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Abstract. Micro-Stipula is a stateful calculus in which clauses can be
activated either through interactions with the external environment or
by the evaluation of time expressions. Despite the apparent simplicity
of its syntax and operational model, the combination of state evolution,
time reasoning, and nondeterminism gives rise to significant analytical
challenges. In particular, we show that determining whether a clause
is never executed is undecidable. We formally prove that this undecid-
ability result holds even for syntactically restricted fragments: namely,
the time-ahead fragment, where all time expressions are strictly positive,
and the instantaneous fragment, where all time expressions evaluate to
zero. On the other hand, we identify a decidable subfragment: within the
instantaneous fragment, reachability becomes decidable when the initial
states of functions and events are disjoint.

1 Introduction

Micro-Stipula, noted µStipula, is a basic calculus defining contracts, namely sets
of clauses that are either (a) parameterless functions, to be invoked by the exter-
nal environment, or (b) events that are triggered at given times. The calculus
has been devised to study the presence of clauses in legal contracts written in
Stipula [11,12] that can never be applied because of unreachable circumstances
or of wrong time constraints – so-called unreachable clauses. In the legal con-
tract domain, removing such clauses when the contract is drawn up is substantial
because they might be considered too oppressive by parties and make the legal
relationship fail.

While dropping unreachable code is a very common optimization in compiler
construction of programming languages [6,9], the presence of time expressions
in µStipula events makes the optimization complex. In particular, when the time
expressions are logically inconsistent with the contract behaviour, the corre-
sponding event (and its continuation) becomes unreachable.

In [24] we have defined an analyzer that uses symbolic expressions to approx-
imate time expressions at static-time and that computes the set of reachable
clauses by means of a closure operation based on a fixpoint technique. The ana-
lyzer, whose prototype is at [17], is sound (every clause it spots is unreachable)
but not complete (there may be unreachable clauses that are not recognized).
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The definition of a complete algorithm for unreachable clauses was left as an
open problem.

In this paper we study the foregoing problem for three fragments of µStipula
that are used to model distinctive elements of legal contracts:

µStipulaTA: time expressions are always positive – the corresponding events allow
one to define future obligations such as the power to exercise an option may
only last until a deadline is met. For example, a standard clause in a legal
contract for renting a device is
– The Borrower shall return the device k hours after the rental and will pay

Euro cost in advance where half of the amount is of surcharge for late
return.

This clause is transposed in µStipula with an event like

now + k >> @Using {
cost ! Lender

} => @End

which is affirming that the money cost is sent to the Lender (the operation
!) if the Borrower is Using the device when the deadline expires.

µStipulaI: time expressions are always now – the corresponding events permit to
define judicial enforcements such as the immediate activation of a dispute
resolution mechanism by an authority when a party challenges the content
or the execution of the contract. For example, a contract for renting a device
might also contain a clause for resolution of problems:
– If the Lender detects a problem, he may trigger a resolution process that

is managed by the Authority. The Authority will immediately enforce res-
olution to either the Lender or the Borrower.

In this case, the µStipula clause is the event

now >> @Problem {
// immediately enforce resolution to Lender or Borrower

} => @Solved

where the immediate resolution is implemented by a time expression now. In
this case, if the Lender and the Borrower have not yet resolved the issue –
the contract is in a state Problem – then the Authority enforces a resolution
by, for example, sending a part of cost to Lender and the remaining part to
Borrower.

µStipulaD: functions and events do not have initial states in common; events
in this fragment allow one to model exceptional behaviours that must be
performed before any party may invoke a function. This type of restriction is
quite common in legal contracts, particularly when formalizing a clause that
outlines the consequences of a party breaching a condition. The technical
report [14] contains a legal contract written in µStipulaD.

We demonstrate that, even for the aforesaid fragments of µStipula, there is no
complete algorithm for determining unreachable clauses. The proof technique is
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based on reducing the unreachability problem to the halting problem for Minsky
machines (finite state machines with two registers) [27]. The µStipula encodings
of Minsky machines model registers’ values with multiplicities of events and
extensively use the features that (a) events preempt both the invocation of
functions and the progression of time and (b) events that are not executed in the
current time slot are garbage-collected when the time progresses. The encoding
of µStipulaTA is particularly complex because we need to decouple in two different
time slots the events corresponding to the two registers and recreate them when
the time progresses.

We then restrict to µStipulaDI, a fragment of µStipula that is the intersection
of µStipulaI and µStipulaD, and demonstrate that the corresponding contracts are
an instance of well-structured transition systems [18], whereby the reachability
problem is decidable. To achieve this result, we had to modify the semantics
of µStipula by restricting the application of the time progression to states in
which functions can be invoked (thus it is disabled in the states where events
are executed). Hereafter, the correspondence between the models using the two
different progression rules has been analyzed to demonstrate reachability results
for µStipulaDI.

The rest of this paper is structured as follows. Section 2 presents the calculus
µStipula with examples and the semantics. Section 3 contains the undecidability
results for µStipulaTA, µStipulaI and µStipulaD. Section 4 contains the decidability
results about µStipulaDI. Section 5 reports and discusses related work and Sect. 6
presents general conclusions and future work. The proofs of our propositions,
lemmas and theorems are reported in the technical report [14].

