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Abstract. To promote non-functional goals (e.g., energy efficiency
and reactivity) in system implementations, multiple strategies can be
adopted, including the partitioning of distributed applications and the
smart deployment of the resulting sub-components across the edge-cloud
continuum. Within the aggregate computing approach to collective adap-
tive systems engineering (e.g., IoT ecosystems and robot swarms), the
pulverisation model of partitioning and deployment works by splitting
the collective computation into device computation rounds and in turn
the device computation round in terms of five components: sensing,
actuation, behaviour, state, and communication components. Previous
research has investigated how different deployments of pulverised sys-
tems can provide different trade-offs involving performance and effi-
ciency, with methodologies and simulation tools to carry out the com-
parison. However, there is still no contribution about the generation or
search of effective deployments in the first place. To address this gap, this
work introduces Declarative Deployment Planning for Pulverised Systems
(DePPS), an approach and toolchain based on simulation and a Prolog-
based planner to guide the search of candidate deployments of pulverised
systems. The benefits of the approach lie in its declarativity, modular-
ity, scalability, and amenability for continuous reasoning of deployment
alternatives. We exercise the approach with synthetic experiments and
find out that we can achieve “greener” deployments (i.e., with low energy
consumption and carbon footprint) while preserving good latencies com-
pared to uniform peer-to-peer deployments.
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1 Introduction
General Background. The engineering of collective adaptive systems
(CASs) [1,17,27] – cf. the Internet of Things (IoT) and swarm robotics – is
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generally favoured by expressive programming models and techniques for effi-
cient system implementation (e.g., optimised deployments and middlewares).

The aggregate computing approach [27] to CAS engineering, indeed, com-
prises a macro-programming model and languages [9] (based on computational
fields [19,27]) for specifying self-organising behaviour and application partition-
ing and deployment models (such as the pulverisation model [6,7,13]) for flexible
and efficient execution across the IoT-cloud continuum.

This programming model assumes a computational model where any device
(i.e., any CAS participant) works at sense–compute–interact steps, which overall
denote a single round of computation. Thus, an overall system execution can be
modelled as a network of rounds (events) situated in space and time.

In the pulverisation model, an aggregate computing system is partitioned into
small deployment units. The logical CAS (e.g., a swarm of robots) is conceptually
split into individual devices (i.e., individual robots), and each individual robot
is physically split into components that correspond to concerns of a single round
of execution: i.e., sensing, actuation, state, computation, and communication
components. In previous work [6,7,13], it was shown that different deployments
(i.e., different mappings from components to physical hosts) can be simulated
to get insights about different trade-offs in system execution (e.g., bandwidth
consumption vs. latency vs. cloud costs).

Research Gap. Previous work has generally compared alternative deployments
of pulverised systems without addressing the problem of “how to get a good
deployment plan” in the first place. Essentially, much of the investigation was
directed towards the assessment of “notable deployments” (e.g., fully peer-to-peer
vs. uniform edge-/cloud-based) or manually defined variants thereof. Though the
problem could be addressed by optimisation or constraint programming, e.g., by
solving mixed-integer linear programming (MILP) problems or using satisfia-
bility modulo theory (SMT) solvers, there are issues related to (i) expressive-
ness, as the complexity of deployment strategies may not easily be captured in
purely mathematical/logical constraints, (ii) implementation, e.g., the handling
of discrete and non-linear constraints (e.g., power consumption functions), (iii)
scalability, as solving large problems/formulas is hard due to exponential com-
plexity, and (iv) operational aspects, e.g., the difficulties related to supporting
incremental reasoning and the handling of partial information.

Contribution. To tackle the above issues, in this paper, we propose Declara-
tive Deployment Planning for Pulverised Systems (DePPS), a methodology and
toolchain that integrates a Prolog-based deployment generator (planner) with the
Alchemist pervasive computing simulator [25] to generate and assess deployments
of pulverised systems. Specifically, our contribution is threefold:

1. we present a declarative, Prolog-based planner for mapping multi-component
pulverised systems to cloud-edge computing resources based on their non-
functional requirements (including environmental sustainability);
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2. we integrate the planner with the Alchemist simulator for pulverised systems,
and use it for managing applications at runtime, enabling the system to react
to dynamic changes in network conditions and resource availability;

3. our experimental evaluation shows that the we can generate “greener” deploy-
ment plans (i.e., with reduced energy consumption and carbon footprint)
while still preserving acceptable latency performance compared to uniform
peer-to-peer deployments (where each device hosts all the components).

