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Abstract. This paper introduces a generalized opinion model that extends the
standard DeGroot model by representing agents’ opinions and influences as soft
constraints rather than single real values. This allows for modeling scenarios
beyond the scope of the DeGroot model, such as agents sharing partial informa-
tion and preferences, engaging in discussions on multiple topics simultaneously,
and representing opinions with different degrees of uncertainty. By considering
soft constraints as influences, the proposed model captures also situations where
agents impose conditions on how others’ opinions are integrated during belief
revision. Finally, the flexibility offered by soft constraints allows us to introduce
a novel polarization measure that takes advantage of this generalized framework.
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1 Introduction

Social networks play a significant role in opinion formation, consensus building, and
polarization among their users. The dynamics of opinion formation in such networks
typically involves individuals sharing their views with their contacts, encountering dif-
ferent perspectives, and adjusting their beliefs in response. Models of opinion formation
[2,5,12,13] capture these dynamics to simulate and reason about opinion evolution.

The DeGroot model [12] is one of the most representative formalisms for opinions’
formation and consensus’ building in social networks. In this model, a social network
is represented as a directed influence graph, whose edges denote the weight, expressed
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as a real number, that an agent (i.e., an individual) carries on another. Each agent has
an opinion, also expressed as real number, indicating the level of agreement with an
underlying proposition. Agents repeatedly update their opinions by taking the weighted
average of the opinions of those who influence them (i.e., their neighbors or contacts).

The DeGroot model is widely recognized for its elegant characterization of opin-
ion consensus based on the topology of the influence graph, and it remains a central
focus of research for developing frameworks to understand opinion formation dynam-
ics in social networks (e.g. [1–3,5,10,13,23]). Nevertheless, when modeling real sce-
narios from social networks, we often only have partial information about agents’ opin-
ions and the influence they have on one another. In practice, opinion information may
be incomplete or imprecise due to privacy constraints, self-censorship, or the dynamic
nature of beliefs. Similarly, influence relationships are often difficult to quantify, as they
depend on factors such as trust, authority, and exposure to diverse viewpoints, which are
not always explicitly observable. This uncertainty hinders the application of classical
models like DeGroot, which assume for all agents fully known opinions and influences,
typically represented as real values.

In this paper we introduce Constraint Opinion Models, a framework where both
opinions and influences are represented as (soft) constraints rather than exact real val-
ues. This allows us to reason about meaningful situations where only partial informa-
tion or preferences are available. We thus generalize the DeGroot model, at the level of
opinions and influences, while keeping much of its mathematical simplicity.

We show that using soft constraints to represent opinions offers several advantages.
First, they seamlessly represent opinions on different topics or propositions (i.e., multi-
dimensional opinions), enabling the analysis of network behavior as agents discuss
various subjects. Second, they allow for the representation of uncertainty and partial
information. This is particularly important to model situations where an agent’s exact
opinion is unknown. Third, they support some forms of epistemic modeling, captur-
ing beliefs where agents hold opinions about other agents. Additionally, the framework
can express complex opinions that a single value cannot adequately represent, such as
“extreme” viewpoints (e.g., agents that prefer any extreme option than a moderate one).

Regarding the representation of influences, soft constraints provide also an extra
flexibility. We will show that they enable the definition of “filters” that impose bound-
aries on how agents adjust their opinions while preserving their core beliefs. Moreover,
soft constraints allow for representing conditional influences, where the weight of the
influence depends on the incoming information or the subject being discussed.

Finally, a key challenge in social system analysis is measuring the difference
between two opinions as this is the basis of any polarization measure [14]. In the DeG-
root model, where opinions are real values, this is straightforward. To extend this capa-
bility to constraint-based opinion models, we introduce a notion of distance between
constraints. This allows for quantifying opinion divergence and assessing how polar-
ized a system of agents sharing constraints becomes.

Organization. After recalling the basic notions of opinion models and semiring-based
constraints in Sect. 2, we define constraint opinion models in Sect. 3. Section 4 is
devoted to illustrate with several examples the possibilities offered by our framework in
modeling scenarios beyond the classical DeGroot opinion model. Our novel notion of
distance between soft constraints is given in Sect. 5. Section 6 concludes the paper. The
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experiments shown in Sect. 4 can be reproduced with the aid of a tool available at https://
github.com/promueva/constraint-opinion-model.

2 Preliminaries

This section recalls some results about semirings, which are the algebraic structures
adopted here for modeling (soft) constraints (Sect. 2.1). We also recall the notion of
opinion models and belief revision in the standard DeGroot model (Sect. 2.2).

2.1 Monoids, Semirings and Soft Constraints

We shall use the values of a monoid, which can be combined, to represent preferences.

Definition 1 (Monoids, groups). A (commutative) monoid is a triple 〈A,⊕,0〉 such
that ⊕ : A×A → A is a commutative and associative function and 0 ∈ A its identity
element, i.e. ∀a ∈ A.a⊕0= a. A group is a four-tuple 〈A,⊕,(,0〉 such that 〈A,⊕,0〉 is
a monoid and ( : A×A → A a function satisfying ∀a ∈ A.a(a= 0.

As usual, we use the infix notation: a⊗b stands for ⊗(a,b).

Definition 2 (Semirings, rings). A semiring S is a five-tuple 〈A,⊕,0,⊗,1〉 such that
〈A,⊕,0〉 and 〈A,⊗,1〉 are monoids satisfying an annihilation law, i.e. ∀a∈ A.a⊗0= 0,
and a distributive law, i.e. ∀a,b,c ∈ A.a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c). A ring is a six-
tuple 〈A,⊕,(,0,⊗,1〉 such that 〈A,⊕,0,⊗,1〉 is a semiring and 〈A,⊕,(,0〉 a group.

Remark 1. In the soft constraint tradition [7,16], it suffices to consider semirings, and
often ⊕ is actually idempotent, hence resulting in a tropical semiring. However, for
some of our examples we will resort to rings and, sometimes, to fields, i.e. where there
is an additional binary operation (÷ that is defined whenever the second operand is
different from 0 and such that a(÷a= 1.

Soft Constraints. Let us now introduce soft constraints that generalize classical con-
straints: in the latter, a variable assignment η satisfies or not a constraint, while in the
former, η is assigned to a semiring value, interpreted as the level of preference, impor-
tance, fuzziness, cost, uncertainty, etc. of such assignment. Our definition is a straight-
forward generalization of the one adopted for optimization problems [7,16], where ⊕
is idempotent. We fix a semiring S= 〈S,⊕,0,⊗,1〉.