2 The Calculus µStipula

µStipula is a calculus of contracts. A contract is declared by the term

stipula C { init Q F }

where C is the name of the contract, Q is the initial state and a F is a sequence
of functions. We use a set of states, ranged over Q, Q′, · · · ; and a set of function
names f, g, · · · . The above contract is defined by the keyword stipula and is
initially in the state specified by the init keyword. The syntax of functions F ,
events W and time expressions t is the following:

Functions F ::= -- | @Q f {W } => @Q′ F
Events W ::= -- | t >> @Q => @Q′ W
Time expressions t ::= now+ k (k ∈ Nat)

Contracts transit from one state to another either by invoking a function or
by running an event. Functions @Q f {W } => @Q′ are invoked by the external
environment and define the state Q when the invocation is admitted and the
state Q′ when the execution of f terminates.
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Events W are sequences of timed continuations that are created by func-
tions and schedule a transition in future execution. More precisely, the term
t >> @Q => @Q′ schedules a transition from Q to Q′ at t time slot ahead the current
time if the contract will be in the state Q. The time expressions are additions
now + k, where k is a constant (a natural number representing, for example,
minutes); now is a place-holder that will be replaced by 0 during the execution,
see rule [Function] in Table 1. We always shorten now+ 0 into now.

Restriction and Notations. We write @Q f {W } => @Q′ ∈ C when the function
@Q f {W } => @Q′ is in the contract C. Similarly for events. We assume that a
function is uniquely determined by the tuple Q·f·Q′, that is the initial and final
states and the function name. In the same way, an event is uniquely determined
by the tuple Q·evn·Q′, where n is the line-code of the event1. Functions and
events are generically called clauses and, since tuples Q·f·Q′ and Q·evn·Q′ uniquely
identify functions and events, we will also call them clauses and write Q·f·Q′ ∈ C
and Q·evn·Q′ ∈ C.

2.1 Examples

As a first, simple example consider the PingPong contract:

1 stipula PingPong {
2 init Q0
3 @Q0 ping {
4 now + 1 >> @Q1 => @Q2
5 } => @Q1
6 @Q2 pong {
7 now + 2 >> @Q3 => @Q0
8 } => @Q3
9 }

The contract contains two functions: ping and pong. In particular ping is
invoked if the contract is in the state Q0, pong when the contract is in Q2. Func-
tions (i) make the contract transit in the state specified by the term “ => @Q”
(see lines 5 and 8) and (ii) make the events in their body to be scheduled. In
particular, an event now + k >> @Q => @Q′ (see lines 4 and 7) is a timed con-
tinuation that can run when the time is k time slots ahead to the clock value
when the function is called and the state of the contract is Q. The only effect of
executing an event is the change of the state. When no event can be executed in
a state either the time progresses (a tick occurs) or a function is invoked. The
progression of time does not modify a state.

In the PingPong contract, the initial state is Q0 where only ping may be
invoked; no event is present because they are created by executing functions.
The invocation of ping makes the contract transit to Q1 and creates the event at
line 4, noted ev4. In Q1 there is still a unique possibility: executing ev4. However,
1 We assume the code of µStipula contracts to be organized in lines of code, and each
line contains at most one event definition.
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to execute it, it is necessary to wait 1 minute (one clock tick must elapse) – the
time expression now + 1. Then the state becomes Q2 indicating that pong may
be invoked, thus letting the contract transit to Q3 where, after 2 minutes (the
expression now + 2), the event at line 7 can be executed and the contract returns
to Q0. In PingPong, every clause is reachable.

The following Sample contract has an event that is unreachable:

1 stipula Sample {
2 init Init
3 @Init f {
4 now + 0 >> @Go => @End
5 } => @Run
6 @Init g { } => @Go
7 }

Let us discuss the issue. Sample has two functions at lines 3 and 6, called f
and g, respectively. The two functions may be invoked in Init, however the
invocation of one of them excludes the other because their final states are not
Init. Therefore the event at line 4, which is inside f, is unreachable since it can
run only if g is executed.

2.2 The Operational Semantics

The meaning of µStipula primitives is defined operationally by a transition rela-
tion between configurations. A configuration, ranged over by C, C′, · · · , is a tuple
C(Q , Σ , Ψ) where

– C is the contract name;
– Q is the current state of the contract;
– Σ is either -- or a term Ψ => Q. Σ represents either an empty body (hence, a

clause can be executed or the time may progress) or a continuation where a
set of events Ψ must be evaluated;

– Ψ is a (possibly empty) multiset of pending events that have been already
scheduled for future execution but not yet triggered. In particular, Ψ is either
--, when there are no pending events, or it is k1>>n1 Q1 => Q′

1 |· · ·| kh>>nh Qh => Q′
h

where “|” is commutative and associative with identity --. In every term
ki >>ni Qi => Q

′
i, the constant ki is obtained from the time expression ti of

the corresponding event by dropping now. The index ni is the line-code of the
event.
The function that turns a sequence of events now+k >> @Q => @Q′ into a multiset
of terms k >>n Q => Q′ is LCQ·f·Q′(W ) (see rule [Function], the trivial definition
of this function is omitted). This function also drops the “@” from the states.

The transition relation of µStipula is C
µ−→ C′, where µ is either empty or

f or evn (the label evn indicates the event at line n). The formal definition of
C

µ−→ C′ is given in Table 1 using
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Table 1. The operational semantics of µStipula

[Function]

@Q f{W } => @Q′ ∈ C Ψ ′ = LCQ·f·Q′(W )

Ψ, Q !

