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Abstract. Messaging protocols for resource limited systems such as dis-
tributed IoT systems are often vulnerable to attacks due to security
choices made to conserve resources such as time, memory, or bandwidth.
Protocol dialects are a light weight, modular mechanism to provide secu-
rity guarantees such as authentication or integrity. In this paper we pro-
pose a generic dialect for the Constrained Application Protocol (CoAP)
messaging protocol. The CoAP protocol, dialect, and an attack models
are formalized in the rewriting logic system Maude. A number of proper-
ties relating CoAP and its dialected form are given, including a stuttering
bisimulation, thus ensuring that dialecting preserves important proper-
ties of a CoAP application. The ideas are illustrated with some simple
scenarios.

1 Introduction

There is a rapidly growing number of networks of IoT devices that impact our
daily lives. They enable smart homes, offices, factories, and infrastructure. They
are increasingly used in health care, precision agriculture, logistics, supply chain
management, and situation awareness. The IoT devices sense and act on the
physical environment and must operate using limited resources (energy, band-
width, memory, compute power, . . . ). The vulnerabilities of small inexpensive
devices are magnified when deployed at scale. Security is crucial for safe oper-
ation but security is typically resource intensive. Design of such systems must
balance resources used for messaging and for security.

Protocol dialects are a light weight mechanism that can provide authen-
tication and possibly additional security services such as integrity. A dialect
transforms the underlying protocol to obfuscate messages before sending such
that only dialect partners can revert the transformation for delivery to the
intended receiver. A key feature of dialects is to rapidly change the muta-
tion used to prevent attackers from using any decoding information they might
gain. This moving target defense means that the complexity of mutation process-
ing can be kept low without compromising the security guarantee. The need to
change mutations presents a significant challenge to synchronize change across
distributed network nodes.
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Existing dialect works, for example [3,11,14], usually consider protocols run-
ning over TCP or other reliable transport. In this case mutations can reason-
ably be synchronized based on time. In the case of unreliable transport where
messages can be delayed, reordered, lost, or repeated, time-based synchroniza-
tion is problematic. Unreliable transport is mentioned in [2] as one classification
parameter, but synchronization mechanisms for this case are not treated.

In this work we study dialects for protocols running over unreliable transport,
using the CoAP messaging protocol [12] as prototypical example. We propose
the use of counters, analogous to those used to prevent replay in security pro-
tocols. for synchronizing. The dialect is applied using a theory transformation
[8,9]. We study guarantees provided by dialecting CoAP messaging running on
an unreliable transport, in the presence of a bounded reactive attacker. We show
that dialecting provides adequate defense, using a stuttering bisimulation rela-
tion derived from the dialect transformation.

Contributions. The main contributions of this paper are:

– Executable specification of the CoAP messaging protocol (Sect. 3).
– Specification of a resource limited reactive attack model: an attacker that can

observe messages in transit and transmit (modified) copies (Sect. 4).
– Specification of a generic dialect transform for CoAP-like messaging protocols

(Sect. 6).
– Reachability analysis demonstrating reactive attacks and their mitigation by

dialecting.
– An analysis of protection provided by the proposed dialect class in unreliable

networks (Section 7).

Plan. Section 2 provides background information on CoAP, dialects, and rewrit-
ing logic/Maude. Section 3 describes the Maude specification of the CoAP mes-
saging protocol and an abstract attack model. The resource limited reactive
attack model is presented in Sect. 4, illustrated with a simple example of spoof-
ing. In Sect. 5 we present the abstract obfuscation functions of the proposed
dialect scheme. The Maude specification of the CoAP dialect is given in Sect. 6.
In Sect. 7 we discuss the properties of the CoAP dialect. Key related work is
discussed in Sect. 8. Concluding remarks are given in Sect. 9.

The Maude specification and many case studies can be found at https://
github.com/SRI-CSL/VCPublic in the folder CoAPDialect. More details, more
examples, and proofs of dialect properties can be found in the technical report
[15].

2 Background

2.1 The CoAP Protocol

The Constrained Application Protocol (CoAP) [4,12] is an HTTP-like client-
server Protocol for use by resource-constrained devices (e.g. low power) and
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networks (low bandwidth, lossy). CoAP provides a request/response RESTFUL
communication model between application endpoints. Servers hold resources
that can be generated, updated, accessed by clients. An endpoint can be a
client, a server, or both. Server resources may be connected to sensors observing
or actuators having effects on the environment.

RFC7252 specifies a binary format for CoAP messages. We take an abstract
data-type view. A CoAP message consists of four parts: Header, Token, Options,
and Payload. The header has four parts: Version, Type, Code, and MsgId (we will
ignore the version). The header type is one of {CON, NON, ACK, RST}. A mes-
sage of type CON is confirmable. The receiver must acknowledge with a message
of type ACK, in addition to a response if appropriate. The sender should resend a
CON message if no ACK is received within ACK-TIMEOUT time. There is a bound
on the number of resends (a configuration parameter). A message of type NON
is non-confirmable. A message of type RST is a reset message, used to indicate
receipt of message that can’t be handled, also used as a kind of ping. Code is an
HTTP like code. The MsgId header element is a string that uniquely identifies
the message (among messages from the sender). It is used to match acknowl-
edgements to CON messages. The Token message component is a unique (for the
sender) identifier generated by a requestor to match request to response. Options
is a list of name-value pairs used to specify additional information. Payload is
used for response values and other information. The rules for handling requests
with a given method are similar to those for HTTP.

2.2 Dialects

A protocol dialect is a transformation of protocol messages intended as a light
weight mechanism to provide additional security properties such as authenti-
cation or message integrity while preserving key properties of the underlying
protocol.