Definition 3 (Soft constraints). Let V a set of variables and D a finite domain of
interpretation. A (soft) constraint over S is a function c : (V → D) → S associating a
value in S for each variable assignment (or valuation) η :V → D of the variables. C is
the set of all the possible constraints that can be built from S, D, and V .

Let η : V → D be a valuation and c : (V → D) → S a constraint. We use cη to
denote the semiring value obtained when c is applied to η . With η [x := d] we denote
the valuation η ′ where η ′(y) = η(y) for all y∈V \{x} and η ′(x) = d. Given a set X ⊆V
of variables, we use η ↓X= η ′ ↓X to denote the fact that η(x) = η ′(x) for all x ∈ X .
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We use c−1 : S → 2V→D to denote the “inverse” of a constraint c, i.e., c−1(s) is the
set of assignments Ξ = {η | cη = s}. We say that the set Ξ is the set of solutions of c
with respect to s (in the sense that they map c into a designated value s).

A constraint c often depends only on a subset of the variables in V . Formally, a
constraint c depends on the set of variables X ⊆ V if for all valuations η ,η ′ we have
cη = cη ′ whenever η ↓X= η ′ ↓X . The smallest such set is called the support of c and
denoted as sv(c): It identifies the relevant variables of the constraint c. In fact, if sv(c) =
{x1, · · · ,xn}, we often write c[x1 .→ v1, · · · ,xn .→ vn] = s to denote the fact that cη = s
for any η that maps each xi into vi, since the assignment to other variables is irrelevant.

The projection of a constraint c on a set of variables X , denoted as c ⇓X , is the
constraint c′ such that c′η =

⊕
{η ′|η ′↓X=η↓X}(cη ′). This means that the variables not in

X are “removed” from the support of c in c′.
We call c a constant constraint if there exists s such that cη = s for all valuation

η (and hence, sv(c) = /0). With a slight abuse of notation, we shall identify a constant
constraint c, where cη = s, with the semiring value s.

The set of constraints C forms a semiring C, whose structure is lifted from S.
More precisely, (c1 ! c2)η = c1η ! c2η for all η : V → D and ! ∈ {⊕,⊗}. Combin-
ing constraints by the monoidal operators means building a new constraint whose sup-
port involves, at most, the variables of the original ones, since it is easily proved that
sv(c1 ! c2) ⊆ sv(c1)∪ sv(c2). The resulting constraint is associated with each tuple of
domain values for such variables, which is the element that is obtained by adding/mul-
tiplying those associated with the original constraints to the appropriate sub-tuples.

Example 1. Consider the Boolean semiring B= 〈{T,F},∨,F,∧,T 〉, a set of variablesV
and the integer domainD= [0,100]. The set of constraintsC whose support is contained
in the subset {x,y} ⊆ V includes the constant constraints T and F, constraints such as
c1 = {x ≤ 42} (i.e., c1[x .→ v] = T iff 0 ≤ v ≤ 42) and c2 = {y ≤ 25}, as well as their
compositions c1 ∨ c2 and c1 ∧ c2. As expected, (c1 ∧ c2)[x .→ vx,y .→ vy] = T iff vx ≤ 42
and vy ≤ 25. Moreover, (c1 ∧ c2) ⇓{x}= c1.

2.2 Opinion Dynamic Models

This section recalls the notion of belief update à la DeGroot [12]. The definitions below
are taken from [4,23].

Definition 4 (Influence graph). An (n-agent) influence graph is a directed graph G=
〈A,E, I〉 such that A is the set of vertices, E ⊆ A×A the set of edges, and I : E → [0,1]
the weight function.

In the following, the set A of vertices is always given by an interval {1, . . . ,n} of
integers, and I is extended to I : A×A → [0,1] assuming that I(i, j) = 0 if (i, j) 4∈ E.

The vertices in A represent n agents of a community or network. The edges E rep-
resent the (direct) influence relationship between these agents, i.e. (i, j) ∈ E means that
agent i influences agent j. The value I(i, j) denotes the strength of the influence, where
a higher value means a stronger influence.

As expected, the graph G can be represented as a square matrixMG of n= |A| rows
where Mj,i = I(i, j) (i.e., Mj,i is the degree of influence of agent i on agent j). Hence,
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we shall identify the graph G with its corresponding matrix MG and omit the subindex
G in MG when the influence graph can be deduced from the context. We denote by Ai
the set { j | ( j, i) ∈ E} (i.e., { j |Mi, j 4= 0}) of agents with a direct influence over agent i.

At each time unit t, all the agents update their opinions. We use Bt : A → [0,1] (that
can be seen as a vector of |A| elements) to denote the state of opinion at time t, and Bt

i to
denote the opinion of agent i at time-unit t. A DeGroot-like opinion model describes the
evolution of agents’ opinions about some underlying statement or proposition.

Definition 5 (Opinion model). An opinion model is a triple 〈G,B0,µG〉 where G =
〈A,E, I〉 is an n-agent influence graph, B0 : A → [0,1] is the initial state of opinion, and
µG : [0,1]n → [0,1]n is a state-transition function, called update function. For every t,
the state of opinion at time t+1 is given by Bt+1 = µG(Bt).

The update function µG is dependent on G but can be tuned to model different
cognitive biases [4,23], including e.g. confirmation bias (where agents are more recep-
tive to opinions that align closely with their own), the backfire effect (where agents
strengthen their position of disagreement in the presence of opposing views), and
authority bias (where individuals tend to follow authoritative or influential figures, often
to an extreme). In this paper we focus on the following biased update function from [23]

Bt+1
i = Bt

i +Ri ∑
j∈Ai

β t
i, jMi, j(Bt

j −Bt
i) (1)

where Ri = 1
∑ j Mi, j

if ∑ j Mi, j 4= 0 and 0 otherwise, and β t
i, j = βi, j(Bt

i,B
t
j) is a value in

[0,1] possibly depending on Bt
i and Bt

j.
A broad class of update functions, generalizing the DeGroot model, can be obtained

from Eq. (1). Intuitively, updates for an agent i can weight disagreements (Bj − Bi)
with each one of its neighbors j using functions βi, j from the opinion states of i and
j to [0,1]. These functions are referred to as (generalized) bias factors. Notice that the
same opinion difference can then be weighted differently by bias factors, depending of
current opinions of agents i and j. Thus, intuitively βi, j may also be seen as dynamically
changing the constant influence of j over i, i.e., Mi, j, depending on their opinions.

Remark 2. If β t
i, j = 1, Eq. (1) corresponds to the update function in the classical DeG-

root model. In [4] it is studied the case for β t
i, j = 1− | Bt

j −Bt
i |, which is introduced as

the confirmation bias factor of i with respect to j at time t. It is not difficult to prove
that in both cases, we always have that Bt+1 ∈ [0,1]n.