C(Q , -- , Ψ)
f−→ C(Q , Ψ ′ => Q′ , Ψ)

[Event-Match]

Ψ = 0 >>n Q => Q
′ | Ψ ′

C(Q , -- , Ψ)
evn−→ C(Q , -- => Q

′ , Ψ ′)

[State-Change]

C(Q , Ψ ′ => Q′ , Ψ) −→ C(Q′ , -- , Ψ ′ | Ψ)

[Tick]

Ψ, Q !
C(Q , -- , Ψ) −→ C(Q , -- , Ψ ↓)

– the predicate Ψ, Q !, whose definition is

Ψ, Q ! def=






true if Ψ = --
false if Ψ = 0 >>n Q => Q′ | Ψ ′

Ψ ′, Q ! if Ψ = k >>n Q′ => Q′′ | Ψ ′ and (k $= 0 or Q′ $= Q)

the function Ψ ↓, whose definition is

(Ψ | Ψ ′) ↓ = Ψ ↓ | Ψ ′ ↓
(k+ 1 >>n Q′ => Q′′) ↓ = k >>n Q′ => Q′′

(0 >>n Q′ => Q′′) ↓ = --

A discussion about the four rules follows. Rule [Function] defines invoca-
tions: the label specifies the function name f. The transition may occur pro-
vided (i) the contract is in the state Q that admits invocations of f and (ii)
no event can be triggered – cf. the premise Ψ, Q ! (event’s execution preempts
function invocation). Rule [State-Change] says that a contract changes state
by adding the sequence of events W to the multiset of pending events once now
has been dropped from time expressions. Rule [Event-Match] specifies that an
event handler may run provided Σ is --, the time guard of the event has value 0
and the initial state of the event is the same of the contract’s state. Rule [Tick]

defines the progression of time. This happens when the contract has an empty
Σ and no event can be triggered. In this case, the events with time value 0 are
garbage-collected and the the time values of the other events are decreased by
one. The rules [Function] and [State-Change] might have been squeezed in one
rule only. We have preferred to keep them apart for compatibility with Stipula
(where functions’ and events’ bodies may also contain statements).

The initial configuration of a µStipula contract

stipula C { init Q F }
is Cinit = C(Q , -- , --); the set of configurations of C are denoted by CC.

We write C −→ C′ if there is a µ (as said above, µ may be either -- or a
function name or an event) such that C µ−→ C′. We also write C −→∗ C′, called
computation, if there are µ1, · · · , µh such that C

µ1−→ · · · µh−→ C′. Labels are
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useful in the examples (and proofs) to highlight the clauses that are executed.
However, while in [24], they were introduced to ease the formal reasonings, labels
be overlooked in this work. Let TS(C) = (CC,−→) be the transition system
associated to C.

Remark 1. Few issues about the semantics in Table 1 are worth to remarked.

– µStipula has three causes for nondeterminism: (i) two functions can be
invoked in a state, (ii) either a function is invoked or the time progresses
(in this case the function may be invoked at a later time), and (iii) if two
events may be executed at the same time, then one is chosen and executed.

– Rule [Tick] defines the progression of time. This happens when the contract
has no event to trigger. Henceforth, the complete execution of a function or
of an event cannot last more than a single time unit. It is worth to notice that
this semantics admits the paradoxical phenomenon that an endless sequence
of function invocations does not make time progress (cf. the encoding of the
Minsky machines in µStipulaI). This paradoxical behaviour, which is also
present in process calculi with time [21,28], might be removed by adjusting
the semantics so to progress time when a maximal number of functions has
been invoked. To ease the formal arguments we have preferred to stick to
the simpler semantics.

– The semantics of µStipula in this paper is different from, yet equivalent
to, [12,24]. In the literature, configurations have clock values that are incre-
mented by the tick-rule. Then, in the [Function] rule, the variable now is
replaced by the current clock value (and not dropped, as in our rule). We
have chosen the current presentation because it eases the reasoning about
expressivity.

To illustrate µStipula semantics, we discuss the computations of the PingPong
contract. Let Ev4 = 1 >>4 Q1 => Q2 and Ev7 = 2 >>7 Q3 => Q0. We write Evi(−j) to
indicate the Evi where the time guard has been decreased by j (time) units.

The contract may initially perform a number of [Tick] transitions, say k, and
then a [Function] one. Therefore we have (on the right we write the rule that
is used):

PingPong(Q0 , -- , --) −→k PingPong(Q0 , -- , --) [Tick]
ping−→ PingPong(Q0 , Ev4 => Q1 , --) [Function]

−→ PingPong(Q1 , -- , Ev4) [State-Change]

−→ PingPong(Q1 , -- , Ev4(−1)) [Tick]
ev4−→ PingPong(Q1 , -- => Q2 , --) [Event-Match]

−→ PingPong(Q2 , -- , --) [State-Change]
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In PingPong(Q2 , -- , --), the contract may perform a [Function] executing
pong. Then the computation continues as follows:

pong−→ PingPong(Q2 , Ev7 => Q3 , --) [Function]

−→ PingPong(Q3 , -- , Ev7) [State-Change]

−→2 PingPong(Q3 , -- , Ev7(−2)) [Tick]
ev7−→ PingPong(Q3 , -- => Q0 , --) [Event-Match]

−→ PingPong(Q0 , -- , --) [State-Change]

Definition 1 (State reachability). Let C be a µStipula contract with initial
configuration Cinit. A state Q is reachable in C if and only if there exists a
configuration C(Q , -- , Ψ) such that Cinit −→∗ C(Q , -- , Ψ).

It is worth noting that our notion of state reachability is similar to the notion
of control state reachability introduced by Alur and Dill in the context of timed
automata in [7]. Control state reachability is defined as the problem of checking,
given an automaton A and a control state q, if there exists a run of A that visits
q. Control state reachability was studied also for lossy Minsky Machines in [25]
and lossy FIFO channel systems in [4,10]. In the context of Petri Nets it can be
reformulated in terms of coverability of a given target marking [23].

2.3 Relevant Sublanguages

We will consider the following fragments of µStipula whose relevance has been
already discussed in the Introduction:

µStipulaI, called instantaneous µStipula, is the fragment where every time expres-
sion of the events is now + 0;

µStipulaTA, called time-ahead µStipula, is the fragment where every time expres-
sion of the events is now + k, with k > 0;

µStipulaD, called determinate µStipula, is the fragment where the sets of initial
states of functions and of events have empty intersection; i.e., for each func-
tion @Q f {W } => @Q′ and event t >> @Q′′ => @Q′′′ in a contract, we impose
Q $= Q′′;

µStipulaDI, called determinate-instantaneous µStipula, is the intersection between
µStipulaD and µStipulaI; i.e., for each function @Q f {W } => @Q′ and event
t >> @Q′′ => @Q′′′ in a contract, we impose Q $= Q′′ and t = now+ 0.