A dialect uses a family of lingos to transform protocol messages. A lingo pro-
vides a pair of functions that obfuscate and de-obfuscate message content. A lingo
may be parameterized. Dialects provide moving target defense in the sense that
lingo parameters and choice of lingo change over time in a dialect specified man-
ner. Thus weaker forms of message obfuscation can be used, because even if a
message is decoded, it doesn’t help since later messages will not use the same
encoding. It also means that honest participants must synchronize on the choice
of lingo and lingo parameters.

With the exception of [2] that proposed a formal framework for specifying
and applying dialects, existing works define dialects by code and evaluate them
experimentally (see Sect. 8 for examples). The present work gives a formal exe-
cutable semantics of a family of dialects and studies their formal guarantees.

2.3 Rewriting Logic and Maude

Rewriting logic [7] is a logic for specifying concurrent and distributed systems.
A rewrite theory has the form (Σ, E ,R) where Σ is a signature specifying a



178 C. Talcott

partial order of sorts, and a set of operators (the name, argument sorts and
result sort). (Σ, E) is the equational sub-theory, where the equations E define
functions and properties declared in the signature. R is the set of rewrite rules
of the form l : lhs =⇒ rhs if c. Here lhs, rhs are terms, possibly with variables,
and c is a boolean term, the condition, which is optional. An important feature of
rewriting logic is that rules are applied locally, i.e. to matching sub-terms of the
term being rewritten. Given terms (of the language given by Σ) t, t′ we have
t =⇒ t′ (t rewrites to t′) using rule l just if there is a position p of t and a
substitution σ matching lhs to the subterm of t at p (σ(lhs) =E t ↓ p) such that
σ(c) holds and t′ is the result of replacing the subterm of t at p by σ(rhs).

Maude [1,5] is a language and tool implementing rewriting logic.

3 Executable Specification of CoAP

The Maude specification of the CoAP messaging protocol consists of specifi-
cations of data structures to represent execution state 3.1, rules specifying the
protocol behavior 3.2, and an attack specification framework 3.3. The data struc-
tures include a message data type and data structures representing endpoint and
network state. The CoAP rules model sending and receiving messages, flow of
messages in the network, and passing of time. The attack model consists of a
language for specifying attacker capabilities and a rule for application of a capa-
bility to modify communications. The Maude specification of one class of attack
model is given in Sect. 4.2 along with an illustrative example.

3.1 Data Types

Message Data Type. The specification of the message data type is a direct for-
malization of the structure of messages as specified in [12]. Messages (sort Msg)
are constructed by the operation m declared using the keyword op followed by
argument sorts, an arrow -> and the result sort. The attribute [ctor] says that
m is a constructor.

op m : String String Content -> Msg [ctor] .

thus a typical message term has the form m(tgt,src,content) with tgt, src
being strings identifying the receiver (target) and sender (source) respectively.

The sort DMsg of delayed messages consists of terms of the form msg @ d
where msg is of sort Msg and d is the delay, a natural number (sort Nat). The delay
is used to model the time between sending and receiving a message (network
latency). It is also used to model the timer controlling resend of a confirmable
message.

As discussed in Sect. 2.1 message content (sort Content) is constructed from
sorts Head, multisets of Options, and Body (aka payload).

op c : Head String Options Body -> Content [ctor] .
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We define a constant mtBody of sort Body to stand for the empty payload, and
assume non empty payload is represented by strings: b(str). Elements of sort
Head are constructed by the operator h.

op h : String String String -> Head [ctor] .

where in h(type,code,mid) the first string is the message type ("CON", "NON",
"ACK" or "RST"), the second string is the HTTP-like code, and the third string
is the message unique identifier, generated by the sender, as discussed in Sect.
2.1

The String element of a message content is the token used to match a
response to the corresponding request. Each request from a given source to
a given target should have a unique token generated for it.

Sort Options is a multiset of sort Option where mtO is the empty option
set. An individual option has the form o(oname,oval) where oname is a string
naming the option and oval is the option value of sort String or Nat. The
current specification supports options representing request URIs and URIs in a
response resulting from creation of a resource.

The CoAP protocol itself does not generate requests, rather it packages and
transmits application level messages. For testing and analysis purposes we rep-
resent the application by a list of application level messages (requests) (sorts
AMsg, AMsgL) to be transmitted. An application message consists of six strings
and a message body. The strings specify: the application id, the message target
and type, the method, and the resource path and query parameters if any.

**** appid tgt type meth path qparams body
op amsg : String String String String String String Body

-> AMsg [ctor] .

CoAP System State. A CoAP network system consists of a set of endpoints
(devices running CoAP) and the network. The network is modeled as a pair
of delayed message sets net(dmsgs0,dmsgs1). Newly sent messages enter the
first component, are moved by the network rule (or an attacker) to the second
component from which they are delivered once the delay is zero.

An endpoint (also referred to as a device) is a term of sort Agent of the form

[epid | attrs]

where epid is a string identifying the endpoint and attrs is a set of attributes
representing the endpoints current state. CoAP endpoint attributes include the
set of confirmable messages sent and not yet acknowledged (w4Ack(dmsgs)),
where the delay determines the amount of time to wait before resending the
message; w4Rsp(msgs) containing requests sent that are waiting for a response;
sndCtr(d), time between sends of new messages; and other policy parameters.
allowing each endpoint to be configured differently if desired.

A number of auxiliary functions on attributes are defined for use in specifying
rules. The function getMsgSndDelay looks up the "msgSD" configuration param-
eter. This parameter models average network transit time of a message. The
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function findRspRcd checks if a response message from dst has been received
in response to a request with identifier mid and token tok.

3.2 Rules

Five rules are used to specify CoAP executions. The rules labelled devsend
and rcv specify transmission and receipt of messages by an endpoint. The rule
labelled ackTimeout specifies when a confirmable message is resent. The rule
labelled net specifies the network action of moving a delayed message from the
input side to the output side. Finally, the rule labelled tick specifies the pass-
ing of time. Rules devsend, rcv and ackTimeout operate on sub-configurations
consisting of an endpoint and the network, the rule net simply transforms the
network configuration element, while the tick rule requires the full system con-
figuration {conf}, formed by encapsulating a configuration term in curly braces.
The net rule was discussed above. The remaining rules are discussed in the
remainder of this (sub)section.

Sending a Message. The rule devsend sends the first element, amsg, of the
application message list attribute. The rule can only fire if the number of con-
firmable messages that the endpoint is awaiting acknowledgements for is not
greater than the configuration parameter w4AckBd (noW4Ack(devatts)) and the
sndCtr attribute is zero ( canSend(devatts)). These requirements model the
CoAP congestion control specification.

crl[devsend]:
[epid | sendReqs(amsg ; amsgl) devatts] net(dmsgs0, dmsgs1)
=>
[epid | sendReqs(amsgl) devatts1] net(dmsgs0 dmsgs,dmsgs1)

if noW4Ack(devatts)
/\ canSend(devatts)
/\ devatts1 toSend(dmsgs) := sndAMsg(epid,amsg, devatts) .

The action of the rule is given by the function sndAMsg that constructs the
delayed message to send, dmsgs, and updates the endpoint attributes, devatts.
To construct dmsgs, a message id and token are generated and the method string
is converted to a code, then the header, options, token and body are used to pro-
duce the message content. The message delay is obtained from the configuration
parameter msgSD. If the message is type CON it is added to the w4Ack attribute of
the endpoint with a delay given by the configuration parameter ACK_TIMEOUT,
otherwise the message is added to the attribute recording messages awaiting a
response. the attribute sndCtr is reset to the value of the configuration param-
eter msgQD. The endpoint will not be enabled to send a new message until this
amount of time passed.

Receiving a Message. A message in the network with 0 delay is received by the
target endpoint using the rule labelled rcv. The effect of the rule is given by the
function rcvMsg.
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crl[rcv]:
[epid | devatts] net(dmsgs0,dmsgs1 msg @ 0)
=>
[epid | devatts1 ] net(dmsgs0 dmsgs,dmsgs1)

if getTgt(msg) == epid
/\ toSend(dmsgs) devatts1 := rcvMsg(epid, devatts, msg) .

rcvMsg uses the message header code to classify the message as “Request”,
“Response”, “Empty”, or “UnKnown” and calls rcvRequest, rcvResponse,
rcvEmpty, or sendReset (if confirmable). If the message can not be classified,
it is dropped. An empty message is either an acknowledgement or a reset. In
the acknowledgement case, the corresponding message in the w4Ack attribute is
removed if any, and the underlying message is added to the w4Rsp attribute to
be able to process the pending response. In the reset case, if the message is con-
firmable an acknowledgement is sent (this implements a “PING” functionality)
otherwise the reset is ignored.

The rules for handling requests are specified in [12] Sect. 5.8. The function
rcvRequest implements these rules. It first checks whether it has already sent a
response to this request. If so, if the request is confirmable, the ACK is resent,
otherwise the message is ignored. If the request is new the method is computed
from the code and the appropriate method specific function is called to process
the message. As an example, if the method is "GET", a single message is sent in
response

msg = m(src,epid,c(h(rtype,code,rmid),tok,mtO,body) .

rmid is a new message id, src is the sender of the request, tok is the token of the
request message. The type, rtype, is "ACK" if the request in confirmable. In this
case, the message is a combined acknowledgement and response. The type is
"NON" if the request is nonconfirmable. In this case the message is a simple
response. body is the result of attempting to access the resource at the path
specified in the request message options. The endpoint attribute is updated to
record the response sent.

The function rcvResponse checks if it is combined with an acknowledge-
ment or a simple response. The endpoint attributes are updated to remove the
corresponding request from the appropriate waiting attribute. If the response is
confirmable an acknowledgment is sent.

ReSending a Message. The rule ackTimeout fires if a message in the w2Ack
attribute has delay 0. The option o("rcnt",n) records the number of resends of
the message. If this count is less than the max allowed (a configuration param-
eter) then the message is returned to the w4Ack attribute with a new ack wait
time, delay, computed using the backOff function that doubles the delay for
each resend. Finally, the message with normal sending delay is put in the network
input side.
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Passing Time. For managing the passing of time, we follow the Real-time Maude
approach [10]. The idea is that there is an earliest time at which some instan-
taneous rule will be enabled to fire, called the minimal time elapse (mte). If the
mte is zero then the enabled rules should be applied until there are no more. If
the mte is greater than zero then time passes by this amount, reaching a situa-
tion where some rules can fire at the current time (or the state is terminal). It
is the job of the specification designer to ensure that only a finitely many rules
can fire before time must pass. In the CoAP model, mte is greater than zero if
all delays of messages in the network, or an w4Ack attribute, are greater than
zero, or a message send is pending but the time to wait before the next send
is non-zero. The rule labelled tick formalizes the above. If mte the non-zero
natural number, nz, then the tick rule uses the function passTime to decrement
the message delays in the in the network and w4Ack attributes and each sndCtr
by nz.

3.3 Attack Specification

Our specification of attacks against CoAP messaging consists of declaring a sort,
Cap, of attack capabilities, a function doAttack, to interpret terms of sort Cap, an
attacker agent class, and a rule for executing attacks, that invokes doAttack on
a target message using an available capability. One instantiation of the generic
attack model is discussed in Sect. 4. We note that the usual symbolic model
matching patterns representing attacker ability to construct deliverable messages
doesn’t work in this setting, because there is no a priori expectation of what
messages are expected.

An attacker agent has the same form as a device endpoint

[aid | caps(acaps) attrs]

but with attacker specific attributes that include, caps(acaps), the capabilities
attribute specifying what the attacker can do. The rule labelled attack speci-
fies the attack model semantics. It selects a target delayed message, dmsg, from
the network input component, and a capability from the attackers capability
set, and calls doAttack with the current attributes, the target message and the
capability. The result is a replacement, dmsgs for dmsg and possibly updated
attacker attributes. For example, if the capability corresponds to drop then
dmsgs is the empty set, and if the capability corresponds to replay after delay
n then dmsgs is dmsg dmsg1 where dmsg1 is dmsg with n added to its delay.
Sections 4.3 and 4.4 give example CoAP attack scenarios.

4 Reactive Attack Model

We identified two main classes of attacker: active and reactive. The active
attacker models the attacker envisioned in [4]. This active attacker adds to the
capability of the underlying unreliable network to drop and duplicate messages,
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the ability to change the sender or receiver of messages. Dialecting can not mit-
igate such attacks, and applications need to deal with the unreliability of the
network independently of attackers.

The reactive attacker can not modify messages in transit (can not drop or
delay these messages). But it can observe, make copies of messages in transit,
and transmit modified copies (redirecting, resending with delay). These capabil-
ities violate the expected network guarantee that if an endpoint ep1 receives a
message with source ep0, then there is a unique previous event in which end-
point ep0 sent that message. They are also capabilities that can be mitigated
by dialecting as we show in Sect. 7.

4.1 Reactive Attacker

A simple reactive attack capability allows the attacker to make (and edit the
target and source) one copy of a target message. A given attacker instance is
limited to a finite number of simple attack capabilities.

A multi action reactive attack capability allows an attacker to make multiple
copies per message, optionally adding to the delay and/or modifying the message
source or target. This attacker can restrict attention to a given target-source
pattern. This latter constraint mainly improves the attacker efficiency (reduces
the search space) but adds no power at the granularity we consider. As for
the simple reactive attacker, each attacker instance is limited to a finite set of
multi-action capabilities.

The following are examples of what a reactive attacker can do.

– R1. Undo/revert an action. Suppose messages M1, M2 use the PUT method
to assign different values to the same resource. The attacker copies M1 and
sends the copy with sufficient delay to arrive after M2, thus overriding the
effect of M2. This leaves the target resource in a state other that what the
client planned. It could for example leave a process running that should have
stopped.

– R2. Violate ordering or concurrency constraints. The attacker observes a mes-
sage M1 from ep0 to ep1. It makes copies redirected to ep2 (ep3 . . . ). A com-
pliant CoAP endpoint ep0 will ignore responses from ep2 (ep3 . . . ). But in
the case of requests causing actions, there will be unexpected actions. For
example, if ep0 is activating ep1, ep2, . . . , in sequence then ep2, . . . , will be
acting out of sequence, concurrently with ep1, which could lead to undesired
consequences (see Sect. 4.4)).

– R3. Duplication of a process. Suppose as above ep0 is coordinating a process
by activating ep1, . . . , epk in sequence, using messages M1, . . . , Mk. Suppose
also that ep0x, ep1x, . . . , epkx are a functionally equivalent set of endpoints,
say in a different location. Then the attacker can copy each message and
redirect to ep1x, . . . epkx.

– R4. Spoofing (Redirect GET request/response). The attacker observes a mes-
sage M1 from ep0 to ep1. It makes a copy redirected to ep2. A compliant CoAP
endpoint will reject the response from ep2 (wrong server). If the attacker also
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makes a copy of the response, rerouting it to appear to be from ep1 then ep0
will accept which ever response arrives first. If M1 is a GET request, then the
client may receive the wrong value for the requested resource) see Sect. 4.3).

R1 only needs one capability instance with one action. R2 only needs one
capability instance but with 2 or more actions. R3, R4 need multiple capability
instances, each one needs only a single action.

4.2 Attack-Model Specification.

To specify attack behavior we define capability constructors and define their
semantics by giving equations for the doAttack function for each capability.
Different models are obtained by constraining the capability attribute of the
attacker agent.

We define a generic capability construction, mc(tpat,spat,active?,
acaps). tpat,spat are target, source patterns used to restrict the set of mes-
sages to be ‘attacked’. acaps is a possibly empty set of actions. Each action,
act(tpat1,spat1,d), causes a copy of the matched message to be made, trans-
formed, and transmitted. tpat1,spat1 are target, source patterns used to deter-
mine the target and source of the transformed message. If a pattern is "" the
original target or source is used, otherwise the pattern string is used. The delay d
is added to the delay of the original message. For reactive capabilities (active?
is false) the original message is left in the network to be transmitted as usual.
The function doAttack implements the semantics of each attack capability.

4.3 Example CoAP Attack Scenario: Spoofing (R4)

Although a reactive attacker can not redirect a message in transit, it can make a
copy and direct it to a different server. For the client to accept a response it must
match a pending request, including the source of the response. Thus the attacker
must copy the response from false server and rewrite the sender. The client will
receive 3 responses (one from the original request, two from the fake request).
They can arrive in any order. The client will ignore the one from the alternate
server, and its a race between the two messages apparently from the intended
server. This is illustrated in the following ascii diagram where dev0 requests the
door status from dev1 which is unlocked, and may receive the status of the door
from dev2 which is locked. The @ sign indicates attacker copying a message, cc
indicates edited copy redirected.

dev0 eve dev1 dev2
---- --- unlock lock

o -GETN(1)-->@ -------> o
| o (cc to dev2) -> o
o <---unlock------- o
o @ <---lock--- o
o <- lock --- (cc from dev1)
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The initial configuration constructor iSySZ(mqd:Nat,w4b:Nat) formal-
izes this scenario. The arguments are used to set congestion control
parameters of dev0 (5 is the wait after sending, 0 says a client can
not send a new message if any acknowledgements are pending). To
find attacks we search from the initial state for final states (=>!)
in which the client has received a "lock" response to the GET request
(hasGetRsp(c:Conf,"dev0","dev1","getN0","lock")) while "dev1" has
"door" bound to "unlock" (checkRsrc(c:Conf,"dev1","door","unlock")).

search iSySZ(5,0) =>! {c:Conf} such that
hasGetRsp(c:Conf,"dev0","dev1","getN0","lock")
and checkRsrc(c:Conf,"dev1","door","unlock") .

There are 4 solutions: 4 ways the attack can succeed.

4.4 Example CoAP Attack Scenario: Violating Ordering
Constraints (R2)

In this example, a sequence of n tasks is to be executed one after the other. The
protocol consists of a controller (client endpoint) and n servers that execute the
tasks. A task is initiated when the server receives a PUT "sig" "on" request and
terminates when the server receives a PUT "sig" "off" request.

dev0 eve dev1 ... devk
---- --- off
o -PUTNon ----------> o

@(cc dev2)> ----->
o <------- <-2.04-- o
...
o -PUTNoff ----------> o
o <------- <-2.04-- o
....
....

o -PUTNon-> ----------> o
o <------- <-2.04--------- o
o -PUTNoff-> -----------------> o
o <------- <-2.04--------- o

The function iSysX(n,d,caps) generates instances of the above scenario. n is
the number of servers, d the task duration, and caps the attacker capabilities.
It uses the function CnS(n,amsgl,rbnds,mqd,w4ab) that generates a config-
uration with one client and n servers. The client’s application message list is
amsgl and each server has initial resources given by the RMap rbnds. The client
delay between message sends is mqd and it can only send a new message if there
are no more than w4ab confirmable messages awaiting an ACK.

The function mkSigAMs(n,d,nilAM) generates the list of application mes-
sages for the client to send to control the execution. The list consists of pairs
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mkPutN("putN","dev" + string(j,10),"sig","on") ;
mkPutN("putN","dev" + string(j,10),"sig","off") .

for j ∈ [1, n] separated by a delay of d.
We consider three levels of attacker capability. Level j (caps-j) looks for

messages from "dev0" to "dev1" and immediately (additional delay 0) sends
a copy to "dev2" ... "dev1+j". We consider two attacks that violate the prop-
erty that the tasks do not interleave, by starting a task on "dev-k+j" before
the task on "dev-k" completes. One check for violation is that the number of
devices with resource binding rb("sig","on") is greater than 1. The function
epswrb(conf,rbnds) returns the number of servers with resource map con-
taining a match for rbnds is used for this check. Alternately, we can check for
executions in which "devj" receives an "on" signal, and "devj+1" receives the
"on" signal before "devj" receives the "off" signal. This is done using the
subLI function. To specify path based properties, we instrument the config-
uration with a log data structure, and extend rules to log events of interest.
For example rcvP(epid,name,val) is appended to the log to record receipt
of PUT request events by epid to set the value of resource name to value.
subLI(conf log(eventlist0),eventlist) is true if the eventlist is a sublist
of eventlist0.

Using caps-1 can the attacker cause at least 2 simultaneous tasks execu-
tions?

search iSysX(3,0,caps-1) =>+ sys:Sys such that
size(epswrb(sys:Sys,rb("sig","on"))) > 1 .

There are 132 solutions from 767 states visited.
Raising the bar we ask if using caps-2 can the attacker cause 3 or more tasks

to execution simultaneously.

search iSysX(3,0,caps-2) =>+ sys:Sys such that
size(epswrb(sys:Sys,rb("sig","on"))) > 2 .

There are 182 solutions among 721 states visited.
We can also ask if the attacker can cause dev2 to start before dev1 finishes.

**** attack 3 dev2 starts before dev1 finishes
search iSysX(3,0,caps-2) =>+ {c:Conf} such that

subLIL(c:Conf, rcvP("dev1","sig","on") ;
rcvP("dev2","sig","on") ;
rcvP("dev1","sig","off")) .

There are 342 solutions from 3598 states visited. The log for the last solution is

log(rcvP("dev3", "sig", "on") ; rcvP("dev1", "sig", "on") ;
rcvP( "dev2", "sig", "on") ; rcvP("dev1", "sig", "off") ;
rcvP("dev2", "sig", "on") ; rcvP("dev2", "sig", "off") ;
rcvP("dev3", "sig", "on") ; rcvP( "dev3", "sig", "off")).
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Finally, we ask if the attacker can cause dev2 to start before dev1 finishes and
dev3 to start before dev2 finishes.

search iSysX(3,0,caps-2) =>+ {c:Conf} such that
subLIL(c:Conf, rcvP("dev1","sig","on") ;

rcvP("dev2","sig","on") ;
rcvP("dev1","sig","off")) and

subLIL(c:Conf,rcvP("dev2","sig","on") ;
rcvP("dev3","sig","on") ;
rcvP("dev2","sig","off")) .

There are 62 solutions among 3594 states visited.

5 Dialect Functions

Dialects using a moving target strategy must synchronize on the choice of lingo.
In the case of reliable transport this is often done using time synchronization.
For protocols, like CoAP, running on unreliable transport, the notion of current
lingo or lingo parameters being no longer valid, seems problematic. In principle
there is no bound on the delay of a message, and missing messages or out of order
messages which are common, make guaranteeing that a receiver can determine
the correct lingo to decode a dialected message a challenge. Failure would mean
dropping a message that should have been delivered.

We use the message counter mechanism employed by many security protocol
designs for replay prevention and/or detection. There is one counter for each
communication pair and direction, incremented for each send. These counters
appear in the clear in messages making synchronization simpler. We have to
be careful that these counters don’t leak enough information to be useful to an
attacker.

For the CoAP dialect specification we propose a scheme of three functions:

– g : String×Nat×Nat −→ String – a generator of (pseudo) randomness. The
first argument is a seed, the second specifies the output length, and the third
argument is the index into the sequence generated by g. Thus g(seed, k , ix )
is the ix -th (pseudo) random string in the sequence initialized with seed,
truncated to length k.

– f1 : String× Content× Nat −→ DCBits – the obfuscator/encoder. The first
argument is the source of randomness, the second argument is a message
content and the third the lingo index (a natural number).

– f2 : String×(DCBits×Nat) ! ContentNat – the de-obfuscator/decoder. The
first argument is again the source of randomness and the second argument is
a pair consisting of the encoded message content and the lingo index.

There are two important properties of these functions. First, f2 recovers the
original content encoded by f1, using random generator g.

f2(g(seed, k, ix), f1(g(seed, k, ix), content, ix), ix) = {content, ix}.
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Second, if the encoded content or index are modified, decoding will fail. Letting
f1(grand , {content , ix}) = dcbits, dcbits1 '= dcbits, and ix1 '= ix then

f2(grand, {dcbits1, ix}) = {content1, ix}.

and
f2(grand, {dcbits, ix1}) == {content1, ix1}.

with content '= content1 and content1 is recognized as ill-formed. Alternately,
f2 could directly return an indication of failure, but only if the input is not a
correctly transformed content.

Starting the enumeration of random strings with a secret seed is important.
An attacker may well know the three functions. If he can guess the message
content, then he can compute f2(g(ix, k), dcbits , ix)). We claim that with a secret
seed exposing ix doesn’t really expose much useful information and avoids the
need for the receiving wrapper to guessing the ix.

6 Specification of a CoAP Dialect Wrapper

To specify a dialect wrapper for CoAP messaging we need to specify the data
type of dialected messages, the three functions described in Sect. 5, the structure
of wrapped CoAP agents (Sect. 6.1), and the rules for sending and receiving
messages by the wrapped agents (Sect. 6.2). Formally, adding a dialect to a
protocol is a theory/module transformation [2] mapping the specification and
scenarios of the underlying protocol to dialected versions. The specification is
transformed by module inclusion. In Subsect. 6.3 we define operations D and UD.
D takes an initial system configuration and produces the corresponding dialected
configuration. UD extracts the underlying CoAP system configuration from a
dialected configuration. Using these functions, rewrite and search commands
for a CoAP scenario can be automatically transformed to rewrite and search
commands for the corresponding dialected scenario.

6.1 Dialect Messages and Configurations

A dialected message has a target and a source (sort String as for normal mes-
sages) and a dialect encoded content (sort DContent). The message constructor
is overloaded to construct dialected messages.

op m : String String DContent -> Msg .

A term of sort DContent is a pair constructed by the operator dc

op dc : DCBits Nat -> DContent [ctor] .

where the sort DCBits is an opaque sort whose structure is not further specified.
We also define the sort ContentNat to be pairs constructed from ordinary content
and a natural number.
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op ‘{_‘,_‘} : Content Nat -> ContentNat [ctor] .

The three dialect functions of Sect. 5 are specified as follows:

op g : String Nat Nat -> String .
op f1 : String ContentNat -> DCBits .
op f2 : String DContent ~> ContentNat .
eq f2(g(rand,k,ix),dc(f1(g(rand,k,ix),{content,ix}),ix))

= {content,ix} .

The partial arrow ~> used in the declaration of f2 means that the result of
applying f2 to a modified encoding will be of kind ContentNat, but not of sort
ContentNat. This allows to detect modifications in the dialected content.

As described in [2] we represent a dialect wrapper by a meta-agent that has
the same identifier as the wrapped agent, a conf attribute that encapsulates the
base agent and its network stub, and additional attributes for managing dialect
transformations.

[eid | conf([eid | devattrs] net), ddevattrs]

We refer to the encapsulated network as the internal network and the network
at the level of meta entities as the external network.

The additional attributes for a dialect meta endpoint include:

– used(umap)—a map from endpoint ids to sets of lingo indices already received
from the identified endpoint.

– toRcv(dmsgs)—holds the result of decoding: the original message or the
empty (delayed) message set, if decoding fails

– seedTo(eid,str) – the shared secret seed for sending to eid
– seedFr(eid,str) – the shared secret seed for receiving from eid
– ixCtr(eid,nat)—the counter for generating lingo indices for messages to

endpoint named eid
– randSize(k) – the size of generated (pseudo) random strings

6.2 Dialect Rules

There are two rules to specify dialect behavior. The rule labeled ddevsend han-
dles applying a dialect lingo to outgoing protocol messages. It selects a mes-
sage from the internal network sent by the wrapped entity, calls applyDialect,
and puts the resulting dialected message in the external network. The func-
tion applyDialect looks up seed, random size, and current index values in the
wrapper attribute set. It computes the pseudo random string using the dialect
function g, and then applies the obfuscating function f1 to this string, the mes-
sage content and the index to produce the obfuscated content (sort DCBits). It
then constructs the dialected message and also increments the index counter for
the message target.
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The rule labeled ddevrcv handles receipt of a dialected message. It selects a
message from the external net with 0 delay and target the wrapped entity and
calls decodeDialect. If decoding produced a message, the rule calls the CoAP
receive function rcvMsg.1

In addition to the dialect send and receive rules, the auxiliary functions mte
and passtime used by the rule labeled tick are extended to account for the
nesting of configurations.

6.3 CoAP Dialect Transform

As a step towards realizing dialecting as a theory transformation, we define a
function D that maps a term representing an initial system configuration to its
dialected form. D computes the set of identifiers (addresses) of CoAP endpoints in
the system. For each identifier, the function DA is called to produce the wrapped
endpoint. Other agents (for example attackers) are copied unchanged. The net-
work of an initial system is empty and is copied unchanged as the global/external
network. The function DA produces a meta-agent with the same identifier as
its argument, and a conf attribute containing the original agent with its local
network stubb. The attributes of the meta-agent wrapper consist of a set of
attributes that are the same for all wrappers, a set of seed attributes consisting
of a pair of seeds for each possible communication partner (network link), and
a set of index attributes, one for each possible communication partner.

We also define a partial inverse, UD, to the dialect transform D. It simply
extracts the agent from the conf attribute of each meta-agent, and copies any
other agents and the global (empty) network. The partial inverse is only meaning-
ful when applied to systems with no dialected messages pending. It is generally
applied only to initial or terminal states, which have empty network elements.

6.4 Dialected CoAP Scenarios

Dialected CoAP Scenario: Spoofing (R4). As we show in Sect. 7 dialecting miti-
gates attacks of a reactive attacker. To illustrate this we lift the scenario shown in
Sect. 4.3 to the corresponding dialected scenario and lift the search for attacks
to the dialected situation using the functions D and UD.

search D(iSySZ(5,0)) =>! {c:Conf} such that
hasGetRsp(UDC(c:Conf),"dev0","dev1","getN0","lock")
and checkRsrc(UDC(c:Conf),"dev1","door","unlock") .

As predicted, there are no solutions among the 121 states visited.

1 Normally the decoded message would be put in the internal network and processed
by the CoAO receive rule. For some analyses, a log entity is added to the global
configuration, and the receive rule/function needs the full configuration to process,
which the base CoAP receive rule would not have when the endpoint is wrapped.
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Dialected CoAP Scenario: Ordering Violations (R2)
As one more example recall the example of R2 type attacks, where a client is
invoking server proceses one at a time and the attacker manages to start some
servers early, thus having more than one server active concurrently.
The dialected form of the attack with attacker capacity caps-1 is

search D(iSysX(3,0,caps-1)) =>+ sys:Sys such that
size(epswrb(UD(sys:Sys),rb("sig","on"))) > 1 .

Again in the dialected case no solution is found in 553 states visited. The other
cases with different capabilities are similar.

7 Dialect Properties

Here we study the relation of traces of an initial system sysI running the CoAP
messaging protocol specification to traces of the corresponding dialected sys-
tem D(sysI) in the presence of the different attack capabilities, including mtC
(none). We note that the specified dialect wrapper (i) drops messages that fail
decoding, and (ii) has a notion of used lingo parameter such that messages with
previously used lingo parameters are dropped. We assume that the underlying
network can drop or delay messages.

In particular we define a relation between system configurations reachable
from sysI and system configurations reachable from D(sysI) and identify cases
in which this relation is a suttering bisimulation.

Definition 1 (Suttering bisimulation). Given a relation sysC ∼ dsysC
between system configurations and dialected system configurations reachable from
sysI or D(sysI) respectively, we say that the relation ∼ is a stuttering bisimu-
lation just if the following hold:

1. iSys ∼ iDSys
2. for reachable configurations such that sysC ∼ dsysC

2a. if sysC ⇒ sysC1 then there is some dsysC1 with sysC1 ∼ dsysC1 such that
dsysC ⇒∗ dsysC1, and

2b. if dsysC ⇒ dsysC1 then there is some sysC1 with dsysC1 ∼ sysC1 such that
sysC ⇒∗ sysC1.

We say that D(iSys) is suttering bisimilar to iSys (written D(iSys) ≈ iSys)
if there is a relation ∼ such that iSys ∼ D(iSys) is a stuttering bisimulation.

Intuitively the stuttering bisimulation candidate sysC ∼ dsysC, holds if
dsysC is the same as the collected nested configurations of dsysC augmented
by the messages in the global network (de-dialected). Formally, we define the
relation ∼ using the dialect transformation inverse.
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Definition 2 (UDX and ∼). The relation ∼ is defined by the property

dsysC ∼ sysC ≡ (UDX(dsysC) = sysC)

where, UDX extends UD (the undialecting transformation defined in Sect. 6.3) is
derived from UD by decoding dialected messages in the configuration using the
current wrapper attributes. (See [15] for details).

We consider the following instances of the relation ∼:

D(mkISys(att(c))) ∼ mkISys(att(c0)).

Here mkISys(att(c)) denotes an initial system configuration with endpoints in
their initial state, an empty network, and an attacker with capabilities c. Intu-
itions for why the properties hold are given. We illustrate some cases in the proof
for basic correctness Detailed proofs can be found in the technical report [15].

Dialect Basic Correctness. In the absence of attacks the dialect wrapper simply
encodes messages sent by an endpoint, and decodes them before passing them
to the receiver endpoint. Thus a dialected CoAP system is stuttering bisimilar
to the original system.

D(mkISys(att(mtC))) ≈ mkISys(att(mtC))

Proof Let sysI be an initial system configuration with caps = mtC and endpoint
identifiers eids. Let dsysI be D(sysI). There are two cases

(1) sysI ∼ dsysI
(2) If sysC is reachable from sysI, dsysC is reachable from dsysI, and sysC ∼

dsysC then the two directions must be considered. (2.i) if sysC ⇒ sysC1
(application of one rewrite rule) then there is some dsysC1 such that
dsysC ⇒<3 dsysC1 and sysC1 ∼ dsysC1. (2.ii) if dsysC ⇒ dsysC1 then
there is some sysC1 such that sysC ∼ dsysC1 or sysC ⇒ sysC1 and
sysC1 ∼ dsysC1.