It should be noted that the formula in Eq. (1) can be obtained by manipulating
suitable matrices as shown in the following remark.

Remark 3. Consider the vector 1 such that 1i = 1, the vector R such that Ri = 1
(M1)i

if
(M1)i 4= 0 and 0 otherwise, the matrices Ut obtained as the Hadamard product of β t

and M, i.e.Ut
i, j = β t

i, jMi, j, and the diagonal matrices

N = diag(R) =





R1 0 . . . 0
0 R2 . . . 0
. . . . . . . . . . . .
0 0 . . . Rn



 Vt = diag(Ut1) =





∑ jUt
1, j 0 . . . 0

0 ∑ jUt
2, j . . . 0

. . . . . . . . . . . .
0 0 . . . ∑ jUt

n, j




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It is now easy to see that

Bt+1
i = Bt

i +Ni,i∑
j
Ut
i, j(B

t
j −Bt

i) = Bt
i +Ni,i((∑

j
Ut
i, jB

t
j)− (∑

j
Ut
i, jB

t
i)) =

= Bt
i +Ni,i((UtBt)i − (Vt

i,iB
t
i))

so that, for I the diagonal identity matrix, we have

Bt+1 = Bt +N(UtBt −VtBt) = (I+N(Ut −Vt))Bt (2)

where (Ut −Vt)1= 0, and hence, (I+N(Ut −Vt))1= 1. In other terms, I+N(Ut −Vt)
is a row stochastic matrix, where the sum of the elements in each row is 1.

In the case of βi, j = 1, we have that Ut = M and Vt = diag(M1), so that NV = I
and Bt+1 = NMBt . If M is also assumed to be a row stochastic matrix, i.e. it satisfies
M1= 1, then N = I and thus Bt+1 =MBt , as expected in the DeGroot model. 56

Given a matrixM representing the influence graph G of an opinion model, we shall
use M∗ to denote the limit of Mt for t → ∞. If M is row stochastic and, furthermore,
strongly connected (i.e. the influence graph it represents is strongly connected) and
aperiodic (i.e. the greatest common divisor of the lengths of its cycles is one) [17],
the limit M∗ exists and the rows of M∗ are all the same. In this case, for all pair of
agents i and j and initial beliefs B, (M∗B)i = (M∗B) j. Thus, assuming βi, j = 1, so that
Bt+1 = MBt as in the DeGroot model, we obtain that, in the limit, the opinion of the
agents converges to the same value, thus reaching a consensus independently from their
initial beliefs. A simple and sufficient condition for M to be aperiodic is by checking
that there exists an agent i such that Mi,i > 0. An agent where Mi,i = 0 can be seen as a
puppet that just incorporates the opinions of others.

Theorem 1 (Consensus in the DeGroot model [12]). Let M be a row stochastic
matrix of values in [0,1]. If M is strongly connected and aperiodic, then limt→∞Mt

exists and all its rows are equal.

A consensus result for more general bias factors βi, j under some suitable conditions
(including continuity) can be found in [23].

Example 2 (DeGroot). Agents 1 and 2 discuss about a proposition p, and the initial
state of opinions is [0.3 0.6], where Agent 1 tends to believe that p is not the case while

Agent 2 is more positive about p. Consider the influence graph M =
[
1 0
0.8 0.2

]
, which

is a row stochastic, strongly connected, and aperiodic matrix. According to M, Agent
1 accepts no influence, while Agent 2 does. Recall that in the DeGroot model, Bt+1 =
MBt . Hence, B1 = MB0 = [0.3 0.36]. Since M1,2 = 0, Agent 1 does not change her
opinion. Moreover, due to the influence of Agent 1, the opinion of Agent 2 progressively

converges to 0.3, since limt→∞Mt =
[
1 0
1 0

]
.
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3 Constraint Opinion Models

Opinion models, as shown in the previous section, represent opinions and influences
as a real number in the interval [0,1]. This section generalizes this idea and proposes
a constraint opinion model, where the opinions and the influences of the agents are
represented as (soft) constraints in a given semiring.

Recall from Sect. 2.1 that given a set of variables V , a finite domain D, and a semir-
ing S, the set of constraints built from S, D and V is denoted C. In fact, we have a
semiring C of constraints, with carrierC, whose structure is lifted from S.

Definition 6 (Constraint influence graph). Let S be a semiring and C the constraints
built from S, V a set of variables, and D a finite domain. Let A = {1, · · · ,n} be a set of
agents. An (n-agents) constraint influence graph is a square matrix M of dimension n
with values in C, i.e. M : A×A →C.

An element ci, j of M (row i, column j) represents how agent j influences agent i.
As shown below, this influence can be a constant or an arbitrary constraint, reflecting
scenarios where agents impose specific restrictions on the way they are influenced.

Definition 7 (Constraint Opinion Model). A constraint opinion model is a triple
〈M,B0,µ t〉 where M is an n-agent constraint influence graph, B0 : A → C the initial
state of opinion, and µ t : Cn → Cn the update function at time t, so that the state of
opinion at time t+1 is given by Bt+1 = µ t(Bt).

As shown in the forthcoming sections, representing the opinion of an agent at time
t as a constraint Bt

i widens the spectrum of situations that can be modeled in systems
of agents updating their beliefs. We note that an opinion model (Definition 5) is an
instance of a constraint opinion model where the set of variables V is {p}, the domain
of the variable p is D = {0,1}, and the semiring is given by the positive real numbers
〈R+,+,0,×,1〉. Moreover, any opinion c is required to satisfy ∑η cη = 1 (e.g., if c[p .→
0] = 0.3, then c[p .→ 1] = 0.7), all the elements in the matrix (influence graph) M are
constants, and the update function has type µ t : [0,1]n → [0,1]n.

In the following examples, it is assumed that µ t is given by the following matrix
multiplication equation

Bt+1 = µ t(Bt) =MBt =MtB0. (3)

Example 3 (Opinion Models in B). Consider again the semiring B and the constraints
c1 = {x ≤ 42} and c2 = {y ≤ 25} in Example 1. Let d1 = c1 ∧ c2 = {x ≤ 42,y ≤ 25},
d2 = c3 ∨ c4 where c3 = {x ≥ 15} and c4 = {y ≥ 66}, and let B0 = [d1 d2] be the initial
set of opinions. Consider also the following constraint influence graphs

M1 =
[
T F
T T

]
M2 =

[
T F
F T

]
M3 =

[
F T
T F

]
M4 =

[
T y ≤ 20

x ≥ 10 T

]

The matrix M1 is idempotent (i.e. M1M1 =M1) and represents the situation where
Agent 1 is not influenced at all by Agent 2 while, instead, Agent 2 accepts all the
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information from Agent 1. In this scenario, we have M1B0 = B1 = [d1 d1 ∨ d2], and
M1B1 = B1. This means that, after one interaction, the system stabilizes in an opin-
ion where Agent 1 does not change its initial opinion d1, and Agent 2 considers also
possible the values for x and y according to the opinion d1 of Agent 1.

