ==> i == j);

par (int i = 0..N-1)

context Perm(ns[i].sum, €, ns[i]) ** Perm(mns[i+1].in, 1, ns[i+1])
requires ns[i].sum == sum(ns, ns[il].tid, ns[i].n);

ensures ns[i+1].in == sum(ns, ns[il.tid, ns[il.n);

{ int v = ns[i].sum; exhale ...; inhale ...; ns[i+1].in = v; }

INU
O U W N

(a) Input communication

(b) Output PVL

Fig. 6. Encoding of a parameterized communicate from Fig. 3

Note how the syntax of message and destination fields is restricted: fields
can only be dereferenced on an indexed family F'[i]. This is in contrast with
rule CPCoMM, where the object is a heap-dependent expression. This restric-
tion ensures the entire process of projection stays automatic. Allowing a heap
expression H would require user annotations. A workaround for the restriction
is to assign a heap-dependent expression in a preceding method call.

In the generated par block, we require € permission to read the message
field f, which means the verifier will pick a positive fraction smaller than the
available permission. Using € ensures the location can only be read, and not
written to, which allows the verifier to maintain that f does not change. The
context keyword here is syntactic sugar for a symmetric requires and ensures
clause. Rule CPCOMMRANGE performs substitution on R; like rule CPCOMM.
E.g. in the precondition of the par block, the notation Rj(...) replaces, in Ry,
\msg with F'[i].f, \sender with F'[i] and \receiver with G [d(i)].

Rule CPEXPRRANGE shows how to project an endpoint expression with a
range. Essentially, \endpoint is replaced with a universal quantifier, and the
inner expression F is confined to the memory accessible to F'[i].

Rule CPMETHODCALLRANGE encodes that a method call is executed in
parallel on a range of an endpoint family. It does this by projecting the method
call confined to a symbolic element of this endpoint family, F'[i], and wrapping
that in a PVL par block. Wrapping the method call in a par block encodes that
the methods must run in parallel and independently. The contract for the par
block is taken from the method using pre(m, F'[i]) and post(m, F [i]) to return
the pre-/postcondition of m. They also replace any occurrence of this in the
return value with the second argument, in this case F'[:]. Note that only method
calls directly on F'[i] are allowed, similar to rule CPCOMMRANGE. This is to
keep projection automatic. A workaround for this restriction is to compute a
heap-dependent expression within the method m, and call a method the result.
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CPCOMMRANGE
channel_invariant R;(\msg,\sender, \receiver);
{[communicate Fli := By .. Epl: FL1.f -> GU@:)]: GLd(i)].g; ]}
assert (\forall int i, j = E; .. Ep; d(i) == d(j) ==> 1 == j);
par (int ¢ = E; .. Ep)

CPMETHODCALLRANGE
{endpoint F[i := E; .. E]: FLl.mQ;] =
par (int i = E; .. Ep)

requires {pre(m, F[’L:])]}[-‘[i]; context {[Perm(FLil.f, ] pry ** {Perm(GLd(1)1.g, D Dgraqns
ensures {post(m, F[il)]} ppys : y ; ; .
{ {endpoint FLi1: FLi] m?)]']} } requires {R;(FU[.f, F[i1, GLd()]) ) ppys
P e A ensures {Ri(GLd(i)].g, FLil, GLd(0)]))grauy
CPEXPRRANGE {Tov={FL 'fl}m]? )
{(\endpoint F[i := E; .. Ep]; E)]} = exhale {(R;(v, F'lil, GUd(i)])} pry5
(\forall int i = E; .. Ep; {Elpw;) inhale {R;(v, F'li], GLd(1)1)]}graas
(GTd(@)] gl Gragy = vs ¥

Fig. 7. Parameterized choreographic projection rules

4.5 Branch Unanimity

Branch unanimity is defined through the function unanimous(E) and supporting
functions, shown below. It evaluates to true if all endpoints in F evaluate E to
the same result. We split this into two cases: either all «; evaluate F to true,
or all evaluate to false. Evaluating the condition for each individual endpoint
occurring in F takes two steps. The first step is using the confined memory mode,
which drops parts of the expression that are not relevant to the given endpoint.
For example, {{ (\endpoint a; F;) & (\endpoint b; E») [, = {E1],.