3 Undecidability Results

To show the undecidability of state reachability, we rely on a reduction tech-
nique from a Turing-complete model to µStipulaI, µStipulaTA, and µStipulaD. The
Turing-complete models we consider are the Minsky machines [27]. A Minsky
machine is an automaton with two registers R1 and R2 holding arbitrary large
natural numbers, a finite set of states Q, Q′, · · · , and a program P consisting of a
finite sequence of numbered instructions of the following type:
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Table 2. The µStipulaI contract modelling a Minsky machine

Let M be a Minsky machine with initial state Q0. Let IM be the µStipulaI contract

stipulaIM{initStart FM}
where FM contains the functions

– @Start fstart { now >> @aQ0 => @bQ0 } => @Q0

– for every instruction Q : Inc(Ri, Q
′), with i ∈ {1, 2}:

@Q fincQ { now >> @deci => @ackdeci

now >> @bQ => @Q′

now >> @aQ′ => @bQ′

} => @aQ
– for every instruction Q : DecJump(Ri, Q

′, Q′′), with i ∈ {1, 2}:

@Q fdecQ { now >> @ackdeci => @aQ

now >> @bQ => @Q′′

now >> @aQ′′ => @bQ′′

} => @deci

@Q fzeroQ { now >> @zeroi => @aQ

now >> @bQ => @Q′

now >> @aQ′ => @bQ′

} => @deci
– @dec1 fdec1 { } => @zero1 and @dec2 fdec2 { } => @zero2

– Q : Inc(Ri, Q′): in the state Q, increment Ri and go to the state Q′;
– Q : DecJump(Ri, Q′, Q′′): in the state Q, if the content of Ri is zero then go to

the state Q′, else decrease Ri by 1 and go to the state Q′′.

A configuration of a Minsky machine is given by a tuple (Q, v1, v2) where Q
indicates the state of the machine and v1 and v2 are the contents of the two
registers. A transition of a Minsky machine is denoted by −→M. We assume that
the machine has an initial state Q0 and a final state QF that has no instruction
starting at it. The halting problem of a Minsky machine is assessing whether
there exist v1, v2 such that (QF , v1, v2) is reachable starting from (Q0, 0, 0). This
problem is undecidable [27]. In the rest of the section, we will demonstrate the
undecidability of state reachability for µStipulaI, µStipulaTA, and µStipulaD by
providing encodings of Minsky machines. The encodings we use are increasingly
complex. Therefore, we will present the undecidability results starting from the
simplest one.

3.1 Undecidability Results for µStipulaI

Table 2 defines the encoding of a Minsky machine M into a µStipulaI con-
tract IM . The relevant invariant of the encoding is that, every time M tran-
sits to (Q, v1, v2) then IM may transit to IM (Q, --,Ψ), where the number of
events 0 >> @dec1 => @ackdec1 and 0 >> @dec2 => @ackdec2 in Ψ are v1 and v2,
respectively. Additionally, a transition (Q, v1, v2) −→M (Q′, v′

1, v
′
2) corresponds to

a sequence of transitions IM (Q, --,Ψ) −→∗ IM (Q′, --,Ψ
′) with either (i) a fincQ

function, if the Minsky machine performs an Inc instruction, or (ii) either a
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fdecQ or a fzeroQ function, if the Minsky machine performs a DecJump instruc-
tion. In particular, the function fincQ has the ability to add one instance of the
event 0 >> @dec1 => @ackdec1 (or 0 >> @dec2 => @ackdec2). The function fdecQ
has the effect of consuming one instance of the event 0 >> @dec1 => @ackdec1
(resp. 0 >> @dec2 => @ackdec2), by entering the state @dec1 (resp. @dec2) which
triggers such event. Also the function zeroQ enters in one of the states @deci,
but in this case the computation will have the ability to continue only if the
state @zeroi will be reached (this because the produced event 0 >> @zeroi => @aQ
must be triggered to allow the computation to continue). But @zeroi can be
reached only if no event 0 >> @deci is present, because only in this case the func-
tion fdeci can be invoked (remember that events have priority w.r.t. function
invocations).

We finally observe that the transitions IM (Q, --,Ψ) −→∗ IM (Q′, --,Ψ
′) which

mimick the Minsky machine step (Q, v1, v2) −→M (Q′, v′
1, v

′
2) are not the unique

possibile transitions. Nevertheless, in case different alternative transitions are
executed, the contract IM will have no longer the possibility to reach a state
corresponding to a Minsky machine state, thus the simulation of the machine
gets stuck. One of the alternative transitions is the invocation of the func-
tion fdecQ when the corresponding register is empty. In this case, the sim-
ulation gets stuck because the state @ackdeci, necessary to trigger the event
0 >> @ackdeci => @aQ, cannot be reached. Similarly, if fzeroQ is invoked when
the corresponding register is nonempty the state @zeroi, necessary to trigger the
event 0 >> @zeroi => @aQ, cannot be reached. Also the elapsing of time is prob-
lematic because the events 0 >> @dec1 => @ackdec1 and 0 >> @dec2 => @ackdec2,
which model the content of the registers, are erased by a [Tick] transition. This
could corrupt the modeling of the registers. In this case the simulation gets stuck
because also the “management event” 0 >> aQ => bQ is erased, which is necessary
to model the transition from a state Q of the Minsky machine to the next one.

Theorem 1. State reachability is undecidable in µStipulaI.