M2 is the identity matrix I, and it represents a situation where neither agent is influ-
enced by the other. Hence, M2B= B for any choice of B. Instead, M3 is involutory (i.e.
M3M3 = I) and thus the system never stabilizes, alternating between [d1 d2] and [d2 d1].

The constraint influence graph M4 is more interesting, since some of the influences
are not constants. Consider the element (M4)2,1 = {x ≥ 10}: Agent 2 is influenced by
Agent 1 only to the point that it accepts that x might also be bigger than 10 (but not
smaller than that). We thus have M4B0 = [d′

1 d′
2] with

d′
1 = (c1 ∧ c2)∨ ({y ≤ 20}∧ (c3 ∨ c4)) = (c1 ∧ c2)∨{x ≥ 15,y ≤ 20}
d′
2 = ({x ≥ 10}∧ c1 ∧ c2)∨ (c3 ∨ c4) = {10 ≤ x ≤ 42,y ≤ 25}∨ (c3 ∨ c4)

The use of constraints in M4 allows us to represent a core belief [19,20] for Agent 2,
as it “filters” (part of) the opinion of Agent 1 when it is not consistent with the limits
she imposes to update her opinions. In this case, after interaction, Agent 2 still cannot
believe that x = 9, a scenario that Agent 1 considers plausible. This is possible due to
the flexibility of using constraints on the influence graph (and not only on opinions):
Agents can impose different conditions on how they are influenced by other agents.

Example 4 (Opinion Models in R+). Consider the 2-agent influence graphM in Exam-
ple 2 and the initial state of opinions [c1 c2] where c1 = {0 .→ 0.3,1 .→ 0.7} and
c2 = {0 .→ 0.6,1 .→ 0.4}, respectively. Remember that according toM, Agent 1 accepts
no influence, while Agent 2 does. Assume that the update function µ t is as in Eq. (3).
We have MB0 = [c′

1 c′
2] with c′

1 = c1 and c′
2 = {0 .→ 0.36,1 .→ 0.64}. Agent 1 does

not change her opinion and, due to the influence of Agent 1, the opinion of Agent 2
progressively converges to c1.

3.1 On the Update Function

Consider again the calculations in Remark 3. Note that they can be mimicked in any
field, so that given the Hadamard productUt = β t ⊗M we have

Bt+1 = (I⊕N(Ut (Vt))Bt (4)

Note that in this general case we also have (Ut (Vt)1= 0, so that (I⊕N(Ut (Vt))1=
1, and hence I ⊕N(Ut (Vt) is a row stochastic matrix. If, moreover, M is also row
stochastic, we have Bt+1 = (I⊕Ut (Vt)Bt , which is a valid equation for any ring, since
the definition of the matrices does not involve the division operator, if β t does not.

Let us now consider the two examples above: They adopt the standard DeGroot
model, i.e. such that Bt+1 = MBt , which is a valid equation for any semiring. All the
elements of the first three matrices in Example 3 are constant constraints. Also, the four
matrices are strongly connected and row stochastic, since in each row the sum of the
constraints gives the constant constraint always returning T. In particular, for M4 we
have that T∨ y ≤ 20 = x ≥ 10∨ T = T. However, M3 is not aperiodic, since the only
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cycle has length 2. The matrix in Example 4 contains only constant constraints and it is
row stochastic, strongly connected, and aperiodic, since each agent has a cycle.

The following definition makes precise the idea of a set of agents reaching a con-
sensus (as the two agents in Example 4) and of a set of agents agreeing in the limit
about a particular valuation for the variables (see Example 8 in the following section).

Definition 8 (Consensus). Let 〈M,B0,µ t〉 be a constraint opinion model where M :
A×A →C is a constraint influence graph. We say that the set of agents A converges to
an opinion c ∈C whenever for each i ∈ A, limt→∞Bt

i = c. We say that the set of agents
A converges to a consensus whenever each agent in A converges to the same opinion.
Given a valuation η , we say that the agents converge to a consensus about η whenever
there exists s ∈ S such that for each i ∈ A, limt→∞Bt

iη = s.

We now move a step further and we consider the set Cp of what we call probability
constraints, that is, c ∈Cp if ⊕ηcη = 1.

Proposition 1. Let M be a row stochastic matrix of constant constraints and B be a
vector whose elements belong to Cp. Then the elements of the vector MB belong to Cp.

4 Sharing and Discussing About Partial Information

This section illustrates how constraint opinion models provide an extra expressiveness
for representing scenarios involving agents sharing opinions. We explore situations that
cannot be modeled using the classical DeGroot framework, such as agents discussing
preferences and exchanging partial information (Sect. 4.1), modeling conditional pref-
erences (Sect. 4.2), and capturing agents’ beliefs about one another (Sect. 4.3). In all the
examples reported here, the update function is given as in Sect. 3.

4.1 Preferences and Partial Information

We consider agents engaging in discussions about a given proposition p. As noted in
Sect. 3, when the constraint opinion model is instantiated to represent the DeGroot
model, the domain of p is restricted to {0,1}. In the section, instead, we consider a
different domain for p allowing us to represent situations where agents give different
preferences to p, or when they only have partial information about p. This will be use-
ful to model opinions that cannot be represented in the DeGroot model (as a single real
number in the interval [0,1]).

Consider a variable p with finite domain D = {1, · · · ,5}, where 1 means “very
bad” and 5 means “very good” as in a Likert scale, or alternatively, “extreme-left” and
“extreme-right”, “strongly disagree” and “strongly agree”, etc. Let a,b ∈ D such that
a ≤ b and define the constraint ι(a,b) as ι(a,b)(v) = 1

1+(b−a) if v ∈ [a,b] and ι(a,b)(v) = 0
otherwise. The constraint ι(a,b) represents an opinion where the agent assigns equal pref-
erences (different from 0) when the value of p is in the interval [a,b] and 0 otherwise.
Note that for all a,b such that 1 ≤ a ≤ b ≤ 5, ι(a,b) ∈Cp (i.e. ⊕η ι(a,b)η = 1).
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Consider the following inference graphs and initial opinions

M1 =
[
0.9 0.1
0.8 0.2

]
M2 =

[
0.1 0.9
0.2 0.8

]
M3 =

[
0.5 0.5
0.5 0.5

]
B0 = [ι(1,2) ι(1,5)]

Regarding the initial opinions, Agent 1 is somewhat negative about p but uncertain
whether to assess p as “very bad” or merely “bad.” In contrast, Agent 2 has no specific
opinion about p and thus assigns an equal preference 0.2 to all possible values of p.
It is worth noticing that the partial information conveyed by these opinions cannot be
accurately expressed in the DeGroot model as a single value within the interval [0,1].