We provide a companion software artefact [11], permanently archived on Zenodo,
for reproducibility and inspectability of the toolchain and experimental setup.

Paper Structure. Section 2 provides background on pulverised aggregate com-
puting systems. Section 3 describes the methodology and the Prolog-based plan-
ner. Section 4 evaluates the approach by presenting simulated experiments and
results. Section 5 briefly reports on related work. Finally, Sect. 6 provides con-
cluding remarks, and points out significant directions for further research on the
topic.

2 Background: Aggregate Computing, Pulverisation
and Prolog

Aggregate computing is the computational and programming model for CASs
that motivates the deployment approach called pulverisation.

Aggregate Computing. Aggregate computing is a programming and com-
putational model for collective behaviour. An aggregate computing system is a
collection of devices. A device has sensors and actuators to interact with the
environment, and is supposed to be able to exchange messages with a subset of
other devices (neighbours). A device works in discrete asynchronous rounds of
execution. Conceptually, every rounds consists of sense–compute–interact steps:

1. sense: the device gets a sample of its local context, by querying sensors and
gathering valid (i.e. not expired) messages from neighbours;

2. compute: the device evaluates the “aggregate program” (which is the same
for all the devices) against its local context, and the output of this evalu-
ation consists of a final result value (which describes what actuations must
be performed) and an export data structure to be shared with neighbours
(supporting implicit coordination);

3. interact : the prescribed actuations are performed and the export data struc-
ture is sent to neighbours.

This paper does not cover how this programming model works, which is largely
covered in more than ten years of research (cf. [9,27]). Rather, it focusses on the
deployment of such systems in distributed infrastructures.
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Fig. 1. A graphical idea of the pulverisation approach, considering two logical devices
and three physical hosts. The upper part of the figure shows a hybrid deployment
where one logical device is entirely deployed at one application-level device (thick host),
and the other logical device gets partitioned, leaving only the sensing and actuation
components at the thin host, and offloading the other components to the cloud. (Intra-
device links between components are omitted in the deployment part of the figure.)

The Pulverisation Approach to Application Partitioning and Deploy-
ment. Term pulverisation [6,7,13] refers to an approach to partition aggregate
computing systems into multiple components (deployment units).

Consider a swarm robotics application. We have a set of robots that we
want to program or control as a collective. These robots are our application-level
devices: each one of these should (conceptually) execute the aggregate computing
rounds. In principle, we could deploy some aggregate computing middleware
responsible for all the execution logic on each robot, and then distribute the
aggregate program on them to run a swarm application. However, such a setup
(which we call fully peer-to-peer) would not be flexible enough to accommodate
heterogeneous systems and custom non-functional tradeoffs.

Indeed, we may have multiple purely infrastructural devices that are not part
of the application per se but provide computational resources (e.g., edge, fog,
and cloud servers). Furthermore, if our robot team is highly heterogeneous, we
might have tiny robots (thin devices) that do not have enough computational
power to compute, while other robots have enough resources to compute for
other robots as well (thick devices). Thus, offloading parts of the computation of
one (application-level) device to another physical device can enable tiny devices
to participate in the system as well as flexible trade-offs of non-functional goals
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(e.g., prioritising low carbon footprint and energy consumption rather than com-
munication latency).

Pulverisation tackles this by splitting the device execution round into dis-
tinct concerns with corresponding deployment units: sensing, actuation, state
management, computation, and communication. So, while the sensing and actu-
ation components are generally deployed at the application-level devices (as they
leverage the spatiotemporal situation to sample/affect different portions of the
environment), the other components (state, communication, and computation)
can be “disembodied” and hence may be deployed on other infrastructural devices
(e.g., on the cloud). A notable deployment which we may call (uniform) cloud-
based may consist of all the components deployed on the cloud, with the excep-
tion of sensing and actuation components at the application-level devices.