The second step is wrapping E, confined to F'[¢], in a universal quantifier.
This enables reasoning over the entire endpoint family, even though during ver-
ification the size of endpoint families remains symbolic.

for all aq,..., 00 € E for all ay,...,an € E
unanimous(E) = (ground(FE, a1, true) && ---) || (ground(E, «y, false) && ---)
ground(E, 7, b) = {E]}, ==
ground(E, Fli := E; .. Ey], b) = (\forall int i = E; .. Ej; {Elprg = O

4.6 Choreographic Projection of Distributed Summation

The choreographic projection of Fig. 3 is shown in Fig. 8. We focus on the while
loop as it contains the core of the algorithm. Each statement is transformed
by an application of the rules CPCOMMRANGE, CPMETHODCALLRANGE and
CPEXPRRANGE. Note that the branch unanimity check is added as a loop invari-
ant, instead of a separate assert, to ensure branch unanimity is checked both at
loop entry and exit. The false branch has been ommitted using “...”. As the
arguments of the exhale/inhale statements on lines 8 and 9 just repeat the
contract of the preceding par block, they have also been ommitted. For the
parameterized method call on line 10 we inline the contract of update, resulting
in only an ensures clause.
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1 loop_invariant (\forall int i = 0..N; ns[i]l.n < N-1 == true) || ...;
2 loop_invariant (\forall int i = 0..N; ns[i].sum == sum(ns, ns[i].i, ns([i]l.n));
3 while ((\forall int i = 0..N; ns[i]l.n < N-1)) {

4 par (int i = 0..N-1)

5 context Perm(nodes[i-1].sum, €) ** Perm(nodes[i].in, 1);

6 requires ns[i].sum == sum(ns, ns[i].i, ns[i].n);

7 ensures ns[i+1].in == sum(ns, ns[i].i, ns[i].n);

8 { int v = ns[i].sum; exhale ...; inhale ...; ns[i+1].in = v; }

9 int v = ns[N-1].sum; exhale ...; inhale ...; ns[0].in = v;

10 par (int i = 0..N)

11 ensures ns[i].sum = ns[i].in + ns[i].v;

12 { ns[i].update(); }

Fig. 8. Choreographic projection of core while loop of Fig. 3

5 Endpoint Projection

We will now discuss the transformation rules for the endpoint projection. It is
written as [+],., where we refer to r as the projection target. The purpose of the
endpoint projection is to transform a choreography such that it only executes
parts relevant to the endpoint r. In this process, all choreographic primitives
are replaced with plain PVL constructs. If this is done for all endpoints r in
the choreography, when all endpoint projections are composed in parallel, the
resulting program behaves exactly the same as the original choreography [11].

For non-parameterized choreographies, the endpoint projection can be done
using a simple syntactic check [2]. Summarizing, for a given projection target
r, simply retain all choreographic statements that mention r. Parameterized
choreographies introduce endpoint families, whose sizes will only be known at
runtime. This makes the endpoint projection challenging: how to determine if
the endpoint F'[i] falls in the range 0. .N?

We resolve this by delaying projection of parameterized primitives until run-
time. This is done by wrapping the projected statements in an if that checks
if F'[<] is in the relevant range. If so, the statement is executed as if projected
for F'[7]; otherwise, it is skipped. This way, the endpoint projection can safely
simulate the program for any possible endpoint F'[i], at the cost of including
an extra if.

5.1 Non-parameterized Example

To give an intuition for the endpoint projection, we show a concrete example.
Figure4a is the input choreography, and Fig.9 shows the output PVL of the
endpoint projection for both a and b. Each communication is transformed into
a concrete channel operation, depending on whether the projection target is a
or b. For the condition of if and endpoint statements, only those relevant to
the current projection target are kept, while others are replaced by true.

5.2 Non-parameterized Projection Rules

In Fig. 10 (top) we summarize the conceptually interesting endpoint projection
rules. The full listing can be found in [18].
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chanl.writeValue(a.balance > a.n); b.ok = chanl.readValue();

1 1
2 if (a.balance > a.n && true) { 2 if (true && b.ok) {
3 chan2.writeValue(a.n); 3 b.n = chan2.readValue();
4 a.balance = a.balance - a.n; 4
5 5 b.balance = b.balance + b.n;
6 ) 6 )
(a) Endpoint projection for a. (b) Endpoint projection for b.

Fig. 9. Endpoint projection of Fig. 4a.

Rule EPIF encodes an if statement by keeping it and applying the endpoint
projection to the condition and sub-statements. For rule EPEXPR, if the endpoint
annotation matches the current projection target, the expression is simply kept.

Rule EPSEND describes how a communicate, with implicit name L, should
be encoded if singular endpoint «a is in the sending position. Before the endpoint
projection is done, VeyMont generates a channel instance for each communicate
statement and assigns it to L. Then, when applying rule EPSEND, the state-
ment is replaced by [L],.writeValue (£,,s,), where [L], represents the chan-
nel instance generated beforehand. The methods readValue and writeValue are
part of the runtime environment that VeyMont generates automatically [2,19].