When the influence graph M1 is considered, the system converges to a consensus
where the two agents assign a preference of approximately 0.467 when p ∈ {1,2} and
0.022 otherwise. In this scenario, Agent 1 has a stronger influence on Agent 2 and then
the agents tend to agree that p is “very bad” or “bad”. In the case of M2, the system
converges to a preference of approximately 0.255 when p∈ {1,2} and 0.163 otherwise:
since Agent 2 has a strong influence on Agent 1, in the end Agent 2 considers more
plausible that p is not “too bad”. Finally, if we consider M3, where the agents have the
same level of influence, the system converges to a preference of approximately 0.35
when p ∈ {1,2} and 0.1 otherwise.

Example 5. Let ι(a,b) be as above and consider the following influence graph and vec-
tors of initial opinions, where agents are not completely sure how to assess p (partial
information)

M =





0.2 0.3 0.4 0.1
0.3 0.1 0.2 0.4
0.5 0.1 0.2 0.2
0.3 0.3 0.3 0.1





B1 = [ι(1,2) ι(1,5) ι(2,4) ι(1,3)]
B2 = [ι(1,5) ι(1,5) ι(1,5) ι(1,5)]
B3 = [ι(2,2) ι(3,3) ι(4,4) ι(3,3)]
B4 = [ι(1,2) ι(1,3) ι(4,4) ι(4,5)]

The consensus values obtained by starting with each of the initial opinions Bi above
are shown in Fig. 1a. In B1, the agents generally assign a negative score to p, with a
stronger preference for p= 2 (a value present in all the initial beliefs). In B2, the agents
equally prefer all possible values of p, achieving a consensus where no specific value is
favored over others. In B3, the agents are more certain about the value of p, with two
of them believing that p = 3. Consequently, p = 3 becomes the most preferred value
in the consensus, followed by p = 2. In this scenario, note also that none of agents
believe that p= 1 or p= 5 and those values receive a preference of 0 in the consensus.
In B4, two agents are inclined to assign a negative score to p, while the other two are
more positive. Given this particular influence graph, the system converges to a situation
where p= 4 receives the highest preference.

The examples above consider opinions to be elements inCp. Now we consider sce-
narios where agent’s opinions do not adhere to that restriction.

Preference for Extreme Positions. The following example considers agents that prefer
any extreme option than a moderate one. This kind of preference appears for example
in risky decision-making, where an agent might prefer high-risk, high-reward options
over safe middle-ground ones.
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Fig. 1. Preferences in the consensus when agents discuss a proposition p.

Example 6. Consider the following constraint

c(x,y) def= λ p.
{
x if p= 1 or p= 5
y otherwise

Intuitively, the opinion ce = c(1.0,0.0) represents the situation where the agent
“likes the extremes” (regardless of which one), while the constraint cc = c(0.0,1.0)
represents the opinion of an agent that prefers more moderate positions.

Consider the following situation (note thatM satisfies the conditions in Theorem 1)

M =
[
0.3 0.7
0.4 0.6

]
B1 = [ ce d ]
B2 = [ ce cc ]

where d[p .→ 2] = 0.2, d[p .→ 3] = 0.3, and d[p .→ v] = 0.0 otherwise. Starting from the
initial beliefs B1 and B2 above, the system converges to the following opinions c1 and
c2 respectively

c1 = {1 .→ 0.36,2 .→ 0.13,3 .→ 0.19,4 .→ 0.00,5 .→ 0.36}
c2 = {1 .→ 0.36,2 .→ 0.64,3 .→ 0.64,4 .→ 0.64,5 .→ 0.36}

In c1, the agents assign higher preferences (but less than the original 1.0 for Agent
1) to the extreme positions. Since Agent 2 has a stronger influence on Agent 1, the
opinion c2 assigns higher preferences to the moderate positions than the extreme ones.

Example 7. Consider the influence graph M in Example 5 and the initial opinions

B1 = [ι(1,5) ι(1,5) ι(1,5) ι(1,5) ] B2 = [ι(1,5) ι(1,5) ι(1,5) ce ]
B3 = [ι(1,5) ι(1,5) ce,ce ] B4 = [ι(1,5) ce ce ce ]
B5 = [ce ce ce ce ]

Starting with B1, where none of the agents have a formed opinion about p (constraint
ι(1,5)), we progressively add agents with “extreme” point of views (constraint ce). For
all these configurations, Fig. 1b shows the constraints obtained in the consensus. As
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expected, B1 (respectively, B5) is already a consensus where no value of p is more
preferred than any other (respectively, the extreme values are equally preferred and
the moderate ones are not considered). For this particular configuration of M, with 2
“extreme” agents (opinion B3), there is a clear tendency to prefer the valuations p = 1
and p= 5.

Discussing Several Topics. A constraint opinion model with one variable taking values
from a finite domain D can be also interpreted as agents discussing different topics
simultaneously as the following example shows.

Example 8. Let D= {1,2,3} and consider the following definition

cm(x1,x2,x3)
def= λ p.






x1 if p = 1
x2 if p = 2
x3 otherwise

The constraint d = cm(v1,v2,v3) represents the opinion of an agent about three dif-
ferent propositions, where the opinion about proposition pi is d[p .→ i]. As an example,
consider the situation

M =
[
0.3 0.7
0.5 0.5

]
B0 = [ cm(0.3,0.7,0.1) cm(0.4,0.4,0.4) ]

Agent 1 is positive about the second proposition and tends to be more negative about
the other two propositions. In this case, the system converges to the following situation

c= {1 .→ 0.36,2 .→ 0.52,3 .→ 0.26}

When non-constant constraints are considered in the influence graph, it is possible to
represent the situation where the influence of the agents depends on the proposition
being discussed. For example, consider the initial opinion B0 above and the following
influence graph

M =
[
cm(0.3,0.2,0.1) cm(0.7,0.8,0.9)
cm(0.5,0.1,0.8) cm(0.5,0.9,0.2)

]

Note that Agent 1 exerts less influence over Agent 2 when discussing about the
second proposition than when discussing the third proposition (cm(0.5,0.1,0.8)). For
this configuration, the agents converge to c= {1 .→ 0.36,2 .→ 0.43,3 .→ 0.26}.