Previous research has analysed the trade-offs associated to different kinds
of notable deployments (e.g., fully peer-to-peer vs. cloud-based vs. edge-
based) [7,13], but hybrid deployment plans can also be generated, e.g., by taking
into account the characteristics of individual devices, their communication tech-
nologies, design preferences, etc. Consider Fig. 1 for a graphical illustration of
the pulverisation approach and the idea of a hybrid deployment (zooming on
just a pair of neighbour devices—but keep in mind that the approach targets
systems with dozens or hundreds of devices).

The Prolog Programming Language. As our solution relies on Prolog to
determine eligible placements of pulverised systems, we here discuss some essen-
tial concepts about its syntax and functioning. Prolog is a declarative program-
ming language based on first-order logic. Prolog programs consist of clauses (or
predicates) of the form a :- b1,...,bn. stating that a holds if b1 ∧ . . .∧ bn
holds. Clauses with empty premise (n = 0) are called facts. Predicate definitions
can also contain disjunctions (denoted by “;”) and negations (denoted by “\+”).
Variables start with upper-case letters. Prolog programs can be queried, and the
Prolog interpreter tries to answer each query by applying selective linear defi-
nite resolution and by returning a computed answer substitution instantiating
the variables in the query. For instance, the query ?- nice(W). on the program

nice(X) :- honest(X), gentle(X).

honest(alice). honest(barbara). gentle(barbara).

returns the computed answer substitution {barbara / W}, obtained by first
rewriting the query by applying the first clause for honest/1 and failing and then
applying the second clause for honest/1 and then the clause defining gentle/1.

3 Declarative Deployment Plans for Pulverised Systems

In this section, we describe our approach, Declarative Deployment Planning
for Pulverised Systems (DePPS).
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Fig. 2. Declarative Deployment Planning for Pulverised Systems (DePPS): architec-
ture.

3.1 Architecture

The architecture of the approach is in Fig. 2. It is supported by a toolchain that
includes the Alchemist simulator [25], a novel Prolog-based planner implemented
in SWI Prolog [29], and tools supporting the Alchemist-SWI Prolog integration.
The Alchemist simulator is a configurable simulator for pervasive computing sys-
tems, adopted extensively in aggregate computing research: it enables to set up
an environment, a network of nodes, as well as the execution and communication
logic for the system. Besides the integrated toolchain, the Prolog-based planner
is the main novel contribution and is discussed in the next subsection (Sect. 3.2).

The methodology consists of iteratively invoking from the simulator the
Prolog-based planner, endowed with heuristics for guiding the deployment plan
generation, to produce up-to-date deployments—hence implementing a form of
“repeated reasoning” on deployments to handle changes in network conditions.
Further details on this methodology are provided in the evaluation discussed in
Sect. 4.

3.2 Prolog-Based Planner

In this subsection, we cover the logic programming solution to solve the place-
ment of pulverised applications to cloud-edge resources.
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Knowledge Representation. A digital device is denoted by a unique identifier
(UID) DigDev, the UID of its knowledge component K and a list of UIDs of its
sense S, act A, behaviour B and communication C components. We model the
above through facts like:

digitalDevice(DigDev, K, [S, A, B, C]).

The components are associated with hardware requirements *HWReqs, including a
maximum tolerated latency *MaxLatToK towards the knowledge component1, which
their deployment must guarantee at runtime.

knowledge(K, HWReqs).
sense(S, SHWReqs, SMaxLatToK).
act(A, AHWReqs, SMaxLatToK).
behaviour(B, BHWReqs, BMaxLatToK).
communication(C, CHWReqs, CMaxLatToK).

On the other hand, physical devices that can support computation in the
infrastructure are denoted by their UID N, available and total hardware capa-
bilities – FreeHW and TotHW –, a list2 of the Sensors and Actuators they can reach
through local (wired or wireless) communication:

physicalDevice(N, FreeHW, TotHW, Sensors, Actuators).