5.3 Parameterized Projection Rules

Parameterized projection rules are shown in Fig. 10 (bottom). These have to
account for ranges of endpoint families. This is done by partially delaying the
projection until runtime. For each projected statement or expression we check
if the index of the current projection target is in the range (or the exact index)
specified by the expression or statement. E.g. in rule EPRANGE, the expression
FE will only be evaluated if the index of the current projection target falls in the
range of [Ej, Ep,). Similarly, rule EPRANGESEND wraps the call to writeValue
in an if statement to ensure adherence to the range. Rule EPRANGERECEIVE
is symmetric, in particular the use of d is also inverted as follows.

We require the function d used to compute the receiver index to be invert-
ible. This is important, as the index of the sender determines which channel
the receiving party should read from. We use the notation d~' for the inverse
function, e.g. in EPRANGERECEIVE. The choreographic projection already guar-
antees that d is injective (Sect.4.4). To actually compute the function d—! in the
projection, we use simple pattern matching to invert each operation in d. For
example, if d(i) = i+ 1, then d~! = i — 1. This is an approach inspired by previ-
ous work: Ng et al. present Table II as a basis for such a transformation [16]. We
think this step could be improved by reusing results in the field of bidirectional
functions, such as [14]. We leave this for future work.

5.4 Example Endpoint Projection

The endpoint projection of Fig. 3 is shown in Fig.11. There are two major dif-
ferences between the choreography and its endpoint projection. First, each com-
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EpIr EPSEND
[if (H) Sirue Sraise], =if ([H],) [Struel, [Sraise], [L: communicate a: Hpsy => b: H,M;]]Z“"d:
[L], -writeValue (Hpmsg) with {
EPEXPR sender = a; receiver = b; };

[(\endpoint e; E)], =FE

EPRANGESEND EPRANGERECEIVE
[L: communicate F[j: E; .. Exl.f -> GILd(j)] g]];fg]d = [L: communicate F[j: E; .. Exl.f -> GLd(j)].glgis™ =
if (B <=0 && i < Ep) { if (B <= d'(i) && d7'(i) < Ep) {
[L] ppsp i) cwriteValue(F'[4]. f) with { Glil.g = [Llga [d~'(i)] .readValue() with {
sender = [F'[i]; receiver = G[d(i)l; }; } sender = F[d '(i)]; receiver = G[il; }; }
EPRANGE

[(\endpoint F[j := E; .. Epl; E)]]Fm =F <=1 && i < B, ==> F

Fig. 10. Non-parameterized and parameterized endpoint projection rules

munication is split up into write and read statements. This is because in a
parameterized communication, an endpoint can be both a sender and a receiver.
E.g. in the summation choreography, line 10 of Fig. 3, node ¢ must send to node
1+1, and receive from node ¢ —1. This is in contrast to regular non-parameterized
communication, in which case it is statically known if the projection target is
either a sender or a receiver, meaning less code is generated.

The second difference is that each statement in Fig. 11 is wrapped in an if,
ensuring that the action is only executed if the index of the current endpoint
(in this case i) falls in the range specified by each communicate statement (e.g.
line 3). When a communicate is not parameterized, but involves a parameterized
endpoint, such an if is also necessary, e.g. on line 5. Finally, this transformation
is applied similarly to parameterized method calls (line 7).

6 Related Work

VeyMont. This paper builds on work around VeyMont. Jongmans et al. for-
malised verification of choreographies [11]. Van den Bos et al. first implemented
the choreographic and endpoint projection in VeyMont [2]. Rubbens et al.
extended them with shared memory support and annotation preservation [19].

Choreographies. The following works do not consider choreographic verification,
or shared memory, but they do concern parameterization. We expect that our
insights can be applied to the following works, and vice versa.

Jongmans introduces first-person choreographic programming (1CP), which
is a novel formulation of choreographies with parameterization [10]. It is event-
driven and dynamic. They prove deadlock freedom of well-typed choreographies,
support intricate messaging patterns such as pipelined communication, and pro-
vide tool support. They do not provide a way to verify functional correctness
of the choreographies, nor of the endpoint projections, and also do not sup-
port shared memory. A key difference between their and our formulation of
parameterized choreographies is that they do not allow indexing into endpoint
families. Instead, they fully describe the network topology before the choreog-
raphy is started, avoiding the need to define indexing of endpoint families in
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1 loop_invariant O <= i && i < N ==> ns[i].sum == sum(mns, i, ns[i]l.n);

2 while (0 <= i &% i < N ==> ns[il.n < N-1)) {

3 if (0 <= i && i < N-1) chani[i].writeValue(ns[i].sum) with { sender = ns[i]; receiver = ns[i + 1]; };

4 if (0 + 1 <= i &% i < N-1+1) ns[il.in = chani[i - 1].readValue() with { sender = ns[i - 1]; receiver = ns[il; };
5 if (i == N - 1) chan2.writeValue(ns[N-1].sum) with { sender = ns[N-1]; receiver = ns[0]; };

6 if (i == 0) ns[0].in = chan2.readValue() with { sender = ns[N-1]; receiver = ns[0]; };

7 if (0 <= i &% i < N) ns[i].update(); }

Fig.11. Example of endpoint projection of Fig. 3

their semantics. We avoid defining the network topology by using verification to
ensure injectivity and bounds checking for indexing operations.