In the example above, the influence graph is not a matrix of constant constraints;
therefore, the consensus theorem on reals does not directly apply. However, when the
influences of the different topics are independent as in the example above, we can nat-
urally extend Theorem 1 as follows.

Proposition 2. Consider a constraint opinion model on R+ with one variable p with
finite domain D and an influence graph M. If for all d ∈ D the matrix of constant
constraints M{p .→ d} (the result of applying η = {p .→ d} to each element in M) is
row stochastic, strongly connected and aperiodic, then limt→∞Mt exists and all its rows
are equal.
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4.2 Partial Information and Conditional Opinions

Example 3 showed that using classical/crisp constraints (semiring B), it is possible to
represent the situation where agents share partial information about the actual value of
a given variable. Moreover, using constraints as influences, it is possible to “filter” the
information coming from other agents. In this section we show how this idea can be
further generalized when B is replaced with R+.

Consider the situation where four agents are trying to decide the number of members
a selection committee must have. We represent that decision with a variable x. Agents
have different opinions about the actual value of x, and such opinions can be naturally
expressed as constraints. For instance, the initial belief could be given by

o1 : 4 ≤ x ≤ 6 o2 : 5 ≤ x ≤ 10 o3 : 6 ≤ x ≤ 7 o4 : 1 ≤ x ≤ 4

The opinions above express different degrees of uncertainty, which are reflected
on the number of possible values oi allows. The initial belief of each agent is a constraint
ci such that ci[x .→ v] = 1 if oi[v/x] is true and ci[x .→ v] = 0 otherwise. For instance,
the constraint {4 ≤ x ≤ 6} is the function that maps to 1 the valuations that map x to a
value v ∈ {4,5,6}.

The four agents need to take a decision and they define how they will be influenced
by the others’ opinions, for instance

M =





0.3 0.2 0.3 0.2
0.2 0.3 0.1 0.4
0.2 0.4 0.2 0.2
0.1 0.1 0.5 0.3





After some iterations, the system converges to the following constraint

c[x .→ v] = 0.28 if 1 ≤ v ≤ 3 c[x .→ 4] = 0.46
c[x .→ 5] = 0.44 c[x .→ 6] = 0.72
c[x .→ 7] = 0.53 c[x .→ v] = 0.25 if 8 ≤ v ≤ 10
c[x .→ v] = 0 otherwise

Hence, a selection committee of 6 people is the best solution these agents can find that
“better” satisfies their initial beliefs and influences.

Now suppose that the agents must also decide whether the selection committee must
include external members or not. Such a decision is modeled with a second variable y
with domain {0,1}. Using constraints, it is natural to represent opinions such as “with
external members, I would prefer a committee of size 5 ≤ x ≤ 6 but, without them, I
would prefer a committee of size 3 ≤ x ≤ 5”. This statement can be modeled as the
implication y = 1 ⇒ 5 ≤ x ≤ 6 (or y = 0∨ 5 ≤ x ≤ 6) and y = 0 ⇒ 3 ≤ x ≤ 5. We
shall use cs(5,6,3,5) to represent such an opinion where cs is defined as

cs(a0,b0,a1,b1)
def= λx y.(({y= 1}+{a0 ≤ x ≤ b0})× ({y= 0}+{a1 ≤ x ≤ b1}))

Consider also the definition

c′
s(s,a,b)

def= λx y.({y= s}×{a ≤ x ≤ b})
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Fig. 2. Preferences in the consensus when agents discuss the size of a committee.

The constraint c′
s(1,4,6) represents the opinion “the committee must be formed by

a number of 4 ≤ x ≤ 6 people and it must include external members”.
Figure 2a shows the consensus c reached with the influence graph M above, when

the initial vector of beliefs is

B0 = [ cs(5,6,3,5) cs(8,10,7,9) cs(5,7,2,4) c′
s(1,4,6) ]

The green bars represent the opinion c ⇓x (the projection of c onto the variable
x). This projection captures the agents’ preferences when disregarding their opinions
about the inclusion of external members. Similarly, the constraint d = c ⇓y represents
the preferences of the agents regarding only the value of y. In this example, d[y .→
0] = 1.97 and d[y .→ 1] = 3.0. Thus, if we select the best assignment (constraint c, blue
and orange bars), the optimal choice is to form a selection committee of 4 members,
including external ones. However, if we ignore the decision about external members
(c ⇓x, green bars), the preferred option is a selection committee of 5 members. Finally,
the constraint c ⇓y indicates that the agents prefer the inclusion of external members.

4.3 Beliefs

Hitherto the opinion of an agent a ∈ A is a constraint of type ca : (X → D) → S. In this
section we aim to be more nuanced, and to be able to model the beliefs of agents about
themselves and about the other agents. To this end, a constraint should be of the form
ca : A → ((X → D) → S). Consider e.g. the semiring B and the agents A= {a,b}. The
“constraint” ca such that ca(a) = {x> 42} and ca(b) = {x≤ 20} represents the situation
where a thinks that x> 42, and a thinks that b believes that x ≤ 20.

Note that A→ ((X →D)→ S) is equivalent to (A×(X →D))→ S and A×(X →D)
is equivalent to ({•} → A)× (X → D), which in turn is equivalent to the typed func-
tions ({•}:X) → (A:D). The results of the previous sections could be rephrased for
constraints over typed valuations, even if we restrained from doing so for the sake of
simplicity. For the rest of this section we then consider valuations for typed variables
{•}:X and disjoint domains A:D. Also, we represent a constraint c over such valua-
tions as ⊕a∈Aca for caη = cη if η(•) = a and 0 otherwise.
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For the influence graph, the elements Mi, j of the matrix are thus constraints that
can be also represented as Mi, j =

⊕
aM

a
i, j, so that M =

⊕
aM

a. Since also a vector B
can be decomposed as

⊕
a B

a, we have thatMB=
⊕

aM
aBa. We can further impose the

restriction that each component matrix is row stochastic, i.e. Ma1 = 1. In this way, the
results and definitions in Sect. 3.1 can be recast to the case of beliefs.

Similar to Example 3, consider the semiring B, a set of two agents A = {a,b} and
the following constraints and influence graphs

ca = {x> 42,y ≤ 30}a ⊕{x ≤ 20}b cb = {x> 10,y= 20}b

M =
[
Ta ⊕Fb Fa ⊕Tb

Ta ⊕Tb Ta ⊕Tb

]
N =

[
T F
T T

]
=

[
Ta ⊕Tb Fa ⊕Fb

Ta ⊕Tb Ta ⊕Tb

]

Agent a believes that x > 42 and y ≤ 30. Moreover, Agent a thinks that Agent b’s
opinion is x ≤ 20. On the other side, Agent b thinks that x> 10 and y= 20, and Agent
b does not have any opinion about the values Agent a considers possible for x and y.

