
Mimosa: A Language for Asynchronous
Implementation of Embedded Systems

Software

Nikolaus Huber1(B) , Susanne Graf1,2 , Philipp Rümmer1,3 ,
and Wang Yi1

1 Uppsala University, Uppsala, Sweden
nikolaus.huber@it.uu.se

2 Université Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, Grenoble, France
3 University of Regensburg, Regensburg, Germany

Abstract. This paper introduces the Mimosa language, a programming
language for the design and implementation of asynchronous reactive sys-
tems, describing them as a collection of time-triggered processes which
communicate through FIFO bu!ers. Syntactically, Mimosa builds upon
the Lustre data-flow language, augmenting it with a new semantics to
allow for the expression of side-e!ectful computations, and extending it
with an asynchronous coordination layer which orchestrates the com-
munication between processes. A formal semantics is given to both the
process and coordination layer through a textual and graphical rewrit-
ing calculus, respectively, and a prototype interpreter for simulation is
provided.

Keywords: Data-flow · Kahn process networks · MIMOS · Embedded
Systems · Cyber-physical systems · Coordination language · Formal
semantics

1 Introduction

The synchronous paradigm is an established method for designing, implement-
ing, and verifying the software layer of embedded systems. Languages like
Lustre [15] (and its commercial implementation SCADE [8]), Signal [2], and
Esterel [3] have been successfully used for the implementation of various safety-
critical embedded control applications. However, on complex execution plat-
forms, such as multi- and many-core processors or distributed architectures, the
stringent timing constraints required by the execution models of such languages
becomes increasingly difficult to uphold. Problems further arise when trying to
update synchronous systems, as newly added software components might put
additional constraints on the global system tick.

The MIMOS computational model [31] offers a new way of expressing asyn-
chronous software designs for embedded systems. It describes a program as a
c© IFIP International Federation for Information Processing 2025
Published by springer Nature Switzerland AG 2025
C. Di Giusto and A. Ravara (Eds.): COORDINATION 2025, LNCS 15731, pp. 90–113, 2025.
https://doi.org/10.1007/978-3-031-95589-1_5

The Mimosa Language 91

network of periodically triggered processes, which communicate through FIFO
buffers. The MIMOS project [32] is an ongoing effort to develop a set of tools to
allow designing, implementing, and verifying embedded software on top of the
MIMOS model. The current prototype simulator consists of a graphical editor,
which models the communication between processes, the computation (function)
of each process can be expressed either in Java or C++.

In this paper, we equip MIMOS with its own user-facing programming lan-
guage, the MIMOS Application (Mimosa) language. Mimosa consists of a small
kernel, which covers the implementation of the (input/output) function of each
process, as well as the coordination layer. Our main contribution is the definition
of the formal semantics of both layers, utilizing different formal frameworks for
each. This shall serve as the foundation for future work, including the develop-
ment of verification and analysis tools, or even formally verified simulators and
compilers.

The paper is structured in the following way. Section 2 gives a short overview
of the MIMOS computational model, and defines the subset which is currently
covered by Mimosa. Section 3 gives an introduction to Mimosa by showcasing
various examples, before defining the abstract syntax and formal semantics of
the language in Sect. 4. We present a simulator for Mimosa in Sect. 5. Finally, we
report on related work in Sect. 6 and conclude with a list of ongoing and future
efforts in Sect. 7.

2 The MIMOS Model

The MIMOS model [31] builds upon the well-known framework of Kahn process
networks (KPNs) [19]. In a KPN, different software components communicate
exclusively through unbounded FIFO buffers, where reading from a buffer is
blocking, i.e., if a component tries to read from an empty buffer it is suspended
until data is available. Kahn showed, that the output of such a system (i.e., the
history of values appearing in each buffer) is deterministic, independently of the
scheduling order of the individual components.

In real-time systems, a bounded delay between input and output must be
guaranteed, which due to the independence of any scheduling order is difficult
to prove for a given KPN. MIMOS addresses this issue by assigning to each
component a release pattern (i.e., an infinite series of increasing time-tags), which
marks the points in time at which each respective component will try to execute.
In case a component does not have all its required input at a release time point,
it remains idle until its next release.

Through this assignment of release patterns, different extensions to KPNs are
possible, without affecting (timed) determinism. One such extension presented
in [31] is registers, which instead of buffering allows expressing a latest-value
semantics.

Another possible extension is optional inputs [32]. In a KPN, a process trying
to read from a buffer must always wait until data is available. With timed release
patterns, it is possible to define an input as optional, where the value is subject
to availability in the buffer.

92 N. Huber et al.

Fig. 1. Airplane pitch control system, adapted from [16].

Figure 1 shows a simplified example of a MIMOS network for the pitch control
of an airplane. It consists of 4 nodes, one handling the input from the GPS
subsystem, one polling the stick-control of the pilot, the actual pitch control
algorithm, and the driver for the tailplane. As the GPS system is slow, it runs
with a lower frequency (i.e., larger period) than the pitch control algorithm. The
tailplane driver runs fastest, as it must react to minute changes in the mechanical
parts of the aircraft. By utilizing optional inputs at the pitch control node for
the GPS signal, as well as at the tailplane driver for the control signal, each node
can run at its required frequency without constraining the rest of the system.

In the original MIMOS paper [31], a fix-point semantics has been presented,
however, it neither refers to a particular programming language for the imple-
mentation of the processes, nor does it provide a textual syntax for the definition
of the coordination layer. Our contribution in this paper is the formal definition
of Mimosa, which equips MIMOS with a prototype programming language ker-
nel.