Physical devices are associated with the energy source mix that powers them
and a Power Usage Effectiveness (PUE) value, which represents the ratio between
the total power absorbed by a computing system (including ancillary devices
such as cooling) and the power it absorbs to only perform computation, through
facts like:

energySourceMix(N, [(P1,EnergySource1), ..., (PK,EnergySourceK)]).
pue(N, PUE).

Energy sources that compose the mix of a node are associated with the por-
tion of the mix they cover. A concrete example of an energy mix made of 30%
solar energy and 70% coal energy is [(0.3, solar), (0.7, coal)]. Each energy
source has an associated average carbon intensity, expressed in CO2eq/kWh, and
corresponds to the amount of greenhouse gas emissions produced per consumed
unit of energy. The average carbon intensity of an energy mix is given by the

1 Naturally, the knowledge component does not specify a maximum tolerated latency
towards itself as such latency is always null.

2 Sensors and actuators are each denoted through pairs like (X, XType) where X is
the identifier of the sense or act component that will manage them at runtime and
XType denotes the type of data they produce (e.g. temperature, brightness, video)
according to some standard taxonomy such as [24].
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Fig. 3. Declarative placement strategy.

average of the carbon intensities of the energy sources that make it out, weighted
as per their portion of the mix they cover. Additionally, each node N is associ-
ated with a predicate energyConsumption(N, Load, E) that computes the energy
consumption E of a node based on its current resource Load.

Last, but not least, end-to-end links between nodes N1 and N2 are denoted by
their available Latency and Bandwidth, as in

link(N1, N2, Latency, Bandwidth).

Declarative Placement Strategies. Figure 3 lists the core predicates of the
declarative strategy to determine eligible placements of pulverised applications,
which we propose in this work. It is worth mentioning that it constitutes a
declarative executable specification of eligible placement in our context. Prolog
predicates are denoted as pred/N, where pred is their name and N their arity.

The place/4 predicate (lines 1–4) returns a valid Placement of the digital
device DigDev across a set of infrastructure Nodes, while also accounting for prior
resource allocations within the considered infrastructure I. First, it selects a
node NK ∈ Nodes as the placement target for the knowledge component of the
pulverised system (line 3). Then, the placeKnowledge/4 predicate (lines 3, 5–
9) gets the hardware requirements of this component (line 6) and checks the
resources HWCaps at node NK (line 7) can support the new allocation of K, also
accounting for resources already in use at NK, viz. used(NK,HWUsed) ∈ I (lines
8–9).
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After placing the knowledge component on node NK, the placeComponents/6
predicate (lines 4, 10–23) assigns the sense, act, behaviour, and communication
Components, ensuring that they meet the required latency constraints towards
the knowledge component. The first clause of placeComponents/6 (lines 10–16) is
in charge of placing the sense and actuators components C onto nodes N ∈Nodes
(line 11) checking that they can reach their required Sensors or Actuators, respec-
tively (lines 12–13). Predicate latencyOk (line 14) checks that the end-to-end
link supporting the communication between N and NK features a latency lower
than the required LatToK. Subsequently, predicate hwOk/5 checks that cumulative
hardware requirements of the current placement for node N leave enough free
resources to support C, also factoring in previous resource allocation I (line 15).
Last, placeComponents/6 recurs on remaining components Cs to be placed (line 16)
extending the previous placement with the association between C and N, viz.
on(C,N,HWReqs). The second clause of placeComponents/6 is analogous and places
the behaviour and communication components checking latency (line 20) and
hardware (line 21) requirements. A complete eligible placement is found when
the list of components to be placed is empty, viz. [] (line 23). Recursion ends.

Environmental Footprint Assessment. Figure 4 lists the Prolog code used
for estimating the environmental footprint of application placements. The
footprint/4 predicate (lines 24–26) estimates the Energy consumption and Carbon
emissions associated with a given Placement, as determined by place/4. To achieve
this, it first retrieves all nodes involved in the specified Placement (line 25),
removes duplicates through the sort/2 predicate, and then computes the over-
all estimate using the recursive predicate hardwareFootprint/5 (lines 26, 28–
33). This latter predicate iterates through the list of spanned nodes, leveraging
nodeEnergy/4 and nodeEmissions/3 to compute and accumulate the energy con-
sumption and carbon emissions at each node, EnergyN and CarbonN, respectively.