InM, note thatMb
1,1 = F andMb

1,2 = T. This means that a is willing to scrap its belief
about b and to accept the opinion of Agent b about itself. If we compose M[ ca cb ]
we obtain [ da db ] with

da = caa ⊕ cbb = {x> 42,y ≤ 30}a ⊕{x> 10,y= 20}b

db = ca ⊕ cb = {x> 42,y ≤ 30}a ⊕{x ≤ 20}b ⊕{x> 20,y= 20}b

where the latter equality is due to the fact that

{x ≤ 20}⊕{x> 10,y= 20}= {x ≤ 20}⊕{x> 20,y= 20}

Finally, composing N[ ca cb ] we obtain [ da db ] with da = ca and db = ca ⊕ cb.

5 Measuring Opinion Difference

Polarization measures aim to quantify how divided a set of agents is concerning their
opinions [14]. A key element in this assessment is the ground distance between opin-
ions, which serves as a way to determine whether disagreements are minor or extreme.
When opinions are exact values represented as real numbers, as assumed in previous
models for opinion dynamics, the Euclidean distance and the absolute difference are
natural choices. Nevertheless, in the model proposed here, opinions are not precisely
known but are instead represented by constraints. Hence, defining a ground distance is
more complex, as we no longer compare single points but uncertainty regions.

In this section we introduce a polarization measure for constraint opinion mod-
els, aimed at quantifying the “divergence” between two constraints. The key idea is to
measure this divergence based on the distance between their respective solution sets.
Remember that, given a semiring value s, c−1(s) is the set of assignments that an agent
considers possible, or at least those that are consistent with a “preference level” s. By
evaluating this distance, we gain insight into the degree of alignment or divergence
between the agents’ opinions.
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We fix a set of variables X , a domain of interpretation D, and a semiring S =
〈S,⊕,0,⊗,1〉. At first sight, it seems natural to define the distance between con-
straints by assuming that S is a metric space, equipped with a distance δ : S×S →R+.
However, this allows to capture only the distance between two particular assignments
but it does not tell us much about all the possible assignments the agents consider plau-
sible. Moreover, in the case of the Boolean semiring, this measure will be the coarsest
possible: the distance is 0 if c1η = c2η , or a value δ (T,F) = δ (F,T) otherwise. The
distance proposed here, instead, assumes that D is a metric space that we lift to a metric
space on valuations under the assumption of a finite support for variables.

If D is a metric space, equipped with a distance δ : D×D → R+, we can define a
new metric space Dn for any n ∈ N, assuming the existence of a norm function ‖·‖ :
Rn → R+, so that we have

δ ((x1, . . . ,xn),(y1, . . . ,yn)) = ‖δ (x1,y1), . . . ,δ (xn,yn)‖

The most used norm in Rn is the Euclidean norm L2, so that we have

‖(z1, . . . ,zn)‖ =
√

z21+ . . .+ z2n

Consider for instance the examples in Sect. 4, where D is a finite subset of N. We
can consider the usual distance for D, namely δ (x,y) = |x− y|. Adopting the L2 norm
for Rn results in the Euclidean distance on Nn for every n.

Remark 4. In the rest of this section, we restrict constraints to be built over a finite set
V of variables, and we assume that the domain D is a metric space, lifted to D|V |.

Given a semiring value s, the distance between two constraints c and d will be
the distance between the sets of assignments c−1(s) and d−1(s), thus comparing the
“solutions” of the opinions c and d with respect to a preference level s. Since V → D is
a metric space, we can compare two sets of assignments as follows.

Definition 9 (Hausdorff Distance). Let M be a metric space. The distance between
an element of the metric space and a subset of elements of M is defined as δ (v,B) =
in fw∈Bδ (v,w). The forward distance between two subsets ofM is defined as

−→
δ (A,B) =

supv∈Aδ (v,B). For two non-empty sets A and B, the Hausdorff distance is defined as

δH(A,B) = max
(−→

δ (A,B),
−→
δ (B,A)

)

Moreover, δH(A, /0) = δH( /0,A) = ∞ and δH( /0, /0) = 0.

Intuitively, the distance δH(A,B) is the greatest of all the distances from a point in
the set A to the closest point in the set B. Notice that this guarantees that any element of
one set is within a distance of at most δH(A,B) of some element of the other set.

Definition 10 (Distance between opinions). Let s ∈ S and c,d two constraints. We
define δs(c,d) = δH(c−1(s),d−1(s)) and δ (c,d) = max{δs(c,d) | s ∈ S}. Both defini-
tions are well-given since V is finite, hence the images of c and d are so.
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Remark 5. Note that the Hausdorff distance and its variants is often used to check the
dissimilarity between two sets with respect to a third one, which is considered the set
of the ground truths. In the case of δs we have a natural candidate, which is the constant
constraint returning always s, whose counterimage is precisely D|V |. Also note that for
any B ⊆ D|V | we have

−→
δ (B,D|V |) = 0, and that

−→
δ (D|V |,B) intuitively tells the distance

of the most extreme positions from those of B. Thus, dividing
−→
δ (c−1(s),d−1(s)) by

−→
δ (D|V |,d−1(s)) can offer a (very rough) approximation of the dissimilarity between
the most extreme solutions accepted by c with value s with respect to the solutions
accepted by d with value s: if it is equal to 1, then some of those most extreme solutions
in D|V | hold also in c. Alternatively, a more quantitative measure of similarity can be
found simply by dividing for the largest distance between two points in D|V |.

These definitions can be generalized to a finite set O of constraints, so that e.g.
δs(O) = max{δs(ci,c j) | ci,c j ∈ O}. Such a measure can be interpreted as an indi-
cator of polarization in the opinions of a set of agents. A higher value of δs(O) cor-
responds to a greater distance between the two most antagonistic agents. Moreover,
small values of δs(O) indicate that agents tend to consider as plausible the same set of
solutions.

If the semiring S is equipped with an order ≤, we can define c−1
≥ (s) as the set of

valuations {η | s ≤ cη}, i.e. the valuations that assign a value s′ at least as “good” as
s. Accordingly, we define δ≥s(c,d) = δH(c−1

≥ (s),d−1
≥ (s)) and, for a set of opinions O,

δ≥s(O) = max{δ≥s(ci,c j) | ci,c j ∈ O}.