As the main focus of this work is on the formal semantics of the language,
we have put certain restrictions on the particular MIMOS model that we cover.
For simplicity, registers are currently not modelled by our semantics, we discuss
in Sect. 7 on how they can be added. We also restrict the release patterns of
the processes to periodic releases, with an implicit deadline at the end of each
period (i.e., if a component with period .p reads its required inputs at time .t, the
outputs are written at .t+ p).

3 The Design of Mimosa

The design of the Mimosa language has been guided by the structure of the
MIMOS computational model. Therefore, there is a clear distinction between
computation and coordination, which results in different layers in the language.

The choice of syntax for the expression of computation in Mimosa is ulti-
mately arbitrary, and future versions of the language may offer the possibility
to express computation in any number of programming languages (an approach
similar to Lingua Franca [21]). For the aim of this paper, which is on formal
semantics, Mimosa derives its syntax from the declarative data-flow language
Lustre [15], from which it retains the equation-based definition of computation.

The Mimosa Language 93

Fig. 2. Fibonacci example (graphical).

1 step print_int (_ : int) --> ()
2 step add (x, y) --> z { z = x + y }
3 step split inp --> (o1, o2, o3) { o1, o2, o3 = inp, inp, inp }
4

5 channel a : int = { 1 }
6 channel b : int = { 0 }
7 channel c : int
8 channel d : int
9

10 node add implements add (a, c) --> (b) every 10ms
11 node split implements split (b) --> (a, d, c) every 10ms
12 node print implements print_int (d) --> () every 10ms

Listing 1. Fibonacci example (Mimosa)

Fig. 3. Edge detector (graphical).

1 step edge_detect (in : bool) --> (out : bool?)
2 {
3 pre_in = in -> pre in;
4 out = if !pre_in && in then (Some true)
5 else if pre_in && !in then (Some false)
6 else None;
7 }
8

9 channel a : bool
10 channel b : bool
11

12 node edge implements edge_detect (a) --> (b?) every 100ms

Listing 2. Edge detector (Mimosa)

94 N. Huber et al.

Lustre also provides the primitives to define state, which we use to express
memory. This allows for a more natural definition, instead of having to declare
memory cells explicitly (e.g., through state variables).

It is important to note, that even if the syntax is shared with Lustre, the
evaluation of expressions in Mimosa is quite different, as will be further explained
below.

In Lustre, any variable or expression denotes a (conceptually infinite) stream
of values, so that a variable .x actually represents a sequence (.x0, x1, . . .). A Lus-
tre program transfers a set of input streams into a set of output streams. Streams
are defined through equations, each of the form .x = e, where the expression .e
is formed from constants (representing infinite sequences of the same value),
variables (i.e., references to other streams), and stream operators (like the usual
unary and binary arithmetic and logic functions extended to operate point-wise
on sequences) applied to argument streams.

In addition, Lustre defines a set of sequence operators (pre, fby, and .→).
If .x = (x0, x1, . . .), then .pre x refers to the value of .x from the previous cycle,
i.e., .pre x = (⊥, x0, x1, . . .). The value at the first cycle is undefined (.⊥). If
.y = (y0, y1, . . .), then .x → y = (x0, y1, y2, . . .) and .x fby y = (x0, y0, y1, . . .).
The initialization operator .→ is often used to initialize the first element of a
stream under the pre operator (e.g., .0 → pre x).

The condition operator is also extended to work point-wise on streams. Con-
ceptually, .if ec then et else ee always evaluates both .et and .ee, and then selects
according to the value of .ec. This allows Lustre to have full referential trans-
parency, i.e., a variable inside an expression can always be substituted by its
definition. In Lustre, expression evaluation is always assumed to be side effect
free. Selective evaluation in Lustre is possible through the definition of multiple
clocks, where the evaluation of an expression depends on the value of a boolean
stream. However, experience has shown [14], that working with multiple clocks is
often perceived as too difficult to comprehend by the programmer, and therefore
not often used.

Mimosa retains most of the syntax of Lustre, but uses different interpreta-
tions for some of the operators. Since each component can have its own period,
we shift the interpretation of streams towards sequences (which may be finite
or even empty). We call the components of the network nodes, and each node
transfers (timed) input sequences into (timed) output sequences. Analogous to
Lustre, sequences are defined through equations. Most operators that combine
sub-expressions do not do so point-wise in Mimosa. For example, the expression
.if ec then et else ee always evaluates .ec and the expression of the required
branch respectively. This means, that .if True then et else ee causes the
sequence produced by .ee to be empty. This removes referential transparency,
but opens the possibility of expression evaluation to cause side effects. The only
effect we currently model is state (i.e., memory), however, as we explain in Sect. 7
our semantics lays the foundation for dealing with other effects as well. In the
remainder of this section, we introduce Mimosa by showing examples of concrete
programs.

The Mimosa Language 95

A Mimosa program is a collection of top-level definitions consisting of steps,
channels, and nodes. A step is an elementary unit of computation, it does not
have any perception of time. Steps are equivalent to function definitions in other
programming languages. A step can be used inside another step, but it must
be possible, during compilation, to order them in a way so that no two steps
are mutually recursive. A node is an instantiation of a step as a periodically
triggered process. It has a defined period, and port definitions to declare how
it communicates with other nodes. A channel is a FIFO buffer, through which
nodes communicate with each other. Each channel is connected to exactly one
writing and one reading node. A port of a node may be marked as optional. If
an input port to a node is marked as optional, the node can be executed even if
the input channel is empty. Similarly, if an output port is marked as optional, it
may happen that after a node has executed its step, there is no output written
to the connected channel.

Figure 2 shows an example network adapted from [13] which calculates the
Fibonacci sequence. It consists of three nodes, add, split, and print, each trying
to execute every .10ms. Listing 1 shows the equivalent Mimosa program. It starts
with the definition of the steps, where the first is a step prototype. It defines only
the name of the step and its signature, which will later be provided externally.
For normal steps, the step signature is followed by a set of equations (same as
in Lustre). The Fibonacci example defines the steps add and split, which have
a trivial definition (split could have been equivalently defined through three
separate equations). Similar to Lustre, the order of equations is not significant,
as the compiler orders them automatically, and rejects a program with cyclic
dependencies between equations.

After the step definitions, the channels are defined, of which two have initial
elements. Finally, the three nodes are defined as instantiations of the before
mentioned steps. They list which step they implement, their period, and their
connections (which refer to the channels defined before).

The code shown in Listing 2 showcases the use of an optional output. The
node edge outputs true whenever a rising edge in the boolean input sequence is
detected, false when a falling edge is detected, and nothing otherwise. This can
be done by wrapping the output in an option type (out : bool?) and declaring
the output port as optional (b?), which means that even though the output of
the step edge is bool?, the type of the channel is still bool. This example also
illustrates the use of the pre and .→ operators to define a memory cell (in this
case, to remember the value of the input from the previous execution).

Figure 4 shows an example of how this edge detector with optional output
may be used in a system. Assuming pin polls the current level of a pin, the
edge node then detects rising and falling edges, which it communicates to a
controller, which can run at a lower frequency (assuming that the pin-level
switches infrequently). While such a system can be implemented in the syn-
chronous paradigm as well, the base-clock (i.e., the shortest time tick) would be
constrained by the component with the smallest period. Due to the asynchronous

96 N. Huber et al.

character of Mimosa, this issue does not arise, as individual components can have
different periods without constraining the overall system.

Fig. 4. Usage example for edge detector.

4 Syntax and Semantics

We now formally define the semantics of Mimosa. As the language naturally
divides into two separate layers (the step and coordination layer), we give seman-
tics to each of them individually. We start by defining the abstract syntax and
semantics of steps.

4.1 Step Layer

Fig. 5. Abstract syntax of Mimosa expressions.

The abstract syntax of Mimosa expressions shown in Fig. 5 is actually slightly
more expressive than the one defined by the concrete syntax of Mimosa, where
we only allow the definition of function abstractions (i.e., steps) on the top-level.

The Mimosa Language 97

The abstract syntax also allows nested (anonymous) functions, which allows us
to treat functions as regular expressions. We expand on this choice in Sect. 7.

A Mimosa expression is either a variable, a constant, a tuple construction,
a definition of memory (using the memory operators pre, fby, and .→), an
application of a function to an argument, a conditional, the construction or
destruction of an optional expression, or a function abstraction.

We assume a suitable set of constants and a corresponding set of basic steps
for arithmetic and boolean operations to be defined in a standard library. Mimosa
uses a Hindley-Milner-style type system [10,25], which we omit for brevity.

Patterns either refer to a single variable, or to a tuple of sub-patterns. In
practice, we also allow _ to mean a pattern matching any value.

The abstraction .λpout
pin

. [pi = ei]n defines a function that requires a value
compatible with pattern .pin, and returns a value according to pattern .pout.
It is defined through a set of .n equations, where each one is given by a left-
hand pattern .pi and a right-hand expression .ei. It is assumed that equations
are ordered according to dependency, are causal (i.e., any cyclic dependency is
broken by a pre), and properly initialized (see Appendix A).

An expression can be evaluated under an environment .Γ which maps names
to values. We define two operations, projection and update, on environments:

Projection. The operation .Γ ⇓p returns the bindings of the variable names given
by pattern .p. For example:

.(x #→ 1, y #→ 2) ⇓x = 1
(x #→ 1, y #→ 2) ⇓(x,y) = (1, 2)

Update. The operation .Γ ⇑x
p returns a new environment where the value x is

mapped to the name(s) given by pattern .p. For example:

.(x #→ 1, y #→ 2) ⇑3
z = (x #→ 1, y #→ 2, z #→ 3)

(x #→ 1, y #→ 2) ⇑(3,4)
(x,y) = (x #→ 3, y #→ 4)

As illustrated by the example above, updating an environment is destructive,
i.e., previous bindings are lost.

The semantics of Lustre is usually defined denotationally as the unique least-
fixed-point of the given set of stream equations. This works well for a language
with full referential transparency. In Mimosa, however, the selective evaluation of
certain sub-expressions makes it harder to find a denotational interpretation. We
therefore express the semantics of expression evaluation in Mimosa operationally.

The evaluation relation .Γ & e ⇒ v, e′ expresses, that under an environment
.Γ, the expression .e evaluates to value .v (which is either a constant or a tuple of
values), and an updated expression .e′, which shall be evaluated the next time the
current expression is run. The full set of evaluation rules is presented in Fig. 6.

The rules for variable, constant, and tuple evaluation are trivial. The eval-
uation of .pre e returns an undefined value .⊥, where the next expression is the

98 N. Huber et al.

Fig. 6. Structural semantics for expression evaluation.

current value of .e initializing the updated .pre e′. This ensures that the current
value of .e is always returned at the next evaluation cycle.

Both .e1 fby e2 and .e1 → e2 return the value of .e1, however, only in the
second case is .e2 also evaluated, and its value discarded (this allows, analogously
to Lustre, to remove the .⊥ values of pre expressions).

The rules for conditional execution are again trivial. It is important to note,
that unlike in Lustre, only one branch is evaluated, while the other is kept as is
in the next expression.

The Mimosa Language 99

The expression .either e1 or e2 evaluates the first sub-expression .e1, and in
case it is of the form .Some v returns value .v, otherwise it evaluates .e2. Similar
to conditional execution, .e2 is only evaluated if needed.

To evaluate an application .e1 e2, the expression .e1 is mapped to a function
abstraction .λpout

pin
. [pi = ei]n, and the argument .e2 to a value .v. The list of

equations .[pi = ei]n is then evaluated in an environment in which .v is bound
according to .pin, which results in an updated list .[pi = e′

i]n, and a new environ-
ment .Γ′. The value of the overall application is then the projection of .pout onto
.Γ′, and the next expression is again an application, where the function term is
updated with the new equation list, and the argument expression is .e′

2.
To illustrate the principle of equation evaluation, we can simplify the Eqs

rule to the evaluation of a single equation. At first try, the rule may be written
as follows:

Γ & e ⇒ v, e′

Γ & (p = e) ↪→ (p = e′),Γ ⇑v
p

(Eqs’)

To evaluate an equation, one has to evaluate the expression .e on the right-
hand side, which results in a value .v and an updated expression .e′. The result
of the evaluation of the whole equation is then an updated equation .p = e′, and
a new environment in which the value .v is bound according to the pattern .p
on the left-hand side of the given equation. However, this rule falls short when
trying to evaluate an equation that refers to a previous value of itself. We can
illustrate that on a simple example:

.x = 0 → pre x

This defines a perfectly valid sequence of integers (i.e., the constant sequence
of consecutive zeros), however, if we evaluate it according to the above given
rule

Γ & 0 ⇒ 0, 0

Γ & x ⇒ ? , x

Γ & (pre x) ⇒⊥, (? → pre x)
(.⋆)

Γ & (0 → pre x) ⇒ 0, (? → pre x)

Γ & (x = 0 → pre x) ↪→ (x = ? → pre x),Γ ⇑0
x

we see that there is an issue when trying to evaluate the pre at .("). In the
example above, . ? represents a hole in the expression, for which we would need
the value of .x. But this value is not yet bound in .Γ, as it is being defined by the
equation currently under evaluation. Therefore, we need to evaluate the right-
hand side expression of an equation under an environment that already has the
final value of the evaluation bound according to the pattern on the left-hand
side:

Γ′ & e ⇒ v, e′

Γ & (p = e) ↪→ (p = e′),Γ′ = Γ ⇑v
p

(Eqs”)

100 N. Huber et al.

With this rule, we get the correct result which we formulate in the lemma below:

Γ′ & 0 ⇒ 0, 0
Γ′ & x ⇒ 0, x

Γ′ & pre x ⇒⊥, (0 → pre x)
Γ′ & 0 → pre x ⇒ 0, (0 → pre x)

Γ & (x = 0 → pre x) ↪→ (x = 0 → pre x),Γ′ = Γ ⇑0
x

Lemma 1. Under the assumption that .Γ & e ⇒ v, e′ defines .v and .e′ uniquely,
the evaluation defined by Eqs” is also unique, i.e., if .Γ & (p = e) ↪→ (p = e′

1), Γ′
1

and .Γ & (p = e) ↪→ (p = e′
2), Γ′

2 then .e′
1 = e′

2 and .Γ′
1 = Γ′

2. This generalizes to
the rule for multiple equations (Eqs).

Proof. The rule Eqs” can only lead to diverging results if there are multiple
valid candidates .Γ′ which bind the current value of the sequence being defined.
Since the value of .e cannot depend causally on any variable bound in .p (i.e., any
reference on the right-hand side of the equation can only refer to variables in the
left-hand side under a pre operator), the value is uniquely defined (.v1 = v2),
and therefore the updated environment must be as well. The general Eqs rule
follows by induction on the list of equations. .()

Theorem 1. The step evaluation relation .Γ & e ⇒ v, e′ is deterministic, i.e.,
if .Γ & e ⇒ v1, e′

1 and .Γ & e ⇒ v2, e′
2 then .v1 = v2 and .e′

1 = e′
2.

Proof. By structural induction on the syntax of expressions. Most cases are
trivial, the case for the App rule follows from Lemma 1. .()

4.2 Coordination Layer

With the semantics for expressions in place, we can now define the semantics
of the coordination layer. While it is possible to give the semantics of the coor-
dination layer as a textual rewriting calculus as well, it is easier to define and
understand as a graph-rewriting system.

Fig. 7. Examples of graph symbols for the coordination layer semantics.

Figure 7 shows examples of the used graph symbols. The first example shows
a node with period .p, which tries to execute expression .e at its next activation
time .t. It communicates with other nodes through inputs taken from a channel

The Mimosa Language 101

at input .α, and puts its result in a channel at output .ω. Figure 7b shows the
same node with an optional input .α instead.

Figure 7c depicts a channel with two elements inside. It has a time-tag .t,
which we refer to as its validity time. Each element inside the channel also has
a time tag assigned to it. The validity time of a channel is intended to be the
earliest possible time-tag of the next value written into it. We write the elements
inside a channel as a sequence .ρ = x(n)

[tn]
◦ x(n−1)

[tn−1]
◦ · · · ◦ x(1)

[t1]
, with the following

invariants:

– .∀i. ti ≤ t, i.e., the time-tags of all elements in the channel must be smaller or
equal to the validity time of the channel.

– Elements inside the channel are always ordered according to their time-tags,
i.e., the oldest item (the one with the smallest time-tag) is the right-most
item in the sequence.

Fig. 8. Rewriting rule for FIFO input.

In the current version of Mimosa, a node can only write either none or exactly
one element into each output channel. In Sect. 7 we discuss how to eliminate this
restriction, in which case multiple elements in a channel may have the same time-
tag. This is not a problem for the semantics, as the insertion order is preserved by
the order of elements in the sequence representing a channel. By slight abuse of
notation, we use the infix operator .◦ both for appending elements on either end
of the sequence, and for forming sequences out of individual elements themselves.

102 N. Huber et al.

To ease comprehension, we only present the rewrite rules for nodes with one
input and one output port. The general rules for multiple input/output are shown
in Appendix B. Figure 8 illustrates the rewriting rules for a node connected to
two channels through its input and output port. The upper rule expresses, that
if at time .t (i.e., the time at which the node tries to execute next) the input
channel has a right-most (i.e., oldest) element .a[t1] for which .t1 ≤ t (i.e., the
time-tag of the element .a is not in the future of the node), then the expression
.e a can be evaluated. This leads to a value .v, which is put in the output channel
with time-tag .t + p (i.e., the end of the current period), and the validity time
of the output channel can be updated to .t + 2p, which is the earliest time at
which a new element may be put into the channel. After the rewrite step, the
input channel has its right-most element removed, the expression of the node is
updated, the next activation time set to .t + p, and the expression of the node
rewritten to .e′ (we can ignore the rewritten argument).

Fig. 9. Rewriting rule for optional input.

The lower rule expresses an idle step. If the input channel is empty, but its
validity time .tα is larger than the activation time .t of the node, or if the right-
most element has a time-tag larger than .t (i.e., from the perspective of the node
it is in the future), then the next activation time of the node can be set to .t+ p,
and the validity time of the output buffer can be updated to .t+ 2p.

Figure 9 shows the rewriting rules for a node with optional input, which
means its activation is never blocked. In the upper case, there is a valid input
in the input channel, i.e., it has a time-tag smaller or equal to the current node

The Mimosa Language 103

Fig. 10. Example of a correct initial configuration.

activation time. Therefore, the expression .e (Some a) is evaluated. In the lower
case, no valid input value is present, so either the input buffer is empty but the
channel is valid until the current node activation time, or the time-tag of the
oldest element is in the future. In this case, the expression .e None is evaluated.
The rest is analogous to the rules presented before.

To guarantee the invariant that the validity time is the earliest time point
at which a value can be written to a channel (i.e., every .a[t′] added to a channel
with validity time .t guarantees .t′ ≥ t), we initialize each channel with the first
possible writing time of its respective writing node. An example of a correct
initialization of a network with initially empty buffers is shown in Fig. 10.

Theorem 2. The rewriting semantics described above is confluent, i.e., every
possible sequence of rewritings leads to the same (timed) history of values appear-
ing in each channel.

Proof. The rewriting rules are local (two possible rewriting candidates can only
overlap on a common channel). Assume that there are two different nodes .A and
.B, where .A outputs into a channel .σ which is the input to .B, and that .tB is the
next activation time for .B. Let .tσ be the validity time of the common channel,
which is always the earliest time point at which .A can write, an invariant main-
tained by the rules. If .σ = ∅, but .tσ > tB , then executing .B first causes an idle
step. The same happens if node .A is executed first, as the output of .A can only
appear at or after .tσ (it cannot be earlier than the already established validity
time of the channel). The case where .σ is not empty is trivial, as executing .A
first only puts another element in the channel, which has no impact on the exe-
cution of .B. In all other cases (e.g. .tσ < tB) no rule can be applied to B, and A
must execute first. .()

The rules explained above generalize naturally to the case of multiple inputs
and outputs, as well as to optional ports (they only change the writing behaviour,
never the activation conditions for a node). The coordination layer semantics
makes no assumption about the order of rewriting1. This may be exploited when
1 note that, strictly speaking, we do not even need a notion of “global time”, at least
as long as there are no real-time dependent side e!ects. This fact may be exploited
for functional verification.

104 N. Huber et al.

verifying different scheduling strategies for execution on real hardware, which will
in most cases have to sequentially schedule node executions on limited hardware
resources.

5 Simulation

As a first means to simulate programs written in Mimosa, we have implemented
the language through a deep-embedding in the programming language OCaml.
We have implemented an expression evaluation function which is a direct trans-
lation of the semantic evaluation rules given in Fig. 6. This not only adds confi-
dence in the correctness of the implementation, it also allowed us to find (often
intricate) errors in the rules early on.

The steps introduced by step prototypes may cause side effects (such as
the print_int in Listing 1). Therefore, care must be taken during simulation
regarding their (temporal) ordering. Since the coordination semantics covers
all possible scheduling orders, we have opted to implement it as a discrete-
event simulator which constructs the global timeline of node executions assuming
perfect timings (i.e., no jitter and no clock drift). In case the execution of multiple
nodes at the same time point leads to multiple observable side effects (such as
printing), the order of these effects is undefined.

We provide a prototype compiler, which can translate a Mimosa program
into the mentioned OCaml embedding. This always creates an OCaml module
(similar to a package in other programming languages) with a specific signature:

module type Simulation = sig
type t
val exec_ms : t -> unit
val exec : t -> int -> unit
val init : unit -> t

end

A particular simulation run is a value of type Simulation.t, which is created
by a call to Simulation.init (). After creation, the timeline of a simulation
run can be advanced through Simulation.exec_ms and Simulation.exec by
one or multiple milliseconds, respectively.

If the Mimosa program defines prototypes (i.e., external steps), the output
of the compiler is instead a functor, i.e., a function taking a module defining
all the external steps through corresponding OCaml functions, and returning a
module of the above given Simulation type. This allows using the same code
for both interactive simulation and automated tests by instantiating the functor
with different argument modules. Examples are shown in the documentation of
the compiler [18].

The Mimosa Language 105

6 Related Work

Lingua Franca (LF) [21] is a polyglot framework for the design of hard real-time
systems. As it is based upon the Reactor model [22], computation is triggered
by the occurrence of events, which are time-stamped data items. As a polyglot
language, LF is meant to augment other programming languages with a coordi-
nation layer based on discrete event semantics. This allows for easy integration
of libraries and other software components already written in particular main-
stream languages. However, it makes formal reasoning about a particular pro-
gram behaviour difficult, as one would need formal semantics for each language
used in the implementation. Marin et al. [24] have formalized the semantics of
LF as a rewriting logic. Together with a simple imperative language for reac-
tions, they show an embedding in Maude [7], which offers the opportunity for
model checking analysis. Deantoni et al. [11] provide advanced tooling for LF
by incorporating the coordination semantics into GEMOC [5], an Eclipse-based
language and modelling workbench. By including an abstract execution model
of LF into GEMOC, an interactive debugger is created, and execution traces
can be injected into the workbench to analyse and validate traces obtained from
compiled LF programs written in different languages. A similar approach may
be interesting for future work on Mimosa as well.

Giotto [16] is a programming language for real-time systems, where a pro-
gram describes a set of periodic tasks that communicate through ports, which
always keep the last value written to them. Giotto has a particular focus on
execution modes, where the system behaviour is governed by some global mode.
Giotto’s ports offer a similar communication primitive as MIMOS registers. In
later work [20], a microkernel has been introduced as a compilation target, which
separates the execution of code interacting with the environment [17] and the
scheduling of tasks in a system. A similar approach may be interesting for the
implementation of Mimosa as well.

The synchronous programming paradigm introduces into software the same
synchronous abstractions as those used for digital circuit design, where a global
system tick abstracts over the timing characteristics of the underlying electronics.
By shifting the timing domain from physical real-time to logical ticks, temporal
reasoning about the behaviour of a program becomes easier, and correctness can
be verified independently of the execution platform, as long as the execution
platform can guarantee the synchronous hypothesis. This becomes difficult on
heterogenous or distributed hardware, where jitter and clock-drift may happen.
The PALS (Physically Asynchronous Logically Synchronous) [30] protocol has
been proposed as an implementation strategy, where the programmer can use the
synchronous abstraction during implementation, and a middleware runtime [1]
takes care of the execution on distributed hardware.

Various extensions to multi-rate settings for synchronous languages have been
proposed. In some of them [12,28], special rate transition operators are intro-
duced to describe the communication policy between two nodes with different
execution rates. This is syntactically quite heavy, and we believe that the asyn-
chronous communication channels with buffering in Mimosa are easier to grasp

106 N. Huber et al.

for a programmer. In addition, optional inputs and outputs allow modelling spo-
radic events, which is difficult with fixed communication policies. Bourke et al. [4]
introduced an extension to the synchronous-reactive model, which allows speci-
fying multi-rate systems. It offers features for load-balancing, resource-limiting,
and even specifying end-to-end delay constraints, which they compile to a single
periodic task. MIMOS, and by extension Mimosa, avoids many of the problems
stemming from multiple execution rates by shifting to an asynchronous model
of computation in the first place.

The Timed-C compiler [27] is a source to source compiler, which extends the
C programming language with a set of timing primitives. It defines tasks which
communicate through channels, similar to the ones proposed for MIMOS, and
compiles to plain C on top of a real-time operating system. As a general purpose
language, C is very expressive, however, it is also known for its intricacies, which
makes reasoning about the behaviour of C programs difficult. We advocate, that
a language for embedded systems rarely needs this degree of expressiveness,
and that restricting the language to a small, well-defined kernel simplifies the
verification of systems programmed in it.

7 Conclusion and Future Work

In this work, we have introduced Mimosa, a new programming language for
embedded systems software on top of the MIMOS computational model. The
focus of this paper is on the definition of a formal semantics, and therefore, the
presented language kernel has been kept minimal. To facilitate the implemen-
tation of real systems in Mimosa, the language is intended to be extended in
multiple ways:

The current implementation of Mimosa is a prototype simulator which allows
for defining test cases and experimenting with the language. We are working
on a compiler that translates Mimosa expressions into equivalent C code and
translates the coordination layer into a set of tasks for a real-time operating
system. This will allow us to run Mimosa programs on real embedded hardware.
For simulation purposes, we can assume the channels to have infinite capacity,
for running Mimosa programs on real hardware requires to know the bounds
of the channels beforehand. Part of the MIMOS project [32] is therefore the
development of algorithms for this kind of buffer-size estimation.

This paper presents a minimal language kernel. For a fully-fledged program-
ming language, Mimosa needs to be extended with a module system, a standard
library, and potentially a more expressive type system (including enumeration
and record types). The concrete syntax of Mimosa currently only allows for func-
tion abstraction at the top-level, even if the abstract syntax already includes the
potential for nested functions. Extending the syntax to include (anonymous)
function definitions would allow us to treat functions as first-class values, which
can even be transmitted through channels.

To keep the graphical rewriting rules simpler, the current coordination layer
semantics does not include registers defined in the original MIMOS paper [31].

The Mimosa Language 107

Registers always keep only the latest value written to them, and are therefore
particularly useful as a communication link between sensors and controllers, as
the sensor can then run at a higher (or lower) frequency. Registers never block
the activation of a node, the only addition to the rewriting rules concerns how
values are read from them. Registers can be modelled analogously to channels,
where reading does not remove a value from the channel, but only looks up the
value item with the largest time-tag smaller or equal than the current activation
time of the node.

The optional ports presented in this paper are actually a special case of the
more general up-to ports [32], which allow reading or writing multiple data items
from or to a channel. The current coordination layer semantics can be extended
to cover these types of reading and writing strategies as well, which eases the
communication between nodes with different periods. The expression language
would then need to be extended with operators on lists of values (such as the
typical map and fold operators known from functional programming languages).
This is similar to the extension of Lustre with array iterators [26].

In Mimosa, certain expressions, such as conditionals, only selectively evalu-
ate their sub-expressions, which in turn removes the referential transparency of
variable names. We have chosen this design to provide a similar mechanism to
Lustre’s multi-clocks, without the added mental complexity. It also lays the foun-
dations for facilitating expression evaluation with side effects. The only effect we
currently model is memory, however, recent programming languages [6,23,29]
have shown the advantage of being able to express side effects of a program in
terms of types. Being able to track the effects an expression may exhibit during
evaluation offers new opportunities for optimization (e.g., application of func-
tions to constants during compile time). It also allows for speculative execution,
where a node without observable side effects can execute even before its release
time in case it has all its required inputs. This can ultimately lead to better
utilization of processors, while keeping the functional output of the system the
same. We therefore intend to extend a future version of Mimosa with effect types.

Acknowledgments. This work was partially funded by ERC through project CUS-
TOMER and by the Knut and Alice Wallenberg Foundation through project UPDATE.

A Initialization Analysis

Initialization analysis is part of the frontend of the Mimosa compiler [18]. It is
responsible for proving that the undefined values at the start of sequences, which
are introduced by pre operators, do not affect the output of a step.

The analysis performed by the Mimosa compiler is similar to the one in
Lustre [9], however, the selective evaluation of certain sub-expressions leads to
different requirements for proper initialization.

For example, in Lustre the following holds:

.if a then (0 → b) else (0 → c) ≡ 0 → (if a then b else c)

108 N. Huber et al.

This does not hold in Mimosa, as the two branches are selectively evaluated
depending on the value of the condition expression. In general, both branches of
a conditional expression need to be properly initialized.

In Lustre, pre statements may also be nested to refer to values of a stream
from multiple cycles before:

.0 → 0 → pre pre x

This expression leads to an undefined value at the second cycle in Mimosa:

Γ & 0 ⇒ 0, _
Γ & 0 ⇒ 0, _

. . .

Γ & pre x ⇒⊥, . . .

Γ & (pre pre x) ⇒ _, (⊥→ . . .)
Γ & (0 → pre pre x) ⇒ _, (⊥→ . . .)

Γ & (0 → 0 → pre pre x) ⇒ 0, (⊥→ . . .)

Nested pre statements are nevertheless allowed in Mimosa, .→ and .pre need
to be used alternately, which leads to the expected behaviour:

Γ & 0 ⇒ 0, _

Γ & 0 ⇒ 0, _
Γ & x ⇒ Γ ⇓x, x

Γ & pre x ⇒⊥, (Γ ⇓x → pre x)
Γ & (0 → pre x) ⇒ 0, (Γ ⇓x → pre x)

Γ & pre (0 → pre x) ⇒⊥, (0 → Γ ⇓x → pre x)
Γ & (0 → pre (0 → pre x)) ⇒ 0, (0 → Γ ⇓x → pre x)

Given this requirement, each sequence in Mimosa can only have one of two
possible initialization types: initialized or uninitialized. In order to further sim-
plify the reasoning about programs, we also require that step inputs and outputs
are always initialized.

The Mimosa Language 109

B Node-Level Rewriting Rules

(See Figs. 11 and 12).

Fig. 11. General rewriting rule for node execution.

110 N. Huber et al.

Fig. 12. General rewriting rule for idle step.

References

1. Al-Nayeem, A., Kim, C., Kang, W., Wu, P.L., Sha, L.: Middleware design for
physically-asynchronous logically-synchronous (PALS) systems. In: 2013 Proceed-
ings of the International Conference on Embedded Software (EMSOFT), pp. 1–10
(2013). https://doi.org/10.1109/EMSOFT.2013.6658583

2. Benveniste, A., Bournai, P., Gautier, T., Le Borgne, M., Le Guernic, P., Marc-
hand, H.: The signal declarative synchronous language: controller synthesis and
systems/architecture design. In: Proceedings of the 40th IEEE Conference on Deci-
sion and Control (Cat. No.01CH37228), vol. 4, pp. 3284–3289 (2001). https://doi.
org/10.1109/CDC.2001.980328

The Mimosa Language 111

3. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992). https://
doi.org/10.1016/0167-6423(92)90005-V

4. Bourke, T., Bregeon, V., Pouzet, M.: Scheduling and compiling rate-synchronous
programs with end-to-end latency constraints. In: Papadopoulos, A.V. (ed.) 35th
Euromicro Conference on Real-Time Systems (ECRTS 2023). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 262, pp. 1:1–1:22. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl (2023). https://doi.org/10.4230/LIPIcs.
ECRTS.2023.1

5. Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni, J., Combemale,
B.: Execution framework of the GEMOC studio (tool demo). In: Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language Engineering,
SLE 2016, pp. 84–89. Association for Computing Machinery, New York (2016).
https://doi.org/10.1145/2997364.2997384

6. Brachthäuser, J.I., Schuster, P., Ostermann, K.: E!ects as capabilities: e!ect
handlers and lightweight e!ect polymorphism. Proc. ACM Program. Lang.
4(OOPSLA) (2020). https://doi.org/10.1145/3428194

7. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework: How
to Specify, Program and Verify Systems in Rewriting Logic. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71999-1

8. Colaço, J.L.: An overview of Scade, a synchronous language for safety-critical soft-
ware (keynote). In: Proceedings of the 7th ACM SIGPLAN International Work-
shop on Reactive and Event-Based Languages and Systems, REBLS 2020, p. 1.
Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3427763.3432350

9. Colaço, J.L., Pouzet, M.: Type-based initialization analysis of a synchronous
dataflow language. Int. J. Softw. Tools Technol. Transf. 6(3), 245–255 (2004).
https://doi.org/10.1007/s10009-004-0160-y

10. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1982, pp. 207–212. Association for Computing
Machinery, New York (1982). https://doi.org/10.1145/582153.582176

11. Deantoni, J., Cambeiro, J., Bateni, S., Lin, S., Lohstroh, M.: Debugging and veri-
fication tools for LINGUA FRANCA in GEMOC studio. In: 2021 Forum on spec-
ification & Design Languages (FDL), pp. 01–08 (2021). https://doi.org/10.1109/
FDL53530.2021.9568383

12. Forget, J., Boniol, F., Lesens, D., Pagetti, C.: A real-time architecture design lan-
guage for multi-rate embedded control systems. In: Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC 2010, pp. 527–534. Association for Com-
puting Machinery, New York (2010). https://doi.org/10.1145/1774088.1774196

13. Geilen, M., Basten, T.: Kahn process networks and a reactive extension. In: Bhat-
tacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds.) Handbook of Signal
Processing Systems, pp. 967–1006. Springer, Boston (2010). https://doi.org/10.
1007/978-1-4419-6345-1_34

14. Halbwachs, N.: A synchronous language at work: the story of Lustre. In: Proceed-
ings. Second ACM and IEEE International Conference on Formal Methods and
Models for Co-Design, MEMOCODE 2005, pp. 3–11 (2005). https://doi.org/10.
1109/MEMCOD.2005.1487884

15. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language Lustre. Proc. IEEE 79(9), 1305–1320 (1991). https://doi.
org/10.1109/5.97300

112 N. Huber et al.

16. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language
for embedded programming. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT
2001. LNCS, vol. 2211, pp. 166–184. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45449-7_12

17. Henzinger, T.A., Kirsch, C.M.: The embedded machine: predictable, portable real-
time code. In: Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming Language Design and Implementation, PLDI 2002, pp. 315–326. Associa-
tion for Computing Machinery, New York (2002). https://doi.org/10.1145/512529.
512567

18. Huber, N.: The mimosa simulator - software artifact (2025). https://doi.org/10.
5281/zenodo.14963241

19. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information Processing, Proceedings of the 6th IFIP Congress 1974,
Stockholm, Sweden, 5–10 August 1974, pp. 471–475. North-Holland (1974)

20. Kirsch, C.M., Sanvido, M.A.A., Henzinger, T.A.: A programmable microkernel for
real-time systems. In: Proceedings of the 1st ACM/USENIX International Con-
ference on Virtual Execution Environments, VEE 2005, pp. 35–45. Association
for Computing Machinery, New York (2005). https://doi.org/10.1145/1064979.
1064986

21. Lohstroh, M., Menard, C., Schulz-Rosengarten, A., Weber, M., Castrillon, J., Lee,
E.A.: A language for deterministic coordination across multiple timelines. In: 2020
Forum for Specification and Design Languages (FDL), pp. 1–8 (2020). https://doi.
org/10.1109/FDL50818.2020.9232939

22. Lohstroh, M., et al..: Reactors: a deterministic model for composable reactive sys-
tems. In: Chamberlain, R., Edin Grimheden, M., Taha, W. (eds.) Cyber Physical
Systems. Model-Based Design, pp. 59–85. Springer, Cham (2020)

23. Madsen, M.: The principles of the Flix programming language. In: Proceedings of
the 2022 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2022, pp. 112–127. Asso-
ciation for Computing Machinery, New York (2022). https://doi.org/10.1145/
3563835.3567661

24. Marin, M., Ölveczky, P.C., Reja, M., Rukhaia, M., Bae, K.: Semantics and formal
analysis of lingua franca cps specifications in rewriting logic. In: Lee, E.A., Mousavi,
M.R., Talcott, C. (eds.) Rebeca for Actor Analysis in Action. LNCS, vol. 15560,
pp. 70–101. Springer, Cham (2025). https://doi.org/10.1007/978-3-031-85134-6_
4

25. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17(3), 348–375 (1978). https://doi.org/10.1016/0022-0000(78)90014-4

26. Morel, L.: Efficient compilation of array iterators for Lustre. Electron. Notes Theor.
Comput. Sci. 65(5), 19–26 (2002). https://doi.org/10.1016/S1571-0661(05)80437-
2. SLAP’2002, Synchronous Languages, Applications, and Programming (Satellite
Event of ETAPS 2002)

27. Natarajan, S., Broman, D.: Timed C: an extension to the C programming language
for real-time systems. In: 2018 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 227–239 (2018). https://doi.org/10.1109/
RTAS.2018.00031

28. Pagetti, C., Forget, J., Boniol, F., Cordovilla, M., Lesens, D.: Multi-task implemen-
tation of multi-periodic synchronous programs. Discrete Event Dyn. Syst. 21(3),
307–338 (2011). https://doi.org/10.1007/s10626-011-0107-x

The Mimosa Language 113

29. Reinking, A., Xie, N., de Moura, L., Leijen, D.: Perceus: garbage free reference
counting with reuse. In: Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2021,
pp. 96–111. Association for Computing Machinery, New York (2021). https://doi.
org/10.1145/3453483.3454032

30. Sha, L., Al-Nayeem, A., Sun, M., Meseguer, J., Olveczky, P.C.: PALS: physically
asynchronous logically synchronous systems. Technical report, University of Illinois
at Urbana-Champaign (2009)

31. Yi, W., Mohaqeqi, M., Graf, S.: MIMOS: a deterministic model for the design
and update of real-time systems. In: ter Beek, M.H., Sirjani, M. (eds.) COOR-
DINATION 2022. IFIP Advances in Information and Communication Technology,
vol. 13271, pp. 17–34. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
08143-9_2

32. Yi, W., et al.: MIMOS in a nutshell, in preparation