3.2 Undecidability Results for µStipulaTA

Also in this case we reduce from the halting problem of Minsky machines to state
reachability in µStipulaTA. The encoding of a machine M is defined in Table 3. In
this case, states of the µStipulaTA contract alternates between “machine states”
occurring, say, at even time clocks, and “management states” occurring at odd
time clocks. For this reason we add erroneous transitions at even time clocks
from management states to end (a state without outgoing transitions) and at
odd time clocks from machine states to end. Similarly to Table 2, a unit in the
register i is encoded by an event now + 1 >> @deci => @ackdeci (assuming to be
in a machine state). Therefore the instruction Q : Inc(Ri, Q′), which occurs in a
machine state Q, amounts to adding to the next time-clock such event and the
erroneous event now+ 1 >> @Q′ => @end that makes the contract transit to end if
it is still in Q′ at the beginning of the next time-clock.



Decidability Problems for Micro-Stipula 143

Table 3. The µStipulaTA contract modelling a Minsky machine

Let M be a Minsky machine with initial state Q0. Let TAM be the µStipulaTA contract

stipulaTAM{initQ0 FM}
with FM containing the functions

– for every instruction Q : Inc(Ri, Q
′), with i ∈ {1, 2}:

@Q fincQ { now+ 1 >> @deci => @ackdeci

now+ 1 >> @Q′ => @end

} => @Q′

– for every instruction Q : DecJump(Ri, Q
′, Q′′), with i ∈ {1, 2}:

@Q fdecQ { now+ 1 >> @ackdeci => @nextQ
′′
i

now+ 1 >> @wait => @dec1

now+ 2 >> @dec1 => @end

now+ 2 >> @dec2 => @end

now+ 2 >> @nextQ′′
i => @end

now+ 2 >> @ackdec1 => @end

now+ 2 >> @ackdec2 => @end

now+ 3 >> @Q′′ => @end

} => @wait

@Q fzeroQ { now+ 1 >> @ackdeci => @end

now+ 2 >> @next => @Q′

now+ 1 >> @wait => @dec1

now+ 3 >> @Q′ => @end

} => @wait

– for i ∈ {1, 2} and for every state Q of M , we have the following functions:

@wait fwait { } => @end

@dec1 fdec1 { } => @dec2 and @dec2 fdec2 { } => @next

@ackdeci fackdec i { now+ 2 >> @deci => @ackdeci} => @deci

@nextQi fnextQ i { now+ 1 >> @next => @Q} => @deci

The encoding of Q : DecJump(Ri, Q′, Q′′) is more convoluted because we have
to move all the events now+1 >> @deci => @ackdeci ahead two clock units (except
one, if the corresponding register value is positive). Assume an invocation of
fdecQ occurs and i = 1. Then a bunch of events are created (see the body of
fdecQ in Table 3) and the contract transits into wait. In this state, a [Tick]

transition can occur; hence the time values of the events are decreased by one.
Then 0 >> wait => dec1 is enabled and the protocol moving ahead all the events
0 >> dec1 => ackdec1 (except one) and 0 >> dec2 => ackdec2 starts. The protocol
works as follows:

1. since the state is dec1, 0 >> dec1 => ackdec1 is fired (assume the value of R1

is positive) and the contract transits to ackdec1;
2. in ackdec1, 0 >> ackdec1 => nextQ′′

1 is fired and the contract transits to state
nextQ′′

1 (one event 0 >> dec1 => ackdec1 has been erased without being moved
ahead);

3. in nextQ′′
1, the function

@nextQ′′
1 fnextQ′′ 1 { now+ 1 >> @next => @Q′′} => @dec1



144 G. Delzanno et al.

can be invoked. A transition to dec1 happens and the event 1 >> next => Q′′

is created. When the transfer protocol terminates, this event will make the
contract transit to Q′′;

4. at this stage the transfer of events 0 >> deci => ackdeci occurs. At first the
protocol moves the events 0 >> dec1 => ackdec1 (every such event is fired and
then the function fackdec1 that recreates the same event at now + 2 is exe-
cuted) then the function fdec1 is invoked and the same protocol is applied
to the events 0 >> dec2 => ackdec2;

5. at the end of the transfers, the function fdec2 is invoked and the contract
transits to next;

6. in next, no event nor function can be executed, therefore a [Tick] occurs
and the time values of the events are decreased by one (in particular those
2 >> deci => ackdeci that were transferred at step 4). Then 0 >> next => Q′′ that
was created at step 3 is executed and the contract transits to Q′′.

When the register R1 is 0 and fdecQ is invoked then the event at step 2 cannot
be produced and the computation is fated to reach an end state (by fdec1,
fdec2 or by [tick] and then performing 0 >> dec1 => end). If, on the contrary, the
invoked function is fzeroQ, the same protocol as above is used to transfer the
events 0 >> deci => ackdeci (in this case with i = 2 only) and the contract reaches
the step 5 where, after a [Tick], the event now+2 >> next => Q′ can be executed.
The undecidability result for µStipulaTA follows.

Theorem 2. State reachability is undecidable in µStipulaTA.

3.3 Undecidability Results for µStipulaD

Also in this case we reduce from the halting problem of Minsky machines to
state reachability in µStipulaD. In µStipulaD, functions and events start in dif-
ferent states. Therefore the encoding of Table 3 is inadequate since we used the
expedient that events preempt functions when enabled in the same state to make
the contract transit to the end state (which indicates an error). For µStipulaD

we need to refine the sequence machine-management states in order to have
extra management over erroneous operations (decrease of zero register or zero-
test of a positive register). The idea is to manage at different times the events
dec1 => ackdec1 and dec2 => ackdec2 that model registers’ units. In particular,
if the contract is in a (machine) state Q at time 0 then dec1 => ackdec1 are at
time 1 and dec2 => ackdec2 are at time 3. At times 2 and 4 management states
perform management operations. Therefore the sequence of states becomes

machine-state → transfer1-state → management1-state →
transfer2-state → management2-state

where every state is one tick ahead the previous one. Therefore, transfer1-state
and transfer2-state manage the transfer of dec1 => ackdec1 and dec2 => ackdec2
ahead five clock units.