Example 9. Consider the constraints in Example 3, choosing V = {x,y} and let

A = (c1 ∧ c2)−1(T) = {x ≤ 42}∩{y ≤ 25}
B = (c3 ∨ c4)−1(T) = {x ≥ 15}∪{y ≥ 66}

where A (respectively B) is the set of valuations that make the constraint c1∧c2 (respec-
tively c3 ∨ c4) true. In this example, D = {0, . . . ,100} and we use D2 as metric space,
adopting the Euclidean distance.

The intersection A∩ B is {15 ≤ x ≤ 42}∩ {y ≤ 25}. Concerning the remaining
elements of A, i.e. those satisfying x < 15, the minimal distance with respect to B is
given by 15− x, and the maximal is for those elements laying on the line x = 0. Thus,−→
δ (A,B) = 15. Now, for those elements of B satisfying x ≤ 42, the distance is either
0 or y− 25. Hence, it is maximal for those elements laying on the line y = 100. For
those satisfying y≤ 25, the distance is either 0 or x−42. Hence, it is maximal for those
elements laying on the line x= 100. For the remaining ones, i.e. those satisfying x> 42
and y > 25, the distance is given by

√
(x−42)2+(y−25)2. Clearly, in this case, it

is maximal for the point (100,100) so that the overall forward distance is
−→
δ (B,A) =√

(100−42)2+(100−25)2 =
√
8989 ≈ 94.81. Hence, we have that δ (A,B) ≈ 94.81.

Consider now the constant constraint that always returns T. Once again, the dis-
tance is maximal for those elements lying on the line x = 0 such that y ≤ 51, witness-
ing

−→
δ (D,B) = 15 and

−→
δ (A,B)÷

−→
δ (D,B) = 1. Instead, we have max{δ (a,b) | a, b ∈

D2} ≈ 141.42, thus an approximation of similarity is given by 15÷ 141.42 ≈ 10.6%,
which is a proportionally small distance between the most extreme solutions.
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Remark 6. Note that the considerations above also apply to the taxicab and the Cheby-
shev distance. More precisely,

−→
δ (A,B) = 15, while

−→
δ (B,A) is still given by the dis-

tance between the point (100,100) and (42,25), which are | 100−42 |+ | 100−25 |=
133 and m+max{| 100− 42−m |, | 100− 25−m |} = 75 for m = min{| 100− 42 |, |
100−25 |}, respectively.

Example 10. Consider the opinions in the selection committee example in Sect. 4.2

B0 = [ cs(5,6,3,5) cs(8,10,7,9) cs(5,7,2,4) c′
s(1,4,6) ]

Figure 2b shows the distances δ≥s(ci,c j) between agents i and j over time, along
with the distance δ≥s(Bi) for the set of all the opinions when s = 0.5. Initially, Agents
2 and 3 exhibit the greatest divergence, whereas the opinions of Agents 1 and 3, as well
as Agents 1 and 4, are more closely aligned. After the first interaction, the opinions of
Agents 1 and 3 become more distant compared to the initial state, a trend also observed
between Agents 3 and 4. Despite this, the overall distance δ≥s(Bi) decreases. After three
iterations, all divergences disappear.

6 Concluding Remarks

We introduced the Constraint Opinion Model, a generalization of the standard DeGroot
model where opinions and influences are represented as soft constraints rather than sin-
gle real values. Our framework allows for modeling belief revision scenarios involving
partial information, uncertainty, and conditional influences. We illustrated the expres-
siveness of our approach through several examples and proposed a distance measure to
quantify the difference between opinions where only partial information may be known.

Related Work. There is a great deal of work on generalizations and variants of the DeG-
root model for more realistic scenarios (e.g., [2,4,5,10,11,13]). The work in [2] extends
the DeGroot model to capture agents prone to confirmation bias, while [4] generalizes
[2] by allowing agents to have arbitrary and differing cognitive biases. The study in
[13] introduces a version of the DeGroot model in which self-influence changes over
time, whereas influence on others remains constant. The works in [10,11] explore con-
vergence and stability, respectively, in models where influences change over time. The
study in [5] examines an asynchronous version of the DeGroot model. Nevertheless, to
our knowledge, no generalizations of the DeGroot model address partial information.

This paper draws inspiration from the generalizations of constraint solving and
programming [25] to deal with soft constraints representing preferences, probabil-
ities, uncertainty, or fuzziness. We build on the semiring-based constraint frame-
work [7,16], where (idempotent) semirings define the operations needed to com-
bine soft constraints and determine when a constraint (or solution) is better than another.
Other similar frameworks exist, such as the valued constraint framework [27], which
has been shown to be equally expressive [9] to the one based on semirings.

Soft constraints [8] have been used to model agents or processes that share partial
information in the style of concurrent constraint programming [22,26], where processes
can tell (add) constraints to a common store of partial information, and synchronize by
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asking whether a constraint is entailed by the current store. Timed extensions of this
framework were proposed later in [6], where agents can tell and ask different constraints
along different time instants. In [24], these languages have been shown to have a strong
connection with proof systems. To the best of our knowledge, this is the first time that
(soft) constraints have been used in the context of belief revision.

Future Work. We have laid the foundations to study DeGroot-based belief revision
under the lens of soft constraints, where opinions and influences may include prefer-
ences, partial information and uncertainty. There are several directions to continue this
work. The most obvious one is try to recover the standard theory of consensus in a
generic semiring. This issue is not straightforward. Consider e.g. two elements X and Y
such that X ⊕Y = 1 and X ⊗Y = 0, as they may be found in the free semiring given by
the finite powerset. Now consider the matrix below

M =
[
X Y
Y X

]

The matrix is involutory, as e.g. M3 in Example 3, hence it never stabilizes. However,
differently from M3, if both X and Y are different from 0, then the influence graph
is strongly connected, hence an immediate generalization of the consensus theorems
does not hold. We believe that we could obtain it for semirings without zero divisors,
along the line of the results on selective-invertible dioids presented in [18]. Second, it
is worth exploring other models for social learning where, differently from the DeG-
root model, not all the agents interact at the same time but only two (as in the gossip
model [15]) or some arbitrary set of them (as in the hybrid model in [21]). This is spe-
cially interesting when agents may discuss about different topics, as shown in Example
8. We also plan to extend the rewriting logic based framework proposed in [21] to the
model proposed here, thus providing a framework for the (statistical) analysis of sys-
tems of agents discussing soft constraints. Third, the model proposed here allows for
partial information about opinions and influences. Extending the DeGroot model with
partial information about cognitive biases seem a natural line of future research.
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