Bates et al. support parameterized choreographies in the tool MultiChor [1].
This is achieved through census polymorphism, which essentially parameterizes
a choreography over a set of endpoints by leveraging the Haskell type system.
They fully delay the endpoint projection until runtime, where we only do this for
parameterized parts of a choreography. While conditions still need to be prop-
agated between endpoints to maintain deadlock freedom, they employ enclaves
to limit the scope in which conditions need to be propagated. We use branch
unanimity to guarantee deadlock freedom at verification time. They also do not
support endpoint family indexing directly, but instead fix the network topology
during the initialization phase, similar to Jongmans [10].

Instead of generating programs from choreographies, Kjeer et al. infer chore-
ographies from parameterized programs [12]. They achieve this by parameter-
izing procedures with endpoint references, such that choreographies can model
an endpoint substituting for another. Cruz-Filipe and Montesi similarly extend
choreographies with procedures and dynamic participant allocation, allowing e.g.
pipelined communication [5]. They do not support endpoint family indexing.

Session Types. Session types [21] are related, yet subtly different from choreogra-
phies. Session types type check protocol conformance for a given implementa-
tion, whereas choreographies allow generating an implementation. Related work
in parameterization of session types focuses on the multi-party variant [9,20],
which allows more than two parties in the session type.

None of the works on parameterized session types we found support verifica-
tion of functional correctness and shared memory [3,4,7,8,16]. Their support for
indexing into endpoint families is usually restricted to some decidable fragment
of arithmetic, where we support general recursive functions. We use verification
to show that bounds of endpoint families are respected, and that indexing is
injective, guaranteeing that the endpoint projection produces safe code. Except
for Hamers et al. [8], they all require some form of symmetry in the session type
to ensure deadlock-freedom of the projection, whereas we use branch unanimity
to guarantee deadlock freedom (Sect. 4.5). The works on session types do support
more communication patterns, such as many-to-one or pipelined communication.
This is still a challenge for our formulation of choreographies: more annotations
will be required from the user, making this extension non-trivial.

Hamers et al. [8] do dynamic checking of session types. This means they do
not need a mechanism like branch unanimity to avoid deadlocks. In exchange, a
session type might crash because non-compliance is detected at run-time.
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Ng et al. [16] introduce the endpoint family notation we use as well, which
is in turn inspired by [13]. Furthermore, Ng et al. also require that indexing of
endpoint families is an invertible operation. We generalize this requirement: for
the choreographic projection, indexing merely needs to be injective. This suffices
for verification, as VerCors can reason about injectivity. The endpoint projection
requires an invertible expression, as indices need to be computable.

7 Conclusion

We proposed an extension of the automated verifier and code generator VeyMont
for parameterized choreographies, opening the door for verification of choreogra-
phies with an arbitrary number of participants.

Adding parameterization support required improvements to several VeyMont
components. We first defined the syntax of choreographies with parameterized
primitives, such as endpoint families and parameterized communication. We then
extended the choreographic projection with support for parameterized chore-
ographies, which leverages the par block from VerCors. In addition, we restrict
the input language of the choreographic projection such that verification anno-
tations can be automatically generated. We also showed that deadlock freedom
of parameterized choreographies can be checked by quantification over entire
endpoint families using universal quantifiers.

Also, we extended the endpoint projection with support for endpoint families.
The endpoint projection generates one program that works for each symbolic
index of the family. This is implemented by checking the index at run-time,
enabling only statements for the specified index.

We have illustrated and motivated our contribution by verifying a distributed
summation choreography, included in the artefact [17]. To the best of our knowl-
edge, there is no prior work on verification of parameterized choreographies.

Future Work. We will complete the implementation of the approach presented
in this work, and further evaluate the approach with more case studies. Then,
future work will go in several directions. We will investigate the possibility of
“ghost” communication statements, which allow communicating ghost state and
proof hints between endpoints with zero run-time overhead. Another direction
is to make interactions more flexible, for example by allowing heap locations as
indices for parameterized communication statements, and by adding pipelined
and many-to-one communication. Finally, we wish to integrate the branch una-
nimity check into the endpoint projection. This would allow modification, rever-
ification and further analysis of deadlock freedom of the generated code.
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