Clearly, misplaced [Tick] transitions may break the rigidity of the protocol.
This means that it is necessary to stop the simulation if a wrong [Tick] transition
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Table 4. The µStipulaD contract modelling a Minsky machine

Let M be a Minsky machine with initial state Q0. Let DM be the µStipulaD contract

stipula DM { init Start FM }
with FM contains the functions

– @Start fstart { now >> @notickA => @cont } => @Q0

– for every Q : Inc(R1, Q
′) :

@Q : fAincQ {
now + 1 >> @dec1 => @ackdec1

now >> @cont => @Q′

now >> @notickB => @cont

} => @notickA

@Q : fBincQ {
now + 1 >> @dec1 => @ackdec1

now >> @cont => @Q′

now >> @notickA => @cont

} => @notickB

for every Q : Inc(R2, Q
′) :

@Q : fAincQ {
now + 3 >> @dec2 => @ackdec2

now >> @cont => @Q′

now >> @notickB => @cont

} => @notickA

@Q : fBincQ {
now + 3 >> @dec2 => @ackdec2

now >> @cont => @Q′

now >> @notickA => @cont

} => @notickB

– for every Q : DecJump(R1, Q
′, Q′′) :

@Q : fAdecQ {
now + 1 >> @ackdec1 => @Q′′ start1

now + 1 >> @s1notick => cont

now >> @cont => @dec1

} => @notickA

@Q : fBdecQ {
now + 1 >> @ackdec1 => @Q′′ start1

now + 1 >> @s1notick => @cont

now >> @cont => @dec1

} => @notickB

@Q : fAzeroQ {
now >> @cont => @dec1

now + 2 >> @dec1 => @dec2

now + 3 >> @ackdec2 => @copy2
now + 3 >> @c2notickA => @cont

now + 4 >> @dec2 => @Q′

now + 5 >> @notickB => @cont

} => @notickA

@Q : fBzeroQ {
now >> @cont => @dec1

now + 2 >> @dec1 => @dec2

now + 3 >> @ackdec2 => @copy2
now + 3 >> @c2notickA => @cont

now + 4 >> @dec2 => @Q′

now + 5 >> @notickA => @cont

} => @notickB

for every Q : DecJump(R2, Q
′, Q′′) :

@Q : fAdecQ {
now >> @cont => @dec1

now + 1 >> @ackdec1 => @copy1
now + 1 >> @c1notickA => cont

now + 2 >> @dec1 => dec2

now + 3 >> @ackdec2 => @Q′′ start2

now + 3 >> @s2notick => @cont

} => @notickA

@Q : fBdecQ {
now >> @cont => @dec1

now + 1 >> @ackdec1 => @copy1
now + 1 >> @c1notickA => cont

now + 2 >> @dec1 => dec2

now + 3 >> @ackdec2 => @Q′′ start2

now + 3 >> @s2notick => @cont

} => @notickB

@Q : fAzeroQ {
now >> @cont => @dec1

now + 1 >> @ackdec1 => @copy1
now + 1 >> @c1notickA => @cont

now + 2 >> @dec1 => @dec2

now + 4 >> @dec2 => @Q′

now + 5 >> @notickB => @cont

} => @notickA

@Q : fBzeroQ {
now >> @cont => @dec1

now + 1 >> @ackdec1 => @copy1
now + 1 >> @c1notickA => @cont

now + 2 >> @dec1 => @dec2

now + 4 >> @dec2 => @Q′

now + 5 >> @notickA => @cont

} => @notickB

– the management functions in Table 5.
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Table 5. The management functions of Table 4 (Q is a state of the Minsky machine)

@Q start1 : fQstart1 {
now >> @ackdec1 => @copy1
now >> @cont => @dec1

now >> @c1notickA => @cont

now+ 1 >> @dec1 => @dec2

now+ 2 >> @ackdec2 => @copy2
now+ 2 >> @c2notickA => @cont

now+ 3 >> @dec2 => @Q

now+ 4 >> @notickA => @cont

} => @s1notick

@copy1 : fAcopy1 {
now >> @ackdec1 => @copy1
now >> @cont => @dec1

now >> @c1notickB => @cont

now+ 5 >> @dec1 => @ackdec1

} => @c1notickA

@copy2 : fAcopy2 {
now >> @ackdec2 => @copy2
now >> @cont => @dec2

now >> @c2notickB => @cont

now+ 5 >> @dec2 => @ackdec2

} => @c2notickA

@Q start2 : fQstart2 {
now >> @ackdec2 => @copy2
now >> @cont => @dec2

now >> @c2notickA => @cont

now+ 1 >> @dec2 => @Q

now+ 2 >> @notickA => @cont

} => @s2notick

@copy1 : fBcopy1 {
now >> @ackdec1 => @copy1
now >> @cont => @dec1

now >> @c1notickA => @cont

now+ 5 >> @dec1 => @ackdec1

} => @c1notickB

@copy2 : fBcopy2 {
now >> @ackdec2 => @copy2
now >> @cont => @dec2

now >> @c2notickA => @cont

now+ 5 >> @dec2 => @ackdec2

} => @c2notickB

is performed. We already used a similar mechanism in Table 2. In that case, a
management event at time 0 (that is created in the past transition) is necessary
to simulate the Minsky machine transition; in turn, the simulation creates a
similar management event for the next one. Therefore, if a tick occurs before
the invocation of a function (thus erasing registers’ values that were events at
time 0, as well) then the simulation stops because the management event is also
erased.

A similar expedient cannot be used for the µStipulaD encoding because the
registers’ values are at different times (+1 and +3 with respect to the machine
state) and erasing the management event with a tick may be useless if the
µStipulaD function produces an equal management event, which is the case when
the corresponding transition is circular (initial and final states are the same).
Therefore we refine the technique in Table 2 by adding sibling functions and the
simulation uses standard functions or sibling ones according to the presence of
the management event 0 >> notickA => cont or of 0 >> notickB => cont. For exam-
ple, the encoding of Q : Inc(R1, Q′) is (the events of register R1 are at now+ 1):
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@Q : fAincQ {
now+ 1 >> @dec1 => @ackdec1
now >> @cont => @Q′

now >> @notickB => @cont
} => @notickA

@Q : fBincQ {
now+ 1 >> @dec1 => @ackdec1
now >> @cont => @Q′

now >> @notickA => @cont
} => @notickB

Assuming to be in a configuration with state Q and event 0 >> notickA => cont,
the unique function that can be invoked is fAincQ; thereafter, the combined effect
of 0 >> notickA => cont and 0 >> cont => Q′ allows the contract to transit to Q′ with
an additional event 1 >> dec1 => ackdec1 (corresponding to a register increment)
and the presence of 0 >> notickB => cont that compels the next instruction, if
any, to be a sibling one (e.g. fBincQ′).

Tables 4 and 5 define the encoding of a Minsky machine M into a µStipulaD

contract DM . The reader may notice that the management functions fQstart1
and fQstart2 in Table 5 do not have sibling functions – they always produce
a management event k >> notickA => cont (with k be either 2 or 4). Actually
this is an optimization: they are invoked because a decrement occurred and, in
such cases it is not possible that the foregoing management events are used in
the simulation of the current instruction. The undecidability result for µStipulaD

follows.

Theorem 3. State reachability is undecidable in µStipulaD.

4 Decidability Results for µStipulaDI

We demonstrate that state reachability is decidable for µStipulaDI by reasoning
on a variant with an alternative [Tick] rule. We recall that, in µStipulaDI, for
every Q f Q′, Q′′ ev Q′′′ ∈ C, we have Q $= Q′′

Let InitEv(C) be the set of initial states of events in C, where C is a µStipula
contract. Let

[Tick-Plus]

Q /∈ InitEv(C)

C(Q , -- , Ψ) −→ C(Q , -- , Ψ ↓)

That is, unlike [Tick], [Tick-Plus] may only be used in states that are not ini-
tial states of events. Let µStipulaDI+ be the language whose operational semantics
uses [Tick-Plus] instead of [Tick]; we denote with −→tp the transition rela-
tion of µStipulaDI+ . We observe that, syntactically, nothing is changed: every
µStipulaDI contract is a µStipulaDI+ contract and conversely. We denote by
TStp(C) = (CC,−→tp) the transitions system associated to contract C using −→tp

as transition rule.

Definition 2. Let C be a possible configuration of a µStipula contract. We say
that C is stuck if, for every computation C −→∗ C′ the transitions therein are
always instances of [Tick].
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Proposition 1. Let C(Q , Σ , Ψ) be a configuration of a µStipulaDI contract C
(or a µStipulaDI+ contract). Then

(i) whenever Q /∈ InitEv(C) or Σ $= --:

C(Q , Σ , Ψ) −→ C if and only if C(Q , Σ , Ψ) −→tp C ;

(ii) whenever Q ∈ InitEv(C) and Ψ = 0 >>nQ => Q′ | Ψ ′:

C(Q , -- , Ψ) −→ C if and only if C(Q , -- , Ψ) −→tp C ;

(iii) whenever Q ∈ InitEv(C) and Ψ, Q ! :

C(Q , -- , Ψ) is stuck if and only if C(Q , -- , Ψ) !tp .

A consequence of Proposition 1 is that a state Q is reachable in µStipulaDI

if and only if it is reachable in µStipulaDI+ . This allows us to safely reduce state
reachability arguments to µStipulaDI+ . In particular we demonstrate that TStp(C),
where C is a µStipulaDI+ contract, is a well-structured transition system.

We begin with some background on well-structured transition systems [18].
A relation ≤⊆ X × X is called quasi-ordering if it is reflexive and transitive. A
well-quasi-ordering is a quasi-ordering ≤⊆ X × X such that, for every infinite
sequence x1, x2, x3, · · · , there exist i < j with xi ≤ xj .

Definition 3. A well-structured transition system is a tuple (C,−→,)) where
(C,−→) is a transition system and )⊆ C × C is a quasi-ordering such that:

(1) ) is a well-quasi-ordering
(2) ) is upward compatible with −→, i.e., for every C1,C′

1,C2 ∈ C such that
C1 ) C′

1 and C1 −→ C2 there exists C′
2 in C verifying C′

1 −→∗ C′
2 and

C2 ) C′
2

Given a configuration C of a well-structured transition system, Pred(C)
denotes the set of immediate predecessors of C (i.e., Pred(C) = {C′ | C′ −→ C })
while ↑ C denotes the set of configurations greater than C (i.e., ↑ C = { C′ | C )
C′ }). A basis of an upward-closed set of configurations D ⊆ C is a set D! such
that D = ∪C∈D! ↑ C. We know that every upward-closed set of a well-quasi-
ordering admits a finite basis [18]. With abuse of notation, we will denote with
Pred(·) also its natural extension to sets of configurations.

Several properties are decidable for well-structured transition systems (under
some conditions discussed below) [2,18], we will consider the following one.

Definition 4. Let (C,−→,)) be a well-structured transition system. The cov-
erability problem is to decide, given the initial configuration Cinit ∈ C and a
target configuration C ∈ C, whether there exists a configuration C′ ∈ C such that
C ) C′ and Cinit −→∗ C′.
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In well-structured transition systems the coverability problem is decidable
when the transition relation −→, the ordering ) and a finite-basis for the set of
configurations Pred(↑ C) are effectively computable.