The nodeEnergy/4 predicate (lines 30, 35–42) retrieves the information about
the available FreeHW and total TotHW hardware capacity of each considered node
N (line 36), along with any previous allocation to be considered in I. Based on
that, it computes the node load OldL before allocating the currently considered
Placement (line 38) and uses it to determine the associated energy consumption
(line 39). It then sums up3 the total amount of hardware to be allocated to
Placement (line 40) and adds it to the figures to compute the new load NewL
(line 41). Then, it computes the new energy consumption NewE. Finally, the
energy consumption of Placement at node N is given by the difference between NewE
and OldE, multiplied by the node PUE (line 42). Notably, some Placement instances
may be virtually associated with null energy consumption, as they leverage sur-
plus energy already consumed by previous allocations at the given node. This
observation is particularly useful for achieving energy efficient resource alloca-
tion, as it highlights cases where new workloads can be deployed with minimal
impact on overall energy consumption.

3 The predicate sum_list(List,Sum) adds all the elements of List into Sum.
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Fig. 4. Declarative footprint estimate.

Similarly, given a node’s energy mix and the energy consumption of a
Placement, the nodeEmissions/3 predicate (lines 31, 44–48) computes the carbon
emissions. It calculates the weighted average of the carbon intensities MU of the
available energy sources S, where each source contribution is weighed by its por-
tion P in the overall energy mix (line 46). The results are accumulated in the
Carbon variable (line 47), until the entire energy mix has been scanned (line 48).

Placing Multiple Digital Devices. The considered problem incurs in exp-
time worst-case complexity as the input size grows, in terms of devices to be
placed and nodes to be considered. This kind of problems has indeed been proved
NP-hard [4]. Hence, we devised a heuristic strategy capable of placing multiple
digital devices by exploring candidate placement nodes from those with lower
carbon intensity to those with higher carbon intensity. Being a heuristic strat-
egy, it drives the search towards potentially better candidate solutions with
no optimality guarantees. While it practically reduces search times, it remains
worst-case exp-time.

Particularly, it extends the behaviour of place/4 (lines 1–4) by (i) prelim-
inarily sorting candidate placement Nodes as per their average carbon inten-
sity. Besides, it imposes maximum threshold values for the carbon intensity and
energy consumption associated with the placement of a single node. Once a
device has been placed, its allocation is added to the I variable by suitably
updating used/2 facts in I before attempting the placement of the next digi-
tal device. For the sake of brevity, we refer readers to the online open-source
implementation of our approach for all details [11].
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4 Evaluation

The proposed approach has been applied to different network topologies and a
variable number of devices, demonstrating that, compared to notable deploy-
ments (e.g., the fully peer-to-peer deployment—cf. Sect. 2), we can (re-)generate
deployment plans featuring improved carbon footprint and energy efficiency.

All experiments are conducted in Alchemist [25], a simulator for large-scale
pervasive computing systems. The Prolog planner relies on the SWI Prolog [29]
toolchain, specifically JPL4, to integrate the Prolog solver with the simulator.
The experiments are open-sourced under a permissive license on GitHub5 and
are permanently archived on Zenodo [11] for future reference and reproducibility.

Evaluation Goals. We aim to evaluate the proposed approach in terms of
“green deployments”, measured in terms of energy consumption and carbon foot-
print. Specifically, we aim to show that, compared with a fully peer-to-peer
deployment, a sensible overall carbon footprint reduction of the system can be
achieved while keeping, at the same time, acceptable system latencies.

4.1 Experimental Setup

We model a synthetic system that may be a proxy for a crowdsourcing appli-
cation in a smart city or a swarm, with a dense set of devices moving around
at moderate speed. Specifically, we consider a system composed of a variable
number N of (thick) physical devices located in a two-dimensional space, with
dimensions proportional to the number of devices. The devices are assumed to
be thick, namely to be able to host the components to work autonomously; if
they were thin, then offloading would be needed and not an option to improve
non-functional concerns. The devices are randomly placed in a uniform distribu-
tion space. Each physical device is connected to other devices within a range of
2 ·

√
N meters, simulating a short-range communication medium like Bluetooth.