(1) holds by definition of ∼ because UD(mkISys) = mkISys (Sect. 6.3). (2.i) and
(2.ii) are proved by cases on the rule applied. For (2.i) we show the argument
for the rules devsend (sending an application message) and rcv (receiving a
message). Using the notation above, assume the rule applies to endpoint eid.

crl[devsend]: By similarity, the endpoint eid in dsysC has the same
attributes as ub sysC and hence the same application message to send. There-
fore the same rule applies to the wrapped eid with the same attribute updates
and new delayed messages added to the local network.
crl[rcv]: The corresponding message in dsysC has the same delay and is

either in the local net of eid or in the global net. In the former case, the rule
applies in dsysC with dsysC ⇒ dsysC1. In the latter case, the rule sequence
ddevrcv ; rcv applies with dsysC ⇒2 dsysC2. In either case the new state is
given by the function rcvMsg(epid,devatts,msg) in dsysC and sysC. Thus
dsysC1, dsysC2 ∼ sysC1.
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For (2.ii) we show the argument for ddevsend and ddevrcv. The argument
for devsend and rcv are similar to that in (2.i).

crl[ddevsend]: A message is moved between a local net and the global
net, thus UD(dsysC) = UD(dsysC1) = sysC.
crl[ddevrcv]: A message is moved between the global net and a local net,

thus the undialected configurations are the same.

Dialecting in Presence of an Attacker. Here we identify attack capabilities att(c)
for which dialecting mitigates attacks. That is a dialected system under attack
is stuttering bisimilar to the underly system in the absence of attack.

D(mkISys(att(c))) ≈ mkISys(att(mtC))

(i) c = drop or c = delay(n). In this case ≈ holds because the network can
also drop or delay messages. The only effect of the attacker is to change the
probability profile of drops/delays.

(ii) c = divert (edit source, or destination or both). Assuming each com-
municating pair in the dialected system has a unique shared secret,
D(mkISys(att(c))) will drop the diverted message, thus making it look like
a network drop. Without dialecting the new receiver might handle the
diverted message, possibly causing problems, for example the temperature
example (reading room vs oven temperature). Note that if all three end-
points involved share the same secret (the initial seed) then the dialect layer
will not detect the redirection.

(iii) c = replay(n). There are two cases: (a) the original message wasn’t
delivered—the replay appears as a delay or resend and won’t be dropped
by the wrapper and will correspond to a trace on the rhs where the original
message was delivered; (b) the original message was delivered—the replay
is dropped.2

(iv) c = create (message creation not implemented yet). Assuming the attacker
can’t break the dialecting, undialecting will fail and the message will be
dropped.

8 Related Work

8.1 Experimental Work

Existing dialect work has mainly implemented a dialect and carried out exper-
iments to study performance. Dialects to improve SDN (Software defined net-
work) security are defined and evaluated in [13,14].

Dialects for FTP and MQTT protocols using bit shuffling or packet split-
ting are studied in [3]. Self-synchronization mechanisms are propsed. In [6]
2 Note that if the lingo policy is to allow a parameter to be used 2 or more times
before rejecting, then the second use of a parameter may be rejected after a replay
causing dialecting to be complicit in the attack. Thus we chose a single-use policy.
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the authors propose a Deep Neural Network mechanism for synchronization. A
dialect is implemented by (conceptually) inserting a separate process between
the protocol and the network. Dialecting is proposed in [11] to mitigate known
exploitable vulnerabilities in IoT devices deployed in large numbers thus enabling
massive attacks.

8.2 Formal Work

The work most closely related to the present work is [2], which we will refer
to as ESORICS23 in the following. We refer to ESORICS23 for a more complete
review of previous work on dialects. ESORICS23 addresses three key aspects of
dialects: synchronization mechanisms; protocol and lingo genericity; and attack
model vs dialect choice. A general framework is proposed defining notions of
dialect and lingo as (parameterized) transformations on protocol theories with
a fixed initial protocol system state. The ideas are illustrated using the MQTT
protocol, a publish-subscribe protocol running on a reliable network.

The dialect transform operates on the protocol theory together with the
lingo transformed theories. In the resulting theory, protocol objects are wrapped
with dialect meta objects with the same identifier and rules are provided for
sending/receiving messages at the dialect level. The CoAP dialect uses a similar
meta object representation of the dialected form. A detailed comparison with
ESORICS23 can be found in the technical report [15].

9 Conclusions

Dialects such as [2] or the CoAP dialect can protect against replay, editing mes-
sage source and/or target, and message forging. They can not protect against
interference attacks such as dropping or delaying. These dialects also don’t pro-
tect against piggy back attack. In this attack there are two attackers X, Y where X
wants to send signals to Y. When A sends M to B, X intercepts and sends to Y
(on port j). Y learns the signal represented by j and forwards M to B.

This suggested the reactive attacker model for dialects–a non-interference
model. The attacker can observe (copy), construct/edit, transmit (no
block/drop, delay) thus can replay, redirect, spoof. We showed that dialects sat-
isfying minimal conditions provide security against non-interference attacks in
the sense that a dialected protocol in the presence of such attacks is bisimilar to
the protocol alone.

We conclude with some ideas for future work. It could be interesting to con-
sider dialects that emit apparently random messages between themselves? These
could be versions of previously sent messages or made up messages of suitable
size. They should be similar to ordinary traffic and not sent too often. Can this
obfuscate patterns the attacker relies on? Another alternative is deploying inter-
mediate nodes with a dialect layer only. These would be used to obfuscate where
the message is actually going. There is still work to be done to capture a generic
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attack model for messaging protocols: what are the properties that applica-
tions care about? how to represent them generally? what attack capabilities are
needed to succeed in violating critical properties? is there a notion of complexity
of property that corresponds to a minimal bound on successful attacker capabil-
ity?
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