Let us now define the relation ) as the least quasi-ordering relation such
that Ψ ) Ψ | Ψ ′ for every Ψ ′. The relation ) is lifted to configurations as follows

C(Q , Σ , Ψ) ) C(Q , Σ , Ψ ′) if Ψ ) Ψ ′ .

It is worth to observe that, according to the relation ), the state reachability
problem for Q is equivalent to the coverability problem for the initial configura-
tion Cinit and the target configuration C(Q, --, --).

Lemma 1. For a µStipulaDI+ contract C, (CC,−→tp,)) is a well-structured tran-
sition system.

It is worth to notice that Lemma 1 does not hold for µStipulaDI because
−→ is not upward compatible with ). In fact, while C(Q, --, --) −→ C(Q, --, --)
with a rule [Tick] and C(Q, --, --) ) C(Q, --, 0 >> nQ => Q′), the unique computation
of C(Q, --, 0 >> nQ => Q′) when Q′ ∈ InitEv(C) is (we recall that, in µStipula, events
preempt function invocations and ticks):

C(Q, --, 0 >> nQ => Q
′) −→ C(Q, -- => Q

′, --) −→ C(Q′, --, --)

and then it gets stuck. Therefore no configuration C is reachable such that
C(Q, --, --) ) C.

Lemma 2. Let (C,−→tp,)) be the well-structured transition system of a
µStipulaDI+ contract. Then, −→tp and ) are decidable and there exists an algo-
rithm for computing a finite basis of Pred(↑ D) for any finite D ⊆ C.

From Lemma 2 and the above mentioned results, on well-structured transi-
tion systems we get the following result.

Theorem 4. The state reachability problem is decidable in µStipulaDI+ .

As a direct consequence of Proposition 1 and Theorem 4 we have:

Corollary 1. The state reachability problem is decidable in µStipulaDI.

5 Related Work

The decidability of problems about infinite-state systems has been largely
addressed in the literature. We refer to [2] for an overview of the research area.

It turns out that critical features of µStipula, such as garbage-collecting
elapsed events or preempting events with respect to functions and progression
of time may be modelled by variants of Petri nets with inhibitor and reset arcs.
While standard Petri nets, which are infinite-state systems, have decidable prob-
lems of reachability, coverability, boundedness, etc. (see, e.g., [16]), the above
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variants of Petri nets are Turing complete, therefore all non-trivial properties
become undecidable [15].

It is not obvious whether Petri nets with inhibitor and reset arcs may be mod-
elled by µStipula contracts. It seems that these features have different expres-
sive powers than time progression and events. Hence, other formalisms, such
as pi-calculus and actor languages, might have a stricter correspondence with
µStipula. As regards the decidability of problems in pi-calculus, we recall the
decidability of reachability and termination in the depth-bounded fragment of
the pi-calculus [26] and the decidability of the reachability problem for vari-
ous fragments of the asynchronous pi-calculus that feature name generation,
name mobility, and unbounded control [8]. Regarding actor languages, in [13],
we demonstrated the decidability of termination for stateless actors (actors with-
out fields) and for actors with states when the number of actors is bounded and
the state is read-only. It is worth to observe that all these results have been
achieved by using techniques that are similar to those used in this paper: either
demonstrating that the model of the calculus is a well-structured transition sys-
tem [18] (for which, under certain computability conditions, the reachability and
termination problems are decidable, see Sect. 4) or simulating a Turing complete
model, such as the Minsky machines, into the calculus under analysis (hence the
undecidability results of problems such as termination).

The µStipula calculus has some similarities with formal models of timed sys-
tems such as timed automata [7]. The control state reachability problem, namely,
given a timed automaton A and a control state q, does there exist a run of A
that visits q, is known to be decidable [7]. A similar result holds for Timed
Networks (TN) [1,5], a formal model consisting of a family of timed automata
with a distinct controller defined as a finite-state automaton without clocks.
Each process in a TN can communicate with all other processes via rendezvous
messages. Control state reachability is also decidable for Timed Networks with
transfer actions [3]. A transfer action forces all processes in a given state to
move to a successor state as transfer arcs in Petri nets, which allows to move all
tokens contained in a certain place to another [19]. µStipula can also be seen as a
language for modelling asynchronous programs in which callbacks are scheduled
using timers. Verification problems for formal models of (untimed) asynchronous
programs have been considered in [22,29]. In this context, Boolean program exe-
cution is modeled using a pushdown automaton, while asynchronous calls are
modeled by adding a multiset of pending callbacks to the global state of the
program. Callbacks are only executed when the program stack is empty. Verifi-
cation of safety properties is decidable for this model via a non-trivial reduction
to coverability of Petri nets [20].

6 Conclusions

We have systematically studied the computational power of µStipula, a basic
calculus defining legal contracts. The calculus is stateful and features clauses
that may be either functions to be invoked by the external environment or events
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that can be executed at certain time slots. We have demonstrated that in several
legally relevant fragments of µStipula a problem such as reachability of state is
undecidable. The decidable fragment, µStipulaDI, is the one whose event and
functions start in disjoint states and where events are instantaneous (the time
expressions are 0).

We conclude by indicating some relevant line for future research. First of all,
the decidability result for µStipulaDI leaves open the question about the complex-
ity of the state reachability problem in that fragment. Our current conjecture
is that the problem is EXPSPACE-complete and we plan to prove this conjecture
by reducing the coverability problem for Petri nets into the state reachability
problem for µStipulaDI. Another interesting line of research regards the inves-
tigation of sound, but incomplete, algorithms for checking state reachability in
µStipula. A preliminary algorithm was investigated in [24]. The presented algo-
rithm spots clauses that are unreachable in µStipula contracts and is not tailored
to any particular fragment of the language. The results in this paper show that
this algorithm may be improved to achieve completeness when the input contract
complies with the µStipulaDI constraints.
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