This choice was made to maintain a proportional communication range across
various scenarios with differing device counts, as the area on which the devices
are distributed scales with the number of nodes. Additionally, a cloud instance
is present in the environment and is connected to all physical devices in the sys-
tem. Each simulated scenario runs for t = 720 steps, with each step representing
a minute.

The connection link between devices in the simulation serves as a proxy for
the communication latency of the medium. Each physical device moves freely in
the 2D space according to a Brownian motion model. This movement introduces
network perturbations in terms of both neighbourhood structure (i.e., available
links and associated latencies), factors that the planner considers when searching
for deployments.

4 https://jpl7.org/.
5 https://github.com/nicolasfara/experiments-2025-pulverization-prolog-placer.
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Fig. 5. Network of 150 physical devices (red circles) connected together within the
range 2 ·

√
N , and a cloud instance (yellow square) connected to all the devices. The

gray lines represent the links between each device in the system. (Color figure online)

We evaluate two main scenarios: device-only, and placer. The first scenario
acts as a baseline. The device-only scenario corresponds to the fully peer-to-
peer deployment (cf. Section 2), where all the components for a logical device
execute on a corresponding physical device. In the placer scenario, every 30
simulated minutes, the Prolog-based planner devises a new deployment, and
the components are (re)deployed in the infrastructure accordingly. We suppose
30 simulated minutes to be a reasonable time interval for accounting network
topologies variations in this system.

Each device has an energy source mix that follows a jittered sine wave pat-
tern; in this way, we simulate a variable energy mix distribution to evaluate our
planner in a dynamic condition. The sine wave driver is mainly adopted for its
recurrent trend, and also because it is a good approximation for day-night energy
mix. The maximum proportion of green energy is 90% for physical devices and
50% for the cloud instance. We repeated each experiment 10 times with different
random seeds, and the results, along with their associated errors (see Sect. 4.2),
are averaged over these repetitions to account for random fluctuations.

Figure 5 pictorially represents the setup described above.

4.2 Results
Energy and Carbon Footprint. The following analysis examines the energy
consumption and carbon footprint of the system across the scenarios described
in Sect. 4.1. Compared to the baseline scenario, the proposed approach achieves
“greener” deployments (namely, lower energy consumption and lower levels of
associated carbon emissions). Specifically, as illustrated in Fig. 6, given the same
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network configuration, the deployment generated by the proposed approach con-
sumes three times less energy than a traditional deployment (device-only).

Each physical device has a variable energy source mix driven by a sinusoidal
pattern. This is evident in the device-only scenarios, where carbon emissions
follow a sinusoidal trend. Since deployment remains unchanged in device-only
scenarios, energy consumption remains stable throughout the simulation, and
the carbon footprint reflects the aforementioned pattern. Intuitively, increasing
the number of devices in the simulation results in a proportional increase in
energy consumption and carbon footprint, as shown in the first row of Fig. 6.

In contrast, the proposed approach consumes less than 2KWh with 50 nodes,
increasing to 3.5 kWh with 100 nodes—more than three times lower than notable
deployments. Additionally, since the planner is applied every 30 simulated min-
utes, it continuously recalibrates the deployment to adapt to network changes,
such as new links between devices, and provides an a new eligible deployment,
responding to infrastructural changes that might have affected the previous one.
This is clearly reflected in the carbon emission trend, which does not precisely
follow the sine pattern observed in the previous scenarios. Instead, the planner
devises a new deployment that reduces the system’s carbon footprint.

The proposed approach significantly reduces overall energy consumption and,
consequently, the carbon footprint, ensuring a greener deployment regardless of
network topology.

Inter-device and Intra-components Latencies. Latency is a sensible factor
in large-scale self-organising networks. This analysis evaluates how the proposed
approach affects system latencies compared to baseline deployments. Specifically,
two latency categories are considered: intra-component latency and inter-device
latency. Intra-component latency refers to the latency experienced by a single
digital device when reaching its five components, which may be offloaded to
other physical devices. Inter-device latency refers to the latency experienced by
each communication component when communicating with the communication
components of neighbouring digital devices.

The baseline scenario, in which the five components are executed on the same
physical device, results in near-zero intra-component latency since component
communication occurs in memory. In contrast, inter-device latency is propor-
tional to the distance between interconnected physical devices. In a pulverised
deployment generated by the planner, intra-component latency is expected to be
higher than in the baseline scenarios. However, inter-device latency is expected
to be similar to or even lower than that of the reference scenarios.

The experiments confirm this intuition, as illustrated in Fig. 7. The intra-
component latency (represented by the blue line) is higher than in the device-
only scenario. However, it is noteworthy that latency does not directly depend on
the number of devices in the network. As the number of devices increases, intra-
component latency remains within the same order of magnitude, indicating good
scalability. This phenomenon is explained by the planner’s deployment strategy,
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Fig. 6. Comparison between the “notable” deployment device-only (upper row) and the
one produced by the Prolog planner (lower row). The orange line denotes the overall
system energy (measured in kWh), while the blue line denotes the overall system carbon
footprint (measure in kg). Notably, the deployments computed via Prolog planner result
in a significant less carbon footprint, but also in a lower overall energy consumption,
achieving greener deployment compared with the baseline. Shades show ±σ (stdev)
which is almost null in the case of device-only placement. (Color figure online)

which tries to contain the number of devices used for component placement,
thereby preserving locality regardless of the system’s size.

Regarding inter-device latency, a slight but non-critical increase is observed.
This increase occurs because the planner does not explicitly account for the
communication component’s location, treating it like other components. How-
ever, due to the locality-preserving nature of the planner, communication com-
ponents are placed “nearby” other components, preventing a significant increase
in latency between digital devices. Consequently, as the number of devices in the
network increases, no substantial increase in latency is observed.

Though a slight latency increase is present, it has minimal impact on system
performance. Crucially, the proposed approach greatly reduces energy consump-
tion, resulting in greener deployments then fully peer-to-peer deployments.

For each simulated scenario, we extracted the time needed to compute the
placement by the Prolog program. The execution time represents a valuable
indicator of the effectiveness of the proposed approach, and its ability to scale
with the number of devices. From the collected data, despite the number of
simulated devices, the execution time is ∼ 100ms. The independence from the
number of nodes, although we have simulated a limited variety of nodes, means
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Fig. 7. Analysis between the two scenarios in terms of intra-components latencies, and
inter-device latencies. The blue line represents the intra-components latency, namely
the average latency measured to reach the other components instances offloaded in the
other devices. The orange line represents the inter-device latency which measure the
latency, for each communication component, with the other communication compo-
nents in the neighbour devices. Shades show ±σ. (Color figure online)

that the proposed approach promptly computes the solution, preserving margin
for even bigger networks. The execution times are extracted using a consumer
PC equipped with an AMD Ryzen 9 7900X (24) @ 5.733 GHz, and 64 GB of
RAM.

5 Related Work

The focus of this paper is on the (re-)generation and assessment of deployment
plans [2] for pulverised collective computation systems.

Broad Context: Component Models, Deployments, and Reconfigura-
tion. The deployment of an application depends on how the application is
partitioned into parts or components, which in turn depends on the adopted
component model [10], with approaches ranging from architectural description
languages (ADLs) [22] to service-oriented approaches [18]. Examples of compo-
nent models include Fractal [5] and BIP (Behaviour, Interaction, Priority) [3].
A related topic is how to reconfigure existing deployments, e.g., for optimisation
purposes or to withstand disruption. A good overview and survey on deployment
reconfiguration is provided by Arcangeli et al. [2]. Examples of frameworks for
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reconfigurable architectures include the rule-based framework DReAM (Dynamic
Reconfigurable Architecture Modeling) [23] and DR-BIP [3]. These can be used,
e.g., to formalise the pulverisation approach, which was described in [7] in terms
of a structural operational semantics.

Pulverisation. The pulverisation idea and model were originally presented
in [7], with a focus on the notion of “deployment independence”: in principle,
changing the deployment of a pulverised aggregate computing system does not
affect the execution dynamics, and this can often be observed in practice. In [6], a
methodology is described combining system descriptors, parametric deployment
generation, and the EdgeCloudSim simulator [26] to assess static deployments.
In contrast, the current paper investigates more deeply the deployment gener-
ation logic, sets up a reusable toolchain based on Prolog solvers (rather than
simply parametric generators) and the Alchemist simulator (which is more suit-
able for CASs), and also performs analyses that take into account the energy and
carbon footprint. In [13], a middleware and development platform for specifying
and supporting the execution of pulverised systems is presented, together with
the ability of enabling dynamic reconfiguration of the system following specified
local rules. Such idea of using languages to express deployments is also inves-
tigated by so-called multi-tier programming languages [28], which use language
features such as the type system to denote and check the placement of data and
processes on different storage and computational loci. The use of global rules,
expressed in the aggregate computing paradigm and leveraging patterns of col-
lective adaptation [8], to induce “deployment self-organisation” is investigated
in [12]. In this work, the dynamic reconfiguration is achieved through “repeated
reasoning”, namely by re-invoking the Prolog placer from time to time, hence
exploring a different method to achieve effective deployments.

Declarative Approaches for the Generation of Deployment Plans.
Prolog-based approaches have been proposed to address microservice applica-
tion placement problems similar to the one examined in this article, focussing on
different aspects, such as data awareness [20], security and trust constraints [16],
environmental sustainability [15], and intent satisfaction [21]. Some recent pro-
posals also employ continuous reasoning techniques [14] to streamline the genera-
tion of up-to-date deployment plans by integrating recent changes in the process
without starting from scratch. Besides tackling a different problem than pul-
verised application deployment, these approaches are typically limited to solving
the decision version of placement problems, without attempting to improve on
target metrics as we do in this work.

6 Concluding Remarks

In this work, we propose Declarative Deployment Planning for Pulverised Sys-
tems (DePPS): an approach based on the use of a Prolog-based planner and



130 A. Brogi et al.

its integration with the Alchemist simulator to evaluate deployment plans for
pulverised systems as well as the ability of reconfigurations to seek the desired
trade-offs. To evaluate the approach, we run experiments in simulation, assess-
ing that the planner can help to achieve “greener” deployments with low energy
consumption and carbon footprint, hence contributing to the important thread
of green and sustainable computing. As a by-product, we also provide a reusable
toolchain (cf. the released artefact [11]) for reproducing the experiments and
possibly assessing different kinds of deployments, generation strategies, etc.

Future work on this line is envisioned along multiple directions:

– Continuous reasoning. Currently, the reconfiguration is achieved by re-
invoking the Prolog-based deployment planner at intervals with an up-to-date
version of the deployment input knowledge. An interesting line is to extend the
planner with “continuous reasoning” capabilities [14], enabling it to consider
only what changed from the previous invocation and to incrementally produce
up-to-date plans, also accounting for migration costs in terms of time.

– Decentralised/hierarchical placement. The current approach assumes
a centralised reasoner invoked with up-to-date knowledge about the infras-
tructure. However, we could use the divide-et-impera principle and split the
system into multiple management areas, and then use one reasoner for each
to focus on a small part of the system. Previous work on the Self-organising
Coordination Regions (SCR) pattern [8] could turn useful, as it enables to
dynamically adjust the granularity of the system.

– End-to-end simulation models. Currently, the analysis conducted in
Sect. 4 does not account for the overhead caused by the enaction of a deploy-
ment reconfiguration plan. Even though this does not invalidate the correct-
ness of the deployment, aspects like convergence time to new deployments,
and the communication overhead to migrate components are aspects that
deserve attention in future work.

– Generation of rules. The current placer provides as output a deployment
plan: an alternative is to generate local deployment rules, instructing individ-
ual devices about what deployment and re-configuration options they should
follow and when (in what